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Abstract: The paper is dedicated to solving the problem of optimal text classification in the area
of automated detection of typology of texts. In conventional approaches to topicality-based text
classification (including topic modeling), the number of clusters is to be set up by the scholar,
and the optimal number of clusters, as well as the quality of the model that designates proximity of
texts to each other, remain unresolved questions. We propose a novel approach to the automated
definition of the optimal number of clusters that also incorporates an assessment of word proximity
of texts, combined with text encoding model that is based on the system of sentence embeddings.
Our approach combines Universal Sentence Encoder (USE) data pre-processing, agglomerative
hierarchical clustering by Ward’s method, and the Markov stopping moment for optimal clustering.
The preferred number of clusters is determined based on the “e-2” hypothesis. We set up an
experiment on two datasets of real-world labeled data: News20 and BBC. The proposed model is
tested against more traditional text representation methods, like bag-of-words and word2vec, to show
that it provides a much better-resulting quality than the baseline DBSCAN and OPTICS models with
different encoding methods. We use three quality metrics to demonstrate that clustering quality does
not drop when the number of clusters grows. Thus, we get close to the convergence of text clustering
and text classification.

Keywords: text classification; text clustering; clustering of short texts; neural network algorithms;
distributive semantics; sentence embeddings; least squares method; Markov moment; DBSCAN

1. Introduction

Text Classification vs. Text Clustering: Approaches to Automated Text Typology

The task of finding topical or sentiment-based clusters in real-world textual datasets provides a
wide range of methodological problems that are linked to both text clustering as finding the optimal
number of clusters and text classification as assignment of a class to a text. The problem of topic
detection has two arrays of problems intertwined: that of defining the optimal number of clusters and
that of detecting similar texts, as the number of "real topics” depends on how many texts in a given
dataset may be called similar enough [1].

The ways of defining the topics may be divided into several major approaches. Of them, LSA- and
LDA-based topic modelling goes “from clustering to classification”, by assigning texts to topic slots
with probabilities that are based on the probabilistically measured word proximity [2]. Unlike
traditional topic modelling, approaches as different as DBSCAN- and word2vec-based ones, go “from
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classification to clustering”, first measuring the word proximity and then defining clusters on this basis.
But, for both ways, there are arbitrary parameters that need to be defined by the scholars, such as,
e.g., the number of topics for LDA-based topic modelling or the two DBSCAN parameters that limit the
number of possible clusters in advance. In “clustering-to-classification” thinking, the issue of optimal
clustering is usually only partly resolved by multiple-run modelling with rounded number of clusters
—from 10 to 1000 or more [3]. Additionally, LSA and LDA algorithms assume that all lexical units have
equal weight within a dataset [4], unlike in real sentences and texts, where nouns or verbs bear bigger
semantic load, and some words are met much more frequently than others. To make models closer
mirror the inequality of lexical units, various instruments of text pre-processing are employed that
disambiguate between same-root words and eliminate stop words, rare words etc., as well as use more
sophisticated models of pre-processing [2,5]. DBSCAN-based approaches are widely used, but they are
just as widely known for their low performance on data of high dimensionality, e.g., when the number
of clusters goes over 10; for resolving this problem, a myriad of extensions have been proposed [6].

Thus, one needs to tackle two issues to unite the tasks of clustering and classification: the issue of
word proximity estimation and the issue of finding the optimal number of clusters. They might be
tackled simultaneously by constructing a methodology that combines decisions for both issues.

Below, we address both issues by testing the proposed clustering method on varying text
representations and juxtapose the results with the known baselines. We propose a combination
of Universal Sentence Encoder (USE) data pre-processing with sentence embeddings, agglomerative
clustering by Ward’s method, and the Markov stopping moment. This method allows for uniting the
assessment of text proximity with an optimal automated decision upon the number of clusters.

Earlier, we have conceptualized and theoretically modelled text clustering with hierarchic
agglomerative methods with the Markov stopping moment for small datasets; the models showed
positive results, while pre-processing was not yet a matter of our concern. We have also suggested
their application to network-like representation of texts and sentiment analysis [7,8]. In this paper,
we test the proposed method of agglomerative clustering by Ward’s method with Markov stopping
moment for several options of text representation, including more traditional tf-idf and improved
word2vec and the sentence embeddings-based text representation. As quality metrics (in particular,
V-measure) show, our method (Appendix A) stabilizes the result at the level of >0.5, the number of
expected clusters being 10 and 20. Thus, the model performs much better than the existing baseline
ones, including DBSCAN and OPTICS.

Raw data that are collected from social media provide additional challenges in terms of topic
detection, due to their high noise, post length variations, author-induced grammar and lexicon
distortions, and user-by-user dialogue fragmentation. The problem is especially significant for short
user texts, like tweets [9]. Thus, before applying the model to data from social media for social
science tasks, we used more structured real-world datasets for our experiment; these datasets had
to be pre-labeled, as our goal was to test the method. To test our methodology, we have used the
well-known real-world labeled dataset “20 newsgroups” (or, in short, News20) (http://qwone.com/
~jason/20Newsgroups/) with pre-marked topicality. Four News20 subsets were used as the model
text corpora, namely News3 (three classes and 83 documents), News5 (five classes and 121 documents),
News10 (10 classes and 268 documents), and News20 (20 classes and 18,846 documents). We have also
employed another real-world dataset, namely the BBC one (http://mlg.ucd.ie/datasets/bbc.html),
with five thematic clusters [10], to ensure that our results are dataset-independent.

For numerical experiments, we used a program code that was written in the Python 3.7
programming language. The NumPy and SciPy libraries were used for calculating distance matrices.
The calculations were carried out using the PyCharm shell by JetBrains based on IntelliJ IDEA, and
Collaboratory, a free environment for Google’s Jupiter Notebook.

The remainder of the paper is organized, as follows. Section 2 describes the methodological design,
including data pre-processing with USE-based text representation, the approximation-estimation
criterion and test, and the Markov stopping moment for finding the optimal number of clusters for
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the texts represented via embeddings. In Section 3, we report on the results as compared to the
DBSCAN and OPTICS baselines by V-measure, NMI, and the number of clusters’ inference accuracy.
In Discussion (Section 5) and Conclusion (Section 6), we re-assess the method and reflect upon its use
on real-world data.

2. Methods

2.1. Data Pre-Processing with the Use Model

In the “classification-to-clustering” logic, we have first represented the texts in a vector space.
We have applied the Universal Sentence Encoder (USE) as a text pre-processing procedure to obtain
high-quality contextual embeddings. USE is a transformer-based sentence encoding model that
constructs sentence embeddings using the encoding sub-graph of the transformer architecture [11].
Transformer architecture consists of two main parts: an encoder and a decoder, where the latter outputs
the final result in the form of a vector representation for a given sentence. USE utilizes the attention
mechanisms to learn context-aware representations of words and, then, taking their ordering and
identity, converts into a fixed-length sentence encoding vectors.

In our test, a pre-trained USE model is utilized in order to obtain sentence-level representations
for the original data from the News20 dataset. The USE model was chosen due to several reasons.
First, it is its efficiency in modeling small amounts of data, due to its nature as a pre-trained text
model [12]. Second, it is the quality it provides in general. Third, it is its quality of modelling on
short or unbalanced texts then used as a pre-trained model. Fourth, there is a variety of pre-trained
USE models that are suitable both for single-language and multilingual text corpora, which allows for
economizing on computational resources.

2.2. Approximation-Estimation Test

For the next step of our methodology, we rethink the classification problem as a more complex
classification and clustering problem of automated typology of texts. In this case, both the topics of the
documents and the number of these topics are unknown; they are not pre-defined by the supervisor.
As stated above, a possible approach to the automated typology of texts could be unsupervised
learning while using cluster analysis methods. For cluster analysis of texts, hierarchical agglomerative
algorithms [13,14] can be used.

In general, strict cluster analysis (without intersecting clusters as subsets) is understood as
algorithmic typologization of the elements of a certain set (sample) X by the “measure” of their
similarity with each other. An arbitrary clustering algorithm is mapping

A :

{
X −→ N,

xi 7−→ k,
(1)

which maps to any element xi from the set X the only k, which is the number of the cluster to
which xi belongs. The clustering process splits the X into pairwise disjoint subsets of Xh called

clusters: X =
m⋃

h=1

Xh, where for ∀ h, l | 1 ≤ h, l ≤ m : Xh ∩ Xl = ∅. Therefore, the map A defines

an equivalence relation on X [15,16]. If an equivalence relation is given on some set X, not all set X
can be considered, but only one element from each equivalence class. These elements are called “a
representatives” of equivalence classes [17,18]. For cluster analysis, these are, for example, centroids or
nearest neighbors. It greatly simplifies calculations and theoretical researchers of the map A.

One of the main problems when using agglomerative clustering methods is to calculate the
preferred number of clusters and determine when the process stops. Moreover, a characteristic feature
of these methods is the emergence of the so-called “chain effect” at the final stage of clustering. As we
approach the end of the process, one large cluster is formed due to the addition of either previously
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created clusters or isolated points. If there is no criterion for stopping the clustering process, all points
of the set X will be combined into a single cluster [19,20].

The issue of defining the moment of completion of the clustering algorithm is the same moment
that determines the optimal number of clusters. The problem of finding this moment can be solved
within the framework of the theory of optimal stopping rules [21,22].

Before proceeding to the formal mathematical calculations, we will explain the logic of the research
design. Thus, we need to detect the optimal number of text types or classes (by topicality, sentiment,
etc.) within a certain corpus and assign the types or classes to the texts. Formally, the number of
classes (topics, in our case) will coincide with the number of clusters. An adequate number of clusters
can be obtained if hierarchical agglomerative clustering stops at the “right moment”. Agglomerative
clustering methods are based on combining the elements of some set X that are located closest to
each other. Moreover, the agglomerative process begins with the assumption that each point in X is a
separate cluster. During clustering, the clusters “grow” according to the principle described above.
The clusters are clumps (subsets of higher density) inside X. Obviously, with this approach, one of
the main characteristics of the clustering process will be the function of minimum distances. While
points close to each other are combined, the function of minimum distances slowly increases as a
linear quantity. However, when the formed clusters begin to unite, the function of minimum distances
increases sharply. In the vicinity of this point, the increase in the function of minimum distances
ceases to be linear and becomes parabolic. By common sense, this is the moment of completion of the
agglomerative clustering process. Analytically, this moment can be detected as a point at which an
incomplete (without a linear term) parabolic approximation becomes more precise than the linear one.

In other words, in the neighborhood of this point, the quadratic error of incomplete parabolic
approximation becomes smaller than the quadratic error of linear approximation. When clusters merge
or one of the isolated points joins any of them, there should be a sharp jump in the minimum distance’s
numerical value. It is the moment when the clustering process is complete. At such a moment,
the values of the set of minimum distances are more accurately approximated by an incomplete
quadratic parabola (without a linear term), rather than the direct line [15,16]. Within this approach,
the iteration of the agglomerative process of clustering, at which there is a change in the nature of
the increase in the function of minimum distances from linear to parabolic, is defined as the Markov
stopping moment.

We now turn to formal mathematical notation. Consider the set of minimum distances obtained
after m− 1 iteration of any agglomerative clustering algorithm. It has the form {F1, F2, . . . , Fm−1};
for all of the agglomerative clustering methods, except for the centroid one, it is linearly ordered
relative to numerical values of its elements: 0 ≤ F1 ≤ F2 ≤ . . . , ≤ Fm−1. We use this set to derive the
statistical criterion for completing the clustering process in an arbitrary Euclidean space Rn.

We use the previously constructed parabolic approximation-estimation test in order to determine
the moment when the character of a monotonic increase in the numerical sequence changes from linear
to parabolic [23,24].

We distinguish between a linear approximation in the class of functions of the form l(x) =

ax + b and an incomplete parabolic approximation (without a linear term) in the class of functions
q(x) = cx2 + d. The quadratic errors in k nodes for linear and incomplete parabolic approximation
will be, respectively, equal to:

δ2
l (k) =

k−1

∑
i=0

(a · i + b− yi)
2; δ2

q(k) =
k−1

∑
i=0

(c · i2 + d− yi)
2. (2)

If, in our reasoning, the number of approximation nodes is not essential or obvious from the
context, then the corresponding quadratic errors will simply be denoted by δ2

l , and δ2
q .

When comparing δ2
l and δ2

q , there are three possible cases: δ2
q < δ2

l ; δ2
q > δ2

l ; δ2
q = δ2

l .
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We say that the sequence yn has linear increase at the nodes (points): y0, y1, . . . , yk−1, if yn is
monotonic and the quadratic errors of linear and incomplete parabolic approximation over these nodes
are related by the inequality: δ2

q > δ2
l .

If, under the same conditions, the inequality: δ2
q < δ2

l , holds, then we say that the sequence yn

has parabolic increase at points: y0, y1, . . . , yk−1.
If, for a set of approximation nodes: y0, y1, . . . , yk−1, the equality δ2

q = δ2
l holds, then the point

yk−1 is called critical.
We calculate coefficients a, b of a linear function ax + b and the coefficients c, d for an incomplete

quadratic function cx2 + d approximating the nodes y0, y1, . . . , yk−1 [23,24].
First, using the method of least squares, we calculate the coefficients a, b of the linear function

f (x) = ax + b approximating the nodes y0, y1, . . . , yk−1. For this, we find the local minimum of the
function of two variables

fl(a, b) =
k−1

∑
i=0

(a · i + b− yi)
2. (3)

We calculate the partial derivatives of the function fl(a, b) :

∂ fl
∂a

= 2a
k−1

∑
i=0

i2 + 2b
k−1

∑
i=0

i− 2
k−1

∑
i=0

i · yi ; (4)

∂ fl
∂b

= 2a
k−1

∑
i=0

i + 2b
k−1

∑
i=0

1− 2
k−1

∑
i=0

yi . (5)

By equating them to zero, we obtain a system of linear equations for the unknown a and b:
k(k− 1)(2k− 1)

6
· a + k(k− 1)

2
· b =

k−1

∑
i=1

i · yi

k(k− 1)
2

· a + k · b =
k−1

∑
i=1

yi ,

(6)

which implies:

a =
6

k(k2 − 1)

k−1

∑
i=1

(2i + 1− k)yi b =
2

k(k + 1)

k−1

∑
i=1

(2k− 1− 3i)yi. (7)

We calculate the coefficients c, d of the incomplete quadratic function cx2 + d as the coordinates of
the local minimum for:

fq(c, d) =
k−1

∑
i=0

(c · i2 + d− yi)
2. (8)

Differentiating fq(c, d), we find:

∂ fq

∂c
= 2c

k−1

∑
i=0

i4 + 2d
k−1

∑
i=0

i2 − 2
k−1

∑
i=0

i2 · yi, (9)

∂ fq

∂d
= 2c

k−1

∑
i=0

i2 + 2d
k−1

∑
i=0

1− 2
k−1

∑
i=0

yi, (10)



Future Internet 2020, 12, 144 6 of 17

and 
k(k− 1)(2k− 1)(3k2 − 3k− 1)

30
· c + k(k− 1)(2k− 1)

6
· d =

k−1

∑
i=1

i2 · yi

k(k− 1)(2k− 1)
6

· c + k · d =
k−1

∑
i=1

yi,

(11)

We find that:

c =
30

k(k− 1)(2k− 1)(8k2 − 3k− 11)

k−1

∑
i=1

(6i2 − (k− 1)(2k− 1))yi; (12)

d =
6

k(8k2 − 3k− 11)

k−1

∑
i=1

(3k(k− 1)− 1− 5i2)yi. (13)

Subsequently, to determine the moment when the character of the increase in the monotonic
sequence yn changes from linear to parabolic, we construct the parabolic approximation-estimation
test δ2

ql .
By definition, we assume that, for approximation nodes: y0, y1, . . . , yk−1 the parabolic

approximation-estimation test [23,24] is expressed by the formula:

δ2 = δ2
ql(k) = δ2

l (k)− δ2
q(k). (14)

Moreover, we assume that always y0 = 0. It is easy to achieve this condition at any approximation
step while susing the transformation:

y0 = yj − yj, y1 = yj+1 − yj, . . . , yk−1 = yj+k−1 − yj. (15)

Now, we calculate, using the values of the coefficients a, b, c, d, the quadratic errors of the linear
and incomplete parabolic approximations at four points y0, y1, y2, y3, and we obtain an explicit
expression for δ2 [23,24].

δ2(4) = δ2
ql(k) = δ2

l (4)− δ2
q(4) =

1
245

(19y2
1 − 11y2

2 + 41y2
3 + 12y1y2 − 64y1y3 − 46y2y3). (16)

Thus, we have derived a quadratic form equal to the difference of the quadratic errors of linear
and incomplete parabolic approximation. This quadratic form changes its sign when the character of
an increase in the numerical sequence changes from linear to parabolic.

2.3. Cluster Analysis as a Random Process and the Markov Moment of Its Stopping

Now, we will formally determine the moment of stopping the clustering process using
the theory of random processes and the theory of sequential statistical analysis. Here,
the approximation-estimation test is used as the decisive statistical criterion.

Let T = 1, m− 1 be a bounded subset of the natural series, containing natural numbers:
1, 2, . . . , m − 1. Subsequently, the family ξ = {ξt, t ∈ T} of random variables ξt = ξt(ω) defined
for ∀ t ∈ T on the same probability space (Ω,F , P) is called a discrete random process.

Each random variable ξt generates a σ-algebra, which we denote as Fξt . Subsequently,
the σ-algebra generated by the random process ξ = {ξt, t ∈ T} is called the minimal σ-algebra
containing all Fξt i.e.,

σ(ξ) = σ

(
m−1⋃
t=1

Fξt

)
. (17)
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The discrete random process ξ = {ξt, t ∈ T} can be considered as a function of two variables
ξ = ξ(t, ω), where t is the natural argument, ω is a random event. If we fix t, then, as indicated above,
we obtain a random variable ξt; if we fix a random event ω0, we obtain a function of the natural
argument t, which is called the trajectory of the random process ξ and is a random sequence of ξt(ω0).

We consider the clustering of a finite set X from the Euclidean space Rn as a discrete random
process ξ = ξ(t, ω). A random event of ω ∈ Ω will be the extraction of a sample of X from Rn.
Theoretically, any point x ∈ Rn can belong to the sample set X, therefore the σ-algebra from the
probability space (Ω,F , P) contains all Rn, any finite set X from the space Rn, all possible countable
unions of such sets, and additions to it. We denote this set system as S (Rn) and call it selective
σ-algebra, F = S (Rn) . The same reasoning holds for any σ-algebra Fξt . Therefore, σ(ξ) = S (Rn) .

Consider the binary problem of testing the statistical hypotheses H0 and H1. Where the null
hypothesis H0, or the random sequence of ξt(ω0), increases linearly, and the alternative hypothesis H1,
or the random sequence ξt(ω0), increases non-linearly (parabolically). It is necessary to construct the
criterion as a strict mathematical rule that tests the statistical hypothesis.

In the Euclidean space, Rn during agglomerative clustering of sample data, one of the main
characteristics of the process will be a set of minimum distances. It is natural to consider its values as a
random variable ξt : Ω −→ R, assuming that t is the iteration number of the agglomerative clustering
algorithm A. For any fixed random event ω0 ∈ Ω, the corresponding trajectory ξt(ω0) = Ft is a
monotonically increasing random sequence.

On the probability space (Ω,F , P) the family of σ-algebras F = {Ft, t ∈ T} is called a filtration,
if for ∀ i, j ∈ T | i < j : Fi ⊂ Fj ⊂ F . Moreover, if for ∀ t ∈ T : Ft = σ(ξi, i < t), then the filtration
is called natural. The random process ξ = {ξt, t ∈ T} is called consistent with the filtration F, if for
∀ t ∈ T : σ(ξt) = Fξt ⊂ Ft. Obviously, any random process is consistent with its natural filtration.

The mapping τ : Ω −→ T is called Markov moment with respect to the filtering F, if for ∀ t ∈ T
the preimage of the set is {τ ≤ t} ∈ Ft. If, in addition, the probability P(τ < +∞) = 1, then τ is called
the Markov stopping time [22].

In other words, let τ be the moment of the occurrence of some event in the random process
ξ = {ξt, t ∈ T}. If for ∀ t0 ∈ T we can definitely say whether the event τ occurred or not, provided
that the values of ξt are only known in the past (to the left of t0), then τ is the Markov moment relative
to the natural filtering F of the random process ξ = {ξt, t ∈ T}. If the moment of the occurrence of τ

has a probability equal to one, then τ is the Markov stopping time.
For a random sequence of minimum distances Ft, when we cluster the sample X ⊂ Rn, the natural

filtration consistent with the process is the “sample σ-algebra” S (Rn). Subsequently, by definition,
the Markov moment of stopping the agglomerative process of clustering will be statistics

τ = min{t ∈ T | δ2
t > 0}. (18)

Thus, the statistical criterion for the completion of the agglomerative process of clustering can be
formulated, as follows. Let {F1, F2, . . . , Fk} be a linearly ordered set of minimum distances, and
the set {y1, y2, . . . , yk} be the “trend set” obtained using the transformation yi = Fi + q · i, where q
is the “trend coefficient”, and i is the iteration number of the agglomerative clustering algorithm
A. The clustering process is considered to be completed at the k-th iteration, if for the nodes
yk−4, yk−3, yk−2, yk−1 the inequality δ2 ≤ 0, and for the set of points yk−3, yk−2, yk−1, yk, the inequality
δ2 > 0.

In other words, the Markov moment of stopping the agglomerative clustering process is the
minimum value t at which the null hypothesis H0 is rejected (“the values of the elements of a linearly
ordered trend set increase linearly”) and the alternative hypothesis is accepted H1 (“the values of the
elements of a linearly ordered trend set increase parabolically”) [15].



Future Internet 2020, 12, 144 8 of 17

2.4. Clustering Stability and Determining the Preferred Number of Clusters: The Stopping Criterion

The clustering process is completed using the parabolic approximation-estimation test described
above, which estimates the jumps of a monotonically increasing sequence of “trend set” values.
The magnitude of the significant jump sufficient to stop the process depends on the sensitivity of the
stopping criterion, which is set using the non-negative coefficient q [15,16]. The higher the value of q,
the lower the criterion’s sensitivity for stopping the clustering process. The stopping criterion has the
highest sensitivity at q = 0, in this case, as a result of clustering, the most significant number of clusters
will be obtained. By increasing q, the stopping criterion’s sensitivity can be reduced so that the process
continues until all m vectors are combined into one cluster. In this case, intervals of stable clustering
Qi = [αi, βi] will occur on which for ∀ q | αi ≤ q ≤ βi the same clustering results will be obtained.

Cluster analysis, in a sense, has a high degree of subjectivity. Therefore, the interpretation of
its results largely depends on the researcher. So far, no rigorous definition of “sustainable/stable
clustering” has been introduced; the scholars only speak of an intuitive concept. They argue that
“clustering stability” shows how different the resulting partitions into equivalence classes become after
using the clustering algorithms for the same data many times. A slight discrepancy between the results
is interpreted as high stability [25].

In our case, a quantitative measure of stability of clustering can be considered the value of
the interval of variation of the coefficient q, within which the same result is obtained for the set X.
Here, we note again that the “chain effect” arises at the final stage of the clustering process when
already-formed clusters are added one after another to some other cluster. In this case, the correct
choice of sensitivity threshold for the stopping criterion on the account of the non-negative coefficient
q is essential. In the general case, the sequence of intervals of stable clustering, for various values of
the coefficient q, is denoted by: Q1, Q2, . . . , Qe−2, Qe−1, Qe, where Qi (1 ≤ i ≤ e− 1) is the interval
of stable clustering, and Qe is the set of values of the coefficient q, in which all m points are combined
into one cluster.

Clustering with Markov stopping time allows for automation of the procedure for determining
the number of clusters in the text corpus. Based on the analysis of numerical experiments and general
considerations, the following hypothesis was formulated earlier: “Preferred a number of clusters is
formed at q ∈ Qe−2” [16]. The main motive for formulating this hypothesis was that a chain effect is
manifested in the interval of stable clustering Qe−1, at which already formed clusters are combined.

3. Comparison of the Proposed Approach with the Silhouette Score and the Elbow Method

As stated above, to define the preferred number of clusters, we use the “e-2” hypothesis.
In detail, the “e-2” hypothesis works the following way. The coefficient of trend q increases

monotonically, with some discreteness step from 0 to +∞. The first stable clustering interval is
Q1 = [0, a1]. For any q from [0, a1], the same clustering result is obtained, and the sample is divided into
the largest number of clusters. These clusters are the smallest. The next stable clustering interval, Q2 =

[a1, a2], for any q from [a1, a2], the same result is obtained again. Nevertheless, the number of clusters
decreases, and the clusters become larger, etc. When the q trend coefficient increases, the preferred
number of clusters is obtained. We denote this stable clustering interval Qe−2 = [ae−3, ae−2]. It is
clear that, for any q from [ae−3, ae−2], the preferred number of clusters is obtained. On the interval
of stable clustering Qe−1 = [ae−2, ae−1], a “chain effect” occurs, described in the literature on cluster
analysis, for example [19]. In this interval of stable clustering, some of the already formed clusters
merge. The coefficient q increases and reaches such a value ae that all sampling elements are combined
into one cluster. We denote this ray of stable clustering by Qe = [ae,+∞). From the text stated above,
it is obvious that if the marked dataset contains less than three clusters, then the interval of stable
clustering Qe−1 = [ae−2, ae−1] disappears. Therefore, for such datasets, the “e-2” hypothesis gives a bad
result. Thus, it is clear that, for two-cluster datasets, use of the “e-2” hypothesis is not recommended,
as the “e-1” step will be eliminated; however, for data with the presumed number of clusters being
three or more, our method is capable of providing refined results. It needs to be underlined that the
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overwhelming majority of real-world datasets contain far more than two clusters: even in the simplest
tasks of sentiment analysis, there are three clusters (negative, positive, and neutral), while, in topic
detection, the number of clusters in large corpora is expected to be much bigger. Thus, our method is
suitable for such datasets.

Below, we support this claim by applying our method first to the simplest standard model datasets
from scikit-learn (https://scikit-learn.org/stable/modules/clustering.htmllibrary). The scikit-learn
visualization of runs of clustering methods on six datasets of varying nature demonstrates that various
clustering methods work differently on datasets with varying number of clusters (one, two, and three)
and varying spreads of data units within the Euclidean space. The pictures at scikit-learn show that
some methods work better on two-cluster datasets, and some do best on three-cluster ones.

Figure 1 shows the results of application of our method to the six model datasets.

Figure 1. Results of the proposed approach made on datasets from scikit-learn.

Figure 1 allows for two conclusions. First, for three-cluster datasets, our method works well,
the results are close to the Ward method, but work even better with borderline units (see visualizations
for the datasets 3, 4, and 5, in comparison with the respective visualizations at scikit-learn for the Ward
method). The visualization confirms that our method suits well for the datasets with three or more
clusters. In this respect, the dataset 3 at Figure 1 deserves particular attention. This dataset contains
three spherical clusters with fuzzy boundaries (compare to the dataset 5). Such distribution of points
in a Euclidean space is typical for text representations by normalized vectors (e.g., embeddings-based
representations). If we a priori assume that, according to the Euclidean metric, similar texts have
similar vector representations, they should form spherical clusters. At the same time, the problem
of fuzzy boundaries between different types of texts is well-known. According to Snell-Hornby [26],
there are no clear boundaries between types of texts, but only a certain center for each of the types.
Therefore, we can assume that the representation of textual data by normalized vectors in the Euclidean
space most closely matches the one of the dataset 3 at Figure 1. Additionally, this is exactly where
our method works best. Second, for the datasets with one or two clusters, our method detects a big
number of clusters (see visualizations for the datasets 1, 2, and 6 at Figure 1). This proves that use of
the “e-2” hypothesis allows for catching the moment when the clustering process begins, before the
chain effect shows up. Again, this proves that our method is suitable for datasets with large number of
clusters, like the real-world ones used for topic detection.

https://scikit-learn.org/stable/modules/clustering.html library
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Now, let us see how the “e-2” hypothesis works in comparison with more traditional ways of
stopping to determine the preferred number of clusters, namely the silhouette metric and the elbow
method. Our approach differs from both of them. The elbow method is a heuristic used to determine
the number of clusters in a dataset. It consists of finding the “elbow” of the graph of change as a
function of the number of clusters. The most common variation that is used in the elbow method is
total variance within the cluster. The proposed method for determining the number of clusters using
approximation-estimation tests is also based on finding the “elbow” of the graph of some values that
characterize the clustering process. The difference is that the definition number of clusters with help of
“elbow” is based upon heuristic visual assessment, but the definition number of clusters with help of
approximation-estimation tests and “e-2” hypothesis is based upon sequential statistical analysis.

Unlike the elbow method, the silhouette coefficient is non-heuristic. It is based on two scores:
a(x) is the average distance from current point x to objects of its own cluster A, and b(x) is the average
distance from the current point x to the objects of cluster B, which is the closest one to x. The silhouette
coefficient of point x is the number s(x):

s(x) =
b(x)− a(x)

max{a(x), b(x)} . (19)

It is easy to see that −1 ≤ s(x) ≤ 1. The value of s(x) being close to 1 implies that the point is
clustered well; the value being close to −1 implies that the point is clustered incorrect. If the value is
close to 0, it it means that the distances from x to both clusters A and B are the same, and the point
x should be assigned to either A or B. This case can be considered as “ntermediate”. The silhouette
coefficient of a dataset is defined as the average of the silhouette coefficients for all of the points of the
sample. The number of clusters with the highest silhouette coefficient for the fixed clustering method
can be determined as the optimal number of clusters for this method applied to the dataset under
scrutiny [27].

However, the silhouette coefficient has its shortcomings. It takes much time to compute the
silhouette coefficients for every data unit in large datasets for every possible clustering result.
Additionally, the silhouette coefficient cannot detect well the original number of clusters if the clusters
overlap and have fuzzy boundaries, while our method helps to eliminate this problem.

To prove it, we have applied our method to another well-known model dataset, namely the iris
dataset (https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html#sklearn.
datasets.load_iris). The results of the application are shown in Tables 1 and 2 (the silhouette coefficient
and “e-2” hypothesis, respectively). The iris dataset consists of data of three classes, with two of them
slightly overlapping, and our features for each data unit. Thus, the expected number of clusters is
three. The results presented in Tables 1 and 2 clearly show that the silhouette coefficient misses the
point in detecting the right number of clusters, while our method finds the right number of clusters on
the interval of stable clustering “e-2”.

Table 1. The number of clusters received for the iris dataset by the silhouette coefficient.

Number of Clusters Silhouette Coeffecient

2 0.6867
3 0.5543
4 0.4889
5 0.4843
6 0.3592
7 0.3422
8 0.3436
9 0.3305

10 0.2925

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html#sklearn.datasets.load_iris
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html#sklearn.datasets.load_iris


Future Internet 2020, 12, 144 11 of 17

Table 2. The number of clusters received for the iris dataset by application of the e-2 hypothesis.

Number of Clusters The Number of the Interval of Stable Clustering

1 e
2 e – 1
3 e – 2
8 e – 3

25 e – 4
144 e – 5
145 e – 6

4. The Experiment against the Baselines and Its Results

The tests were performed on two distinct datasets. News20 is a dataset containing news headlines
and articles, which was split into four subsets. Each division contains rows with unique labels e.g., rows
from a subset containing three classes is not used in subsets with five and 10 classes. BBC is a dataset
containing BBC articles with each row labeled as one of the five distinct classes: sport, tech, business,
entertainment, and politics.

The proposed model was tested against two other well-known clustering methods that have the
ability to infer the optimal number of clusters as part of the training process. DBSCAN and OPTICS
were chosen as one of the few classic approaches that does not require the number of clusters to train
the model [28,29].

Three metrics were utilized to evaluate the performance of our method against classic approaches.
The V-measure can be described as a weighted harmonic mean of homogeneity and completeness [30].
In this metric, the homogeneity criterion is satisfied if the algorithm only assigns to a single cluster the
data units that are members of a single class. In order to satisfy the completeness criteria, the algorithm
must assign to a single cluster all of the data units that are members of a single class. NMI (Normalized
Mutual Information) [31] was used as additional performance metric, which utilises entropies of class
labels and mutual information (a reduction in the entropy of class labels after training). Both of these
metrics are independent of the absolute values of the labels, and the results of clustering can be directly
compared with the true labels, which are document classes of the original data assigned by the authors
of this dataset. Finally, to test models’ ability to accurately determine the number of clusters in a given
corpus, we employed a measure of similarity between the optimal number of clusters and the number
obtained by algorithms (number of clusters’ inference accuracy).

Experiments were conducted with different encoding techniques, in order to test their possible
impact on the model’s performance. The first model is TF-IDF, as it is, to this day, a very popular
encoding methods for relatively simple tasks. Another employed method is FastText [32], which is
an extension of a well-known word2vec model with improved accuracy and faster training time
due to the usage of negative sampling. Finally, we use the context-aware USE model described in
Section 2, which, unlike FastText, can output embeddings not just for words but for entire sentences
and, by doing so, bypasses the process of averaging the word embeddings typically performed by the
models that do not utilise context information, such as FastText.

The results for different combinations of training and encoding models, as well as different
metrics, can be seen in Tables 3–9.

Table 3. V-measure for News3 and News5.

News3 News5

Method W2V TF-IDF USE W2V TF-IDF USE

“e-2” hypothesis 0.38 0.28 0.40 0.09 0.33 0.41
DBSCAN 0.05 0.09 0.31 0.06 0.05 0.22
OPTICS 0.20 0.26 0.24 0.08 0.16 0.11
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Table 4. V-measure for News10 and News20.

News10 News20

Method W2V TF-IDF USE W2V TF-IDF USE

“e-2” hypothesis 0.09 0.13 0.64 0.08 0.22 0.52
DBSCAN 0.01 0.24 0.38 0.02 0.18 0.09
OPTICS 0.20 0.28 0.36 0.14 0.23 0.01

Table 5. NMI for News3 and News5.

News3 News5

Method W2V TF-IDF USE W2V TF-IDF USE

“e-2” hypothesis 0.43 0.29 0.51 0.10 0.75 0.75
DBSCAN 0.03 0.06 0.50 0.06 0.04 0.31
OPTICS 0.19 0.31 0.26 0.06 0.19 0.11

Table 6. NMI for News10 and News20.

News10 News20

Method W2V TF-IDF USE W2V TF-IDF USE

“e-2” hypothesis 0.17 0.20 1.43 0.17 0.49 1.48
DBSCAN 0.02 0.39 0.73 0.04 0.34 0.15
OPTICS 0.30 0.47 0.70 0.24 0.46 0.01

Table 7. The number of clusters’ inference accuracy for News3 and News5.

News3 News5

Method W2V TF-IDF USE W2V TF-IDF USE

“e-2” hypothesis 0.71 1 0.50 0.50 0.26 0.43
DBSCAN 1 1 0.33 0.50 0.50 0.43
OPTICS 0.20 0.14 0.14 0.78 0.25 0.82

Table 8. The number of clusters’ inference accuracy for News10 and News20.

News10 News20

Method W2V TF-IDF USE W2V TF-IDF USE

“e-2” hypothesis 0.14 0.08 1 0.20 0.14 0.84
DBSCAN 0.33 0.33 0.38 0.33 0.78 0.51
OPTICS 0.60 0.18 0.11 0.84 0.45 0.95

Table 9. Results for BBC dataset (Universal Sentence Encoder (USE) data pre-processing).

Method V_measure NMI The Number of Clusters’ Inference Accuracy

“e-2” hypothesis 0.698 1.115 1
DBSCAN 0.001 0.001 0.142
OPTICS 0.166 0.216 0.816

The experiment shows that the proposed method of agglomerative clustering with USE
pre-processing provides a much better result when compared to the baselineS, namely DBSCAN
and OPTICS. The model performs especially well when the number of classes increases, reaching
eight-times better performance than the baseline model if compared by the V-measure.
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5. Discussion

As we have demonstrated above, the proposed method shows high efficiency against the baseline;
however, it is not deprived of shortcomings.

As for data pre-processing and the dataset, the most notable downside to models, such as USE,
are their requirements in terms of hardware and their time-consuming nature. This is especially true
then the model is trained from scratch, but even the inference process can be rather slow then dealing
with large corpora. Additionally, News20 has very well-defined classes and, as such, may not be
representative of the performance on the real data. However, it provides a good enough estimate of
the model performance by giving us the ability to check the clustering performance via comparing
obtained cluster labels with the true labels defined for this set by human coding.

As for the clustering procedure with the Markov moment, it still possesses some residual
subjectivity, as sensitivity of the stopping criterion may be changed by the researcher. As we noted
above, clustering per se is a subjective instrument when used for topicality or sentiment detection,
as almost all of the stopping criteria (that is, the criteria for selection of the optimal number of clusters)
are subjective by nature, being based on heuristic approaches to problem resolution. The use of “e-2
hypothesis” that we have suggested above aims at reducing the level of subjectivity. Additionally, more
experiments are needed to collect empirical data on the optimal values of the stopping criterion for
the real-world data. In order to overcome the problem of subjectivity, the data might as well undergo
further experiments with various procedures for stopping, while the results might be compared to
expert opinion, given that the level of agreement of 0.7–0.8 among the human coders is reached.
However, we need to note that our prior experiments with topic models and human coding have
shown that manual coding should not be taken as baseline. In particular, for pairs of human coders,
topic interpretability and proximity varied for over 10 times, depending on prior familiarity with
the dataset and coding experience [33]. Thus, the quality assessment of clustering remains an issue.
Our approach significantly helps researchers to reduce subjectivity but does not eliminate it completely.
The advantage of our approach is that it allows for testing subtle changes in topicality distribution
by nuanced variances of the stopping criterion, rather than changing the number of topic slots in
arbitrary manner.

Possible limitations of our work may also lie in two aspects. The utilization of transformer-based
sentence embeddings and USE may be advised to scholars interested in text clustering, but application
of USE may be technically unfeasible for some of them. Additionally, the limitations might be linked
to the nature of the datasets, which, as mentioned before, stands between regularized text collections
and highly noisy data from social media.

6. Conclusions

Above, we have demonstrated the efficiency of a combined method for automated text typology
that unites the tasks of text classification and text clustering. We have used sentence embeddings at the
stage of pre-processing and hierarchical agglomerative clustering with an approximation-estimation
test and the Markov stopping moment for defining the time of completion of clustering.

We have shown that this methodological design showed high efficiency in comparison with two
baselines, DBSCAN and OPTICS. It is especially true for the number of clusters higher than five.
The quality of the model does not drop at 10 and 20 classes, which allows overcoming the well-known
problem of low performance of text classification for high numbers of clusters. The results may be
applied to a wide array of tasks of text classification, including topic detection, multi-class sentiment
analysis, and clustering of multilingual datasets by language. In combination with social network
analysis, it may be applied for community detection on social networks and to other tasks of networked
discussion analytics.

Real-world data can pose challenges to our method, as mentioned above. Thus, our future
work will develop in three directions. First, we will apply the proposed method to the real-world
datasets from unilingual and multilingual Twitter and Youtube that we have collected in 2014 to
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2019 [34]. We expect the results to drop to some extent, as the real-world data substantially complicate
pre-processing. This is why, second, our future work will involve testing the model with other encoding
methods such as XLNet, BERT, and others. Third, testing the model against other, more specialized
clustering models and comparing them with the help of a wide array of metrics can also provide for
better understanding of the efficiency of the model.
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Appendix A. Method Application and Quality Assessment

Below, we provide a tutorial for the method application.

Appendix A.1. Encodings

First, the initial rows of sentences are pre-processed for tf-idf representation using
nltk.PorterStemmer for stemming and stop_words.get_stop_words for stop words removal. After that,
the data are transformed to the vector form using sklearn.feature_extraction.text.TfidfVectorizer for further
clustering. FastText and USE encoding models, at their core, do not rely on distinct words to encode
sentences (instead, they utilize subword information). Thus, they do not need any pre-processing at
the beginning. FastText encoding is obtained using fasttext.util.download_model with the pre-trained
model ’cc.en.300.bin’. For the USE encoding, tensorflow_hub.load is utilized to load the default v4
version of the model (https://tfhub.dev/google/universal-sentence-encoder/4).

Appendix A.2. Baseline Models

The next step is to obtain the baseline models for testing. sklearn.cluster.DBSCAN and
sklearn.cluster.OPTICS are used to train the DBSCAN and OPTICS models, respectively. In almost all
cases, the models are used with their default parameters for text clustering. Using hyper optimisation
methods was considered; however, it made more sense to compare the models without changing their
parameters from case to case, to be on the leveled field with the proposed model which is trained only
once for each case—that is, without any further hyperparameter optimisation.

Appendix A.3. The Proposed Model

The proposed approach is based on the Ward method of agglomerative clustering.
scipy.cluster.hierarchy.ward is used to get the linkage matrix. The column with index 2 of this matrix
is a set of minimum distances. It can be easily transformed into a trend set by adding numpy.arange
multiplied on q to it. It is possible to find the (e − 2) stopping moment via brute force method,
by sequentially increasing the coefficient q with a fixed step. For each value of q, find all stopping
moments sequentially checking the sign of approximation-estimation test for elements of trend set
built with q. Stop the process of searching if the value of q is so high that, for every row of the linkage
matrix, the approximation-estimation test is taking non-positive values and there is no stopping
moment. Then use scipy.cluster.hierarchy.fcluster to get cluster labels for the (e− 2) stopping moment
using information from the linkage matrix, e.g., the minimum distance or the number of clusters on
this step.

https://tfhub.dev/google/universal-sentence-encoder/4
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Appendix A.4. Brief Description of the Algorithm

Algorithm A1: Step-by-step instructions of use

1. Create the text representation model for a dataset.
2. Build a condensed distance matrix using scipy.spatial.distance.pdist with Euclidean distance.
3. Build a linkage matrix with a chosen agglomerative clustering method using

scipy.cluster.hierarchy.ward and the calculated distance matrix.
4. Sequentially increase q with a chosen step starting from zero to find all the stopping moments.

For each value of q, find all the stopping moments sequentially checking the
sign of approximation-estimation test for elements of the trend set. Stop this process if the
value of q is so high that, for every row of the linkage matrix, the approximation-estimation test
is taking non-positive values.

5. Choose the (e− 2) stopping moment and find an array of cluster labels for texts using the
linkage matrix (using scipy.cluster.hierarchy.fcluster).

6. Check the quality of the algorithm using functions from the module sklearn.metrics.cluster.

Appendix A.5. Quality Measurements

The last step in the experiment is measuring the performance of each model using NMI and VM
scores, which is done using sklearn.metrics.cluster. The resulting vector of cluster labels is compared
to the initial target vector. An additional metric, namely the number of clusters’ inference accuracy,
is also used to measure how similar the inferred number of clusters is to their real number. The latter
metric is calculated as a simple relative difference between these two values.
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