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Abstract: Benefitting from the rapid development of artificial intelligence (AI) and deep learning,
the machine translation task based on neural networks has achieved impressive performance in
many high-resource language pairs. However, the neural machine translation (NMT) models still
struggle in the translation task on agglutinative languages with complex morphology and limited
resources. Inspired by the finding that utilizing the source-side linguistic knowledge can further
improve the NMT performance, we propose a multi-source neural model that employs two separate
encoders to encode the source word sequence and the linguistic feature sequences. Compared with
the standard NMT model, we utilize an additional encoder to incorporate the linguistic features of
lemma, part-of-speech (POS) tag, and morphological tag by extending the input embedding layer of
the encoder. Moreover, we use a serial combination method to integrate the conditional information
from the encoders with the outputs of the decoder, which aims to enhance the neural model to
learn a high-quality context representation of the source sentence. Experimental results show that
our approach is effective for the agglutinative language translation, which achieves the highest
improvements of +2.4 BLEU points on Turkish–English translation task and +0.6 BLEU points on
Uyghur–Chinese translation task.

Keywords: artificial intelligence; neural machine translation; agglutinative language translation;
complex morphology; linguistic knowledge

1. Introduction

With the rapid development of artificial intelligence and deep learning, neural networks are widely
applied to various fields ranging from computer vision [1,2], speech recognition [3,4], and natural
language processing (NLP) [5–8]. The standard neural machine translation (NMT) model [9–12]
employs the encoder to map the source sentence into a continuous representation vector, then it feeds
the resulting vector to the decoder to generate the target sentence, which directly learns the translation
relationship between two distinct languages from the bilingual parallel sentence pairs. Recently,
by exploiting advanced neural networks, such as long short-term memory (LSTM) [13], gate recurrent
unit (GRU) [14], and attention mechanism [15], NMT has become the current dominant machine
translation approach, and it achieves impressive performance on many high-resource language pairs,
such as Chinese–English translation and English–German translation.

However, existing NMT models still struggle in the translation task of agglutinative languages
with complex morphology and limited resources, such as Turkish to English and Uyghur to Chinese.
The morpheme structure of the word in agglutinative language is formed by a stem followed by a
sequence of suffixes (since the words only have a few prefixes, we simply combine the prefixes with a
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stem into the stem unit), which can be denoted as: word = stem + suffix1 + suffix2 + . . . + suffixN [16].
For example, in the Turkish phrase “küçük fagernes kasabasındayım” (I’m in a small town of fagernes),
the morpheme structure of the word “kasabasındayım” (I’m in town) is: kasaba + sı + nda + yım.
Due to the fact that the suffixes have many inflected and morphological variants depending on the
case, tense, number, gender, etc., the vocabulary size of an agglutinative language is considerable even
in small-scale training data. Moreover, a word can express the meaning of a phrase or sentence. Thus,
there are many rare and out-of-vocabulary (OOV) words in the training process, which leads to many
inaccurate translation results [17] and increases the NMT model complexity.

Recently, researchers attempted to explicitly use the source-side linguistic knowledge to further
improve the NMT performance. Sennrich and Haddow generalized the word-embedding layer of
the encoder to accommodate for additional linguistic input features including lemma, sub-word
tag, part-of-speech (POS) tag, dependency label, and morphological tag for German–English
translation [18]. Eriguchi et al. proposed a tree-to-sequence-based model for English–Japanese
translation, which encodes each phrase in the source parse tree and used the attention mechanism to
align both the input words and phrases with the output words [19]. Yang et al. improved the above
work by encoding each node in the source parse tree with the local and global context information,
and they utilized a weighted variant of the attention mechanism to adjust the proportion of the
conditional information for English–German translation [20]. Li et al. combined the source-side
sentence with its linearized syntactic structure, which makes the NMT model automatically learn
useful language information for Chinese–English translation [21]. Currey and Heafield modified the
multi-source technique [22] for English–German translation, and they exploited the syntax structure of
the source-side sentence by employing an additional encoder to encode the linearized parse tree [23].
Li et al. presented a linguistic knowledge-aware neural model for both English–Chinese translation
and English–German translation, which uses a knowledge gate and an attention gate to control the
information from the source words and the linguistic features of POS tag, named entity (NE) tag,
chunk tag and dependency label [24].

However, the above works mostly pay attention to the high-resource machine translation tasks
with large-scale parallel data and sufficient semantic analysis tools, which lacks the consideration of
agglutinative language translation with complex morphology and limited resources. In this paper,
we propose a multi-source neural model for the machine translation task on agglutinative language.
We consider that enhancing the ability of the NMT model in capturing the semantic information of
the source-side sentence is beneficial to compensate for both the corpus scarcity and data sparseness.
The followings are our main contributions:

• Focusing on the complex morphology of the agglutinative language, in contrast to the standard
NMT model that uses a single encoder, we utilize a multi-source NMT framework consisting
of a word-based encoder and a knowledge-based encoder to encode the word feature and the
linguistic features, respectively, which aims to incorporate the source-side linguistic knowledge
into the NMT model.

• For the purpose of enriching each source word’s representation in the NMT model, we extend the
input embedding layer of the knowledge-based encoder to allow for the word-level linguistic
features of lemma, POS tag and morphological tag.

• In the consideration of enhancing the NMT representation ability on the source-side sentence,
we use a serial combination method to hierarchically combine the conditional information from
the encoders, which helps to learn a high-quality context representation. Firstly, the representation
of the source-side linguistic features integrates with the representation of the target sequence.
Secondly, the resulting vector integrates with the representation of the source sequence to generate
a context vector. Finally, the context vector is employed to predict the target word sequence.

Experimental results in Turkish–English and Uyghur–Chinese machine translation tasks show
that the proposed approach can effectively improve the translation performance of the agglutinative
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language, which indicates the validity of the multi-source neural model on using the source-side
linguistic knowledge for morphologically rich languages.

2. Related Works

Recently, many researchers showed their great interest in improving the NMT performance
in the low-resource and morphologically-rich machine translation tasks. The first line of research
attempted to utilize external monolingual data [25,26]. Gulcehre et al. presented an effective way to
integrate a language model that trained on the target-side monolingual data into the NMT model [27].
Sennrich et al. paired the target-side monolingual data with automatic back-translation and treated it
as additional parallel data to train the standard NMT model [28]. Ramachandran et al. employed an
unsupervised learning method that first uses both the source-side and target-side monolingual data
to train two language models to initialize the encoder and decoder, then fine-tunes the trained NMT
model with the labelled dataset [29]. Currey et al. utilized the target-side monolingual data and copied
it to the source-side as additional training data, then mixed with the original training data to train
the NMT [30]. The second line of research attempts to leverage other languages for the zero-resource
NMT [31,32]. Cheng et al. proposed a pivot-based method that first translates the source language
into a pivot language, then translates the pivot language into the target-side language [33]. Zoph et al.
utilized a transfer learning method that first trains a parent model on the high-resource language
pair, then transfers the learned parameters to initialize the child model on the low-resource language
pair [34].

The multi-source neural model was first used by Zoph and Knight for multilingual translation [22].
It can be seen as a many-to-one setting in the multi-task sequence-to-sequence (se2seq) learning [35].
The model consists of multiple encoders with one encoder per source language and a decoder to predict
the required target language, which is effective to share the encoder parameters and enhance the
model representation ability. Multi-source neural models are widely applied to the fields of machine
translation [36,37], automatic post-editing (APE) [38,39] and semantic parsing [40,41].

NLP tasks are performed by using supervised learning with large-scale labelled training
data. However, since the artificial labelled data is limited, it is valuable to utilize the additional
resources to further improve the model performance. In recent years, many basic NLP tasks such
as POS tagging, named entity recognition, and dependency parsing are used as prior knowledge to
improve the higher-level NLP tasks such as summarization, natural language inference and machine
translation [42–45]. Generally speaking, the usage of linguistic annotations is helpful to better identify
the word in the context. Our approach follows this line of research.

3. Materials and Methods

3.1. Standard NMT Model

In this paper, we followed the NMT model proposed by Vaswani et al. [12], which was implemented
as a single-source Transformer model with an encoder–decoder framework as shown in Figure 1.
We employed the basic model as our baseline. We will briefly summarize it in this section.

Given the word sequence x = (x1, . . . , xm), both the input and output embedding layers map it
into a word-embedding matrix e = (e1, . . . , em), where ei is computed by

ei = xi·Ex, (1)

where xi ∈ R1×Kx is the one-hot vector, Ex ∈ RKx×dx is the word-embedding matrix, Kx is the vocabulary
size and dx is the word-embedding size. In order to make use of the word order in the sequence,
Transformer provides the “positional encoding” function for the embedding layers, which uses sine
and cosine functions of different frequencies by

PE(pos, 2i) = sin
(
pos/10, 0002i/dx

)
, (2)
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PE(pos, 2i + 1) = cos
(
pos/10, 0002i/dx

)
,

where pos is the position of the word in the sequence and i is the dimension of the embedding
matrix. The positional embedding matrix is the sum of the word-embedding matrix and the positional
encoding matrix.
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Figure 1. The structure of the single-source Transformer model with the encoder–decoder framework.

The encoder is composed of a stack of N identical layers and each layer has two sub-layers consisting
of the multi-head self-attention and the fully connected feed-forward network. The multi-head
self-attention maps the query set Q, the key set K, and the value set V into an attention matrix by

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WE, (3)

headi= Attention
(
QWQ

i , KWK
i , VWV

i

)
,

Attention(Q, K, V) = softmax

QKT√
dk

V,

where Q, K, and V are the vector sets of query, key, and value. The dimension of query, key, and value
is dk, dk, dv, respectively, and they are initialized by applying a linear transformation on the output of
the previous sub-layer. Then, the fully connected feed-forward network performs the position-wise
computation on the output X of the previous multi-head self-attention layer by

FFN(X) = max
(
0, XW1

E + b1
E
)
W2

E + b2
E, (4)

The decoder is also composed of a stack of N identical layers, where each layer has three
sub-layers consisting of the multi-head self-attention, the multi-head attention and the fully connected
feed-forward network. The multi-head self-attention was first applied on the target-side positional
embedding matrix as the same with the encoder. Then, the multi-head attention builds an attention
model between the encoder and the decoder, which utilizes the K and V vector sets from the outputs of
the encoder and the Q vector set from the previous layer of the decoder as inputs to generate a context
representation by

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WD, (5)

Then, the fully connected feed-forward network is applied on the context representation Y by

FFN(Y) = max
(
0, YW1

D + b1
D
)
W2

D + b2
D, (6)
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Finally, a linear network layer followed by a softmax layer was applied on the above generated
vector to predict the target word sequence. In addition, the residual connection [46] was employed
around each sub-layer followed by layer normalization [47].

3.2. Multi-Source Neural Model

In this paper, we proposed a multi-source neural model that employs two separate encoders
consisting of the word-based encoder and the knowledge-based encoder to encode the source word
features and the source-side linguistic features, respectively. Figure 2 shows the framework of our
multi-source neural model. All the sub-layers in the model produced the output dimension of dx = 512,
and dk = dv = dx/h. The following sections will describe the proposed model in detail.
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3.2.1. Word-Based Encoder

The word-based encoder was employed to encode the source word features in the same way the
encoder in the standard NMT model we previously mentioned does. The word-based encoder outputs
the representation vector H1 of the source sequence and the vector sets of Q, K, and V.

3.2.2. Knowledge-Based Encoder

In contrast to the encoder in the standard NMT model, the input word-embedding layer of the
knowledge-based encoder was extended to incorporate each source word’s linguistic features into the
NMT model as shown in Figure 3.
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Given the linguistic annotation sequences k1 = (k11, . . . , k1m), . . . , and kF = (kF1, . . . , kFm),
the word-embedding layer maps them to a embedding matrix e∗ = (e1

∗, . . . , em
∗), where e∗i is

computed by

ei
∗ =

F
∪

t=1
kti·Et, (7)

where
⋃

is the vector concatenation operator, kti ∈ R1×Kt is the one-hot vector, Kt is the vocabulary size
of the t-th feature, Et ∈ RKt×dt is the embedding matrix of the t-th feature, and dt is the embedding size
of the t-th feature and

∑F
t=1 dt = dx. The knowledge-based encoder outputs the representation vector

H2 of the linguistic feature sequences and the vector sets of Q*, K*, and V*.

3.2.3. Serial Combination Method

A simple combination method [48] is to concatenate the outputs of the encoders into a single
vector, then apply a linear transformation and a non-linear transformation on the resulting vector by

h = tanh(Wθ[H1; H2]), (8)

where Wθ is the trainable weight matrix. However, this method cannot effectively utilize the other
parameters in the NMT model or dynamically control the proportions of the language information.
Inspired by Libovick et al. [49], we utilized a serial combination method to integrate the conditional
information from the encoders with the outputs of the decoder, which additionally inserted a second
multi-head attention layer in the decoder to perform the attention function.

Firstly, the multi-head attention maps the K*, V* vector sets from the knowledge-based encoder
and the Q vector set from the previous sub-layer of the decoder into an attention matrix by

AttF(Q, K∗, V∗) = Concat(head1, . . . , headh)WF, (9)

Secondly, the subsequent multi-head attention layer maps the attention matrix and the K, V vector
sets from the word-based encoder into a context representation by

AttC(AttF, K, V) = Concat(head1, . . . , headh)WC, (10)

Thirdly, the fully connected feed-forward network is applied on the context representation by

FFN(AttC) = max
(
0, AttCW1

H + b1
H
)
W2

H + b2
H, (11)

Finally, a linear network layer followed by a softmax layer is applied on the outputs of the above
feed-forward network layer to generate the target word sequence.

4. Experiment

4.1. Linguistic Features

In this paper, we utilized three popular linguistic features of the agglutinative language. The first
was lemma, which is widely used for information retrieval. Lemmatization can make the inflected
and morphological variants of the word to share representations. The second was POS tag, which can
provide the syntactic role in the context. The third was morphological feature. Since different word
types have distinct sets of morphological features, morphology analysis can reduce data sparseness.

4.2. Experimental Data

For the Turkish–English translation task, following Sennrich et al. [28], we merged the
(Web Inventory of Tanscribed and Translated Talks) WIT corpus [50] and the (South-East European
Times) SETimes corpus [51] as the training dataset, merged the dev2010 and tst2010 as the validation
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dataset, and used the tst2011, tst2012, tst2013, tst2014 as the test datasets. For the Uyghur–Chinese
translation task, we used the news data from the China Workshop on Machine Translation in 2017
(CWMT2017) as the training dataset and validation dataset and used the news data from CWMT2015
as the test dataset. Each Uyghur sentence has four Chinese references. The statistics of the training
dataset on Turkish–English and Uyghur–Chinese machine translation tasks are shown in Table 1.

Table 1. The statistics of the training dataset for Turkish–English and Uyghur–Chinese translation.

Language # Sentences # Tokens # Word # Lemma

Turkish 355,251 6,712,018 283,858 96,047
English 355,251 8,376,414 110,522 -
Uyghur 330,192 6,043,461 261,918 128,786
Chinese 330,192 5,947,903 163,265 -

4.3. Data Preprocessing

We normalized and tokenized the experimental data. To alleviate the OOV problem, we used
the byte pair encoding (BPE) method [52] to segment both the source-side and target-side words
into subword units by learning separate vocabulary with 32K merge operations. In addition, we use
the BPE method to segment both the Turkish lemma and the Uyghur lemma into subword units
by learning separate vocabulary with 32K merge operations. Moreover, we added the “@@” token
behind each non-final subword unit of the word. The segmented lemma was annotated by copying the
corresponding word’s other feature values to all its subword units. Thus all the linguistic annotation
sequences have the same length for model training.

We utilized the Zemberek toolkit [53] with morphological disambiguation [54] to annotate the
Turkish words, and we utilized the morphological analysis tool [55] to annotate the Uyghur words.
Since each suffix unit in a word has one morphological feature, we concatenated all the morphological
features of a word and treated it as the word’s morphological tag. In particular, if a word was unknown,
we used “<unk>” to annotate its POS tag and used “<null>” to annotate its morphological tag. If a
word had no suffix unit, we used “<null>” to annotate its morphological tag. The training sentence
examples for the Turkish–English and Uyghur–Chinese machine translation tasks are shown in Tables 2
and 3, respectively.

Table 2. The training sentence examples for Turkish–English machine translation task.

Encoder Linguistic Feature Training Sentence Example

word-based encoder word Ve bunlar sinek@@ kap@@ an@@ em@@ onlar.

knowledge-based encoder

lemma ve bu sinek@@ kapan ane@@ mon

(Part-Of-Speech)
POS tag Conj Pron Noun Noun Noun Noun

morph tag <null> A3pl <null> <null> A3pl A3pl

Table 3. The training sentence examples for Uyghur–Chinese machine translation task.

Encoder Linguistic Feature Training Sentence Example

word-based encoder word úG
.
èX è@@ �

HAK
@@ Õç'XA
	

g
�

H é

J
	
K é�@@ ½JÊJ
�

	
K èX éÓ ú¾ºJ


K

	Q�ÖßQ�Ë

knowledge-based encoder
lemma èX è@@ AJ
�K.@@ �

K@@ �
H é


J
	
K é� Õç'XA

	
g ú¾ºJ


K ½JÊJ
�

	
K èX éÓ

POS tag <unk> <unk> <unk> <unk> Noun M Noun
morph tag <null> <null> <null> <null> NUM.PER <null> <null>

4.4. Model Parameter Setting

We modified the Transformer model implemented in the OpenNMT-tf toolkit [56]. Both the
encoder and decoder had N = 6 identical layers. The number of head was set to h = 8, and the number
of the hidden units in the fully connected feed-forward network was set to 1024. Both the source-side
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word and the target-side word embedding size was set to 512. We used a mini-batch size of 48 training
sentences, and a maximum sentence length of 100 tokens with 0.1 label smoothing. The dropout rate in
the Transformer was set to 0.1, the length penalty was set to 0.6, and the clip gradient [57] was set to
5.0. The parameters were uniformly initialized in [−0.1, 0.1]. The model was trained for 100,000 steps
by using the Adam optimizer [58] with an initial learning rate of 0.0002. We reported the result of
averaging the last five saved model checkpoints (saved every 5000 steps). Decoding was performed by
using the beam search with a beam size of five.

We employed both the(Bilingual Evaluation Understudy) BLEU [59] and (Character n-gram
F3-score) ChrF3 [60] scores to evaluate the translation performance. The vocabulary size and
embedding size for the source-side Turkish and Uyghur translation tasks are shown in Table 4.

Table 4. The vocabulary and embedding sizes for the source-side Turkish and Uyghur translation.

Encoder Linguistic Feature
Vocabulary Size Embedding Size

Turkish Uyghur Turkish Uyghur

word-based encoder word 32,064 32,328 512 512

knowledge-based
encoder

lemma 30,637 31,830 352 352
POS tag 14 16 64 64

morph tag 9176 6057 96 96

4.5. Neural Translation Models

We compared the following neural translation models with the proposed multi-source model:

• NMT baseline model: the standard Transformer model [12] without linguistic input features.
• Single-source neural model: the NMT model with linguistic features [18] that generalizes the

input-embedding layer of the encoder to combine the word features and the linguistic features.
All the parameter settings were the same with the multi-source neural model.

5. Results and Discussion

The experimental results for the Turkish–English and Uyghur–Chinese machine translation
tasks are shown in Tables 5 and 6, respectively. For the Turkish–English machine translation task,
from Table 5 we can see that the multi-source neural model outperformed both the NMT baseline
model and the single-source neural model. It achieved the highest BLEU scores and ChrF3 scores
on all the test datasets. Moreover, it achieved the highest improvements on the tst2014 dataset of
2.4 BLEU points (24.98→27.37) and 1.6 ChrF3 points (48.05→49.74). For the Uyghur–Chinese machine
translation task, from Table 6 we can see that the multi-source neural model also outperformed both
the NMT baseline model and single-source neural model, achieving an improvement of 0.6 BLEU
points (27.60→28.21) and 0.7 ChrF3 points (36.73→37.44) on the test dataset. The experimental results
show that the proposed approach is capable of effectively improving the translation performance for
agglutinative languages.

Table 5. The experimental results on Turkish–English machine translation task.

Neural Translation Model
BLEU Score ChrF3 Score

tst2011 tst2012 tst2013 tst2014 tst2011 tst2012 tst2013 tst2014
NMT baseline [12] 24.18 25.95 26.60 24.98 47.18 48.61 48.65 48.05

single-source model [18] 24.69 26.65 27.43 25.98 47.99 49.26 49.89 48.87
multi-source model 25.44 26.75 28.48 27.37 48.30 49.80 50.61 49.74



Future Internet 2020, 12, 96 9 of 14

Table 6. The experimental results on Uyghur–Chinese machine translation task.

Neural Translation Model BLEU Score ChrF3 Score

NMT baseline [12] 27.60 36.73
single-source model [18] 28.00 37.20

multi-source model 28.21 37.44

In addition, we found that the performance improvements of both the multi-source neural model
and single-source neural model for the Uyghur-Chinese machine translation task were not very
obvious. The main reason was that the morphological analysis tool for the Uyghur word annotation
was not accurate enough. Since the complex morphology of Uyghur, many words cannot be effectively
identified and classified, thus the tool simply annotates all the unknown words with a uniform
token “<unk>” as the same with their POS tags, which increases the complexity for model training.
The experimental results indicate that the annotation quality of the source-side sentence makes a
difference on the translation quality of the NMT model with linguistic input features.

Figure 4 shows the loss values as a function of the time steps (saved every 100 steps) on the
validation dataset in different neural translation models for the Turkish-English machine translation
task. We can see that in spite of using two encoders, which leads to more model parameters and
training time, the loss values of our proposed multi-source neural model is still consistent with the
NMT baseline model and the single-source model. This fact indicates that our model was robust and
feasible for the agglutinative language translation task. The loss value converges continuously until it
achieves a lower value, then it oscillates in a small interval. Thus, we stop the NMT model training
process after 10,000 steps without obvious reductions on the loss value.
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To further evaluate the effect of using different linguistic features, we separately incorporated
the linguistic features of lemma, POS tag, and morphological tag into the proposed multi-source
neural model for comparison. The experimental results for the Turkish-English machine translation
task are shown in Table 7. From the table we can find that for the test datasets of tst2011, tst2012,
and tst2013, incorporating the lemma feature into the multi-source neural model achieved the highest
BLEU and ChrF3 scores while for the test dataset of tst2014, incorporating the morphological feature
achieved the highest BLEU and ChrF3 scores. The results indicate that different linguistic features are
appropriate for different datasets. Moreover, the combination of all the linguistic features achieves the
best translation quality, which demonstrates that the proposed approach enables the NMT model to
better utilize the source-side linguistic features and effectively integrate them together.
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Table 7. The experimental results of incorporating a single linguistic feature into the multi-source model.

Input Feature BLEU Score ChrF3 Score

tst2011 tst2012 tst2013 tst2014 tst2011 tst2012 tst2013 tst2014
word + lemma 24.60 25.75 26.69 25.20 47.66 48.77 49.25 48.33

word + POS tag 24.10 25.54 26.20 24.98 47.32 48.66 48.84 47.98
word + morph tag 24.34 25.70 26.39 25.50 47.41 48.61 49.08 48.36

Table 8 shows the translation samples of the NMT baseline model and multi-source neural model
on Turkish–English machine translation. For the first translation sample, we can observe that the NMT
baseline model misunderstands the subject in the source-side sentence and simply uses a pronoun to
denote the Turkish word “amerika’da” (in America). Instead, the multi-source neural model captures
the above information and generates an appropriate translation result. For the second translation
sample, we can observe that the NMT baseline model makes a mistake on the meaning of the Turkish
word “çekiminden” (from the shooting), which leads to an inaccurate translation result. Instead,
the multi-source neural model understands the semantic information of the source sentence. The above
translation examples indicate that the proposed model is more sensitive to the information of the
subject, location, named entity, and the word class by utilizing the source-side linguistic knowledge.

Table 8. The translation samples for the different NMT models for the Turkish–English translation task.

Turkish-English Translation Samples

source sentence 1 Afganistan amerika’da buradan o kadar farklı görünüyor ki.
reference Afghanistan looks so different from here in America.

NMT baseline model It looks so different from here in Afghanistan.
multi-source model Afghanistan is so different from here in America.
source sentence 2 Burada bir pijama partisinde, fransız vogue çekiminden birkaç gün önce.

reference Here’s me at a slumber party a few days before I shot French Vogue.
NMT baseline model Here’s a pajama party, a few days before the French pullout.
multi-source model Here I had a pajama party, a few days before French shot.

6. Conclusions

In this paper, we proposed a multi-source neural model for the translation task on agglutinative
language, which utilizes the source-side linguistic knowledge to enhance the representation ability of
the encoder. The model employs two separate encoders to encode the word feature and the linguistic
features, respectively. We first extended the input-embedding layer of an encoder to incorporate the
linguistic information into NMT. Then, we used a serial combination method to hierarchically integrate
the conditional information from the encoders with the outputs of the decoder, which aims to learn a
high-quality context representation. The experimental results show that the proposed approach was
beneficial to the translation task on the morphologically rich languages, which achieves the highest
improvements of +2.4 BLEU points for the Turkish-English translation task and +0.6 BLEU points for
the Uyghur-Chinese translation task. In addition, the experimental results show that the proposed
multi-source neural model was capable of better exploiting the source-side linguistic knowledge and
effectively integrating the linguistic features together.

In future work, we plan to utilize other combination methods to further enhance the connection
between the encoder and decoder. We also plan to adjust the training parameters to find the optimal
conditions for the NMT model on the low-resource and morphologically rich machine translation.
Moreover, we plan to use the multi-source framework to perform transfer learning to make better
generalizations on the agglutinative languages.
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