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Abstract: As telecommunication systems evolve towards new-generation architectures, likewise,
new protocols are created in order to improve efficiency. One of these protocols is Transmission
Control Protocol (TCP), which controls the transmission bit rate in function of network congestion.
Nevertheless, in wireless communications, there appear problems such as noise and interference, for
which TCP was not designed. Based on these problems, there exist some methods trying to mitigate
congestion, such as explicit loss notifications and the use of end-to-end codification. The aim of this
work was to propose a wireless TCP protocol improvement, considering a negative acknowledgment
(NACK), which allows to differentiate between losses due to congestion and losses due to wireless
channel issues. NACK employs a small protocol packet and produces improvement in the quality of
service metrics. The experiments were carried out in in-door and out-door environments, over an
online video game scenario, and over a long-distance wireless link between two islands. The average
results show a 25-percent delay improvement and a 5-percent jitter improvement when compared to
the original TCP Reno protocol, while for throughput a 90-percent improvement was achieved for
distances between 100 and 414 m.
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1. Introduction

The Transmission Control Protocol (TCP) was originally designed for wired networks,
by interpreting packet loss (PL) as congestion consequence; meanwhile, in wireless networks, PL is also
caused by issues in the communication channel, such as interference, multi-path fading, mobility, and
reflections, which may produce a PL misinterpreting [1]. In order to avoid congestion, TCP employs
cumulative Acknowledgments (ACK); in this sense, the receptor sends ACKs to indicate that a packet
was successfully received and to specify that it is expecting the next one. If the transmitter undetected
an ACK, the packets are re-sent or the connection is disrupted [2]. TCP can use four algorithms for
Congestion Window (CWND) control: Slow Start, Congestion Avoidance, Fast Retransmit and Fast
Recovery. These algorithms seek to achieve a high network performance and to avoid collapse by
congestion. Slow Start increases exponentially the transmission bit rate until a packet loss is detected.
From this point, the Congestion Avoidance algorithm increases the transmission bit rate linearly,
and when three duplicate ACKs are detected, TCP reduces the transmission bit rate by half. Meanwhile,
Fast Retransmit and Fast Recovery allow to resend packets immediately when three duplicate ACK
(DUPACK) are detected. The transition from one algorithm to another occurs when PL is detected [3].
Although CWND control algorithms achieve their goal in wired networks, in wireless networks,
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unnecessary executions of the four algorithms occur frequently, which, in turn, causes low transmission
bit rates, as seen in the results presented in [4].

TCP has different versions seeking CWND optimization by an ACK notification rate analysis.
Two of the most popular TCP versions are TCP Reno and TCP Westwood. The first one reduces CWND
by half after three DUPACK, while the second selects a Slow Start threshold (ssthresh) and a CWND
consistent with the effective connection bit rate [5]. Several efforts to improve TCP protocol in wireless
networks have been developed, for instance, Explicit Loss Notifications (ELN) which adds explicit bits
to the packet as feedback to the TCP source to identify the loss cause. For example, in [6], ELN gives a
superior throughput (θ ) than TCP Reno and TCP-Tahoe, reaching as high as 80 to 90% in an error
free simulated scenario. Similarly, in [7], by using ELN, reduced response times of almost 30% were
obtained for high error probability web traffic in a simulated scenario. Another proposal for wireless
TCP improvement is the end-to-end coding approach [8], in which redundancy is added to the TCP
packet to facilitate loss recovery, which outperforms in simulation TCP New Reno and TCP with the
selective acknowledgment option (TCP SACK) over a range of loss probability and propagation delays.

Additionally, other modification approaches exist for TCP functionality, such as the use of a fast
end-to-end retransmission scheme [9]. This proposal avoids long pauses in communication during
cellular handoffs. It requires minimal changes to end terminals and improves θ values from 1400 to
1490 kb/s for non-overlapped cells with zero seconds between cells, and from 1100 to 1380 kb/s for
non-overlapped cells with 1 second between cells. In [10], the Indirect TCP protocol (I-TCP) splits
the network in a wired-cum-wireless connection by adding a Mobility Support Router, and then it
attempts to alleviate mobility related performance problems by adapting the transport layer protocols
on the wireless link, modifications are required only on the Mobile Host (MH). This solution achieved
better θ than TCP Reno for a local area network under a Bit Error Rate (BER) of up to 2 × 10−6, and
twice θ for a wide area network under BER of up to 5 × 10−6. In [11], a sender-only TCP modification
based on dynamic bandwidth estimation in wired-cum-wireless networks is presented as TCP Prairie.
This protocol fairly estimates the bandwidth to set the CWND and the ssthresh after three DUPACK or
after a timeout. The protocol was simulated by ns-2, where the θ gain over TCP Westwood was 17
percent at 0.01 BER and 542% over TCP New-Reno at 0.5 BER. Finally, another wireless link problem to
be addressed is the Retransmission Timeout (RTO) which is calculated based on the Round-Trip Time
(RTT), which is fluctuating in wireless networks. This RTT dependence can be appreciated on in-door
environments, where θ unbalances, hidden terminals problems, and interference among Basic Service
Sets frequently occur. As a solution, in [12], a MAC layer contention window control is proposed using
an analytical model of nonlinear equations, achieving a fair θ distribution with a confidence interval of
99.98% at a 2 Mb/s bit rate.

Several solutions for wired-cum-wireless network improvement with a wireless local
retransmission approach have been also proposed, for example, in [13], the snoop protocol caches
unacknowledged packets from the fixed host at the Base Station (BS) and performs local retransmissions
across the wireless link. For a wireless link BER of over 5 × 10−7, the snoop protocol achieves a θ
improvement of 1 to 20 times than TCP Reno for data transfer from the fixed host to the MH, requiring
modifications at the BS and the MH. In [14], a TCP extension called Delayed Congestion Response TCP
protocol (TCP-DCR) was proposed. Such protocol delays the fast retransmit/recovery algorithm when
the sender receives the first DUPACK by starting a delayed response timer in order to allow a link level
retransmission at the BS to recover a lost packet. With some modifications at the sender host, TCP-DCR
reaches better θ than TCP-SACK for several BER values. Meanwhile, in [15], the authors propose
a trend topic in communications by using machine learning based loss discrimination algorithm
(ML-LDA) for wireless TCP congestion control. ML-LDA learns how to distinguish packet losses due
to congestion and wireless channel environment using multi-layer perceptron (MLP). Based on the
learning results, the congestion control classifies the cause of losses and does not reduce congestion
window in case of random losses. The algorithm was implemented in Linux kernel and configured a
testbed where packet loss occurs randomly. They compared the experimental results with TCP-Reno



Future Internet 2020, 12, 101 3 of 17

and TCP-Westwood and showed that the proposed ML-LDA has 98% packet loss classification accuracy
in wireless channel environments, and average throughput is greatly improved compared to the others
congestion controls.

In this context, the aim of this paper is to describe the development of a novel simple TCP protocol
algorithm adapted to wireless networks. Specifically, we address improvements in the wireless TCP.
In this paper, we will consider all stages related to performance evaluation, including a mathematical
analysis, configuring our proposal by modifying the linux kernel, emulations, and finally testbed
analysis in real scenarios. Our primary hypothesis is that by inserting a negative acknowledgment
(NACK) flag inside the TCP header, naming this TCP modification as “TCP-NACK”, we will prevent
the misinterpretation of PL due to channel instability, as well as PL due to congestion, thus reaching a
better performance. In this sense, we consider the ELN concept of retransmitting corrupted packets
without the CWND reduction.

The rest of the paper is organized as follows: In Section 2, we describe the methods and materials
used for TCP-NACK design, emulation, and evaluation. Section 3 presents the experimentation process
and how the results were obtained. Section 4 presents the discussion of the results when compared to
generic TCP algorithms. Finally, our conclusion and future works are presented in Section 5.

2. Materials and Methods

This section shows the tools and techniques used for the TCP-NACK protocol development,
including its mathematical analysis, implementation and testbed experimentation.

2.1. Mathematical Analysis

We start the analysis from a mathematical modeling of the Generic TCP behavior in order to
develop an adaptation for corrupted packets retransmission without the CWND size reduction (i.e.,
the TCP-NACK performance idea) [16]. For this purpose, Slow Start and Congestion Avoidance
algorithms were used for modeling the Generic TCP protocol in their Reno and Westwood version.

At the TCP layer, we use the maximum packet size (MSS) of NTCP bits. The sender releases packets
into a limited FIFO buffer that can hod up B packets. The packets are then sent over a single bottleneck
link with a speed of Rp = Rb/NTCP packets per second, where Rb is the bit rate of the TCP layer.

Figure 1 shows theω-th cycle evolution of the congestion window between two indications of
acknowledgements (ACKs). If W0 is the initial congestion window, the first burst contains exactly W0

packets, the second W0 + 1 packets and so on. The congestion window is increased by one at the end
of each burst. The index of the first packet lost in the cycle is denoted by nl. If x is the burst where
the lost one occurs, in the burst x + 1 the congestion window is reduced for W0(ω+1) and this value
depends on the estimate bandwidth for TCP Reno or TCP Westwood [5].
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We considered that the congestion window is increased by one at the end of each burst. Therefore,
the congestion window for the x-th burst is given by

Wx = W0 + x. (1)
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When the congestion does not exist, the congestion window has a linear increase for every
round-trip times (RTT) seconds, given by

RTT =
1

Rp
+ τp, (2)

where τp is the propagation time.
During a cycle, ACKs in the same burst arrive 1/Rp seconds apart while consecutive bursts arrive

RTT second apart, until the pipe capacity, WC = RpRTT, is reached and c =WC −Wo. After this point,
ACKs arrive continuously every 1/Rp seconds.

Since a packet loss would occur one the buffer is full, the maximum window size a connection can
achieve is given by

Wmax = WC + B, (3)

for x = WC −W0 + B.
Let nx the index of the first packet in the x-th burst, given by

nx = 1 +
x+1∑
j=0

W j = 1 + xW0 +
x(x− 1)

2
, (4)

The index of the packet dropped due to buffer overflow is denoted by nof and is given by:

no f = ncb + 2(WC + B) (5)

where ncb is the first packet in the burst x = c + B, for the maximum window size Wmax.
Let xn be the number of burst that contain the packet number n and rxn the offset of the packet in

the burst xn. These parameters for 1 ≤ n ≤ nof are expressed as

xn =

−W0 +
1
2
+

√
W2

0 −W0 −
7
4
+ 2n

 (6)

and
rxn = n− nxn (7)

The instant in which the n-th ACK is received is given by

∆t(W0, n) =

 RTT(xn − 1) + rxn
Rp

n ≤ nc,

RTT(c + 1) + n−nc
Rp

n > nc,
(8)

where c = WC-W0xº is the burst where the pipe capacity occurs.
For the TCP Reno at the beginning of a generic cycleω, the start threshold according to the value

of the estimate bandwidth at the end of the previous cycle for congestion avoidance is given by

W0(ω) = fω
(
W0(ω−1), nl(ω−1)

)
= max

{
2,

⌊W0(ω−1)+xnl(ω−1)

2

⌋}
,

(9)

where nl is the ACK missed at the end of the cycle ω− 1.
The TCP Westwood sets the slow start threshold according to the value of the estimated bandwidth

at the end of the previous cycle using the following expression [5]:

W0(ω) = max
{

2,
⌊Wnl(ω−1)RTT

2

⌋}
(10)
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where

Wn+1 = αWn + (1− α)
bn+1 + bn

2
, (11)

where α is related to the cut-off frequency of the low pass filter and bn is the bandwidth information
carried by the n-th ACK, expressed as

bn =

 Rp
WC−Wxn+1 , xn < xC

Rp otherwise
(12)

The evolution of the initial congestion window size, in each cycle, can be modelled as a Markov
process. W0(ω) depends only on W0(ω−1) and nl(ω−1). The transition probability from W0(ω−1) = i for
W0(ω) = j is given by

pi, j = Pr
{
W0(ω) = j

∣∣∣W0(ω−1) = i
}
; i, j ∈ {2, 3, . . . . . . , WC}

=
∑

nεnl

Pr{n|W0 = i} (13)

where the probability that the packet n is dropped, given that the initial window W0 = i, and is
expressed as

Pr{n|W0 = i } =

 Ppacket,TCP
(
1− Ppacket,TCP

)n−1
, n < no f (i)(

1− Ppacket,TCP
)n−1

, n = no f (i)
(14)

where Ppacket,TCP is the TCP packet error probability.
Finally, using (8) and (14) the throughput realized by the system is given by [5]

θ =
C∑

i=2

π(W0=i)

no f (W0=i)∑
n=2

n− 1
∆t(W0 = i, n)

Pr{n |W0 = i}NTCP, [bits/s] (15)

where π(W0=i) is the asymptotic probability of the initial window size W0.
Then, we added in (16) the packet loss probability effect due to wireless issues in order to fit the

model to the TCP-NACK protocol behavior proposed. Therefore, if the packets are corrupted due
to the wireless channel, these errors are recognized by NACKs, and the CWND increases normally
(i.e., until the depletion of the receptor buffer). Finally, the TCP-NACK θ is defined as

θNACK =
C∑

i=2

π(W0=i)

no f (W0=i)∑
n=2

(n− 1)
(
1− Ppacke,TCP

)
∆t(W0 = i, n)

Pr{n |W0 = i}NTCP, [bits/s] (16)

2.2. TCP-NACK Linux Implementation

We chose and modified the TCP/IP stack from Linux 2.6.32 source code for the TCP-NACK
implementation based on TCP-Reno protocol, since it is an open access and open source operating
system [17]. Specifically, we modified the files inside the “include” and “net” directories, which are
distributed within the Linux kernel as showed in Figure 2.

2.3. TCP Sockets

In Linux, the different communication protocols are implemented by sockets, which works as a
common interface between the user and the different systems files and device systems. Three data
structures for the sockets handling are used, the first is called “socket buffer”, which store the packet
information, the second is called “socket”, which register the open connections, and the last is called
“sock”, which maintains the open connections state [17].
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2.3.1. Data Sending by TCP

TCP is a protocol that ensures the reliable transmission by executing a data flow management.
Therefore, there are three principal functions inside the Linux kernel that intervene in the data sending
process and flow management [17].

1. tcp_sendmsg: which copies the user space data to the Linux kernel space, then it is assigned to
the “socket buffer” and divided in smaller packets.

2. tcp_send_skb: which organizes the data in “socket buffer” for the transmission queue, and decides
whether the transmission can take place or not.

3. tcp_transmit_skb: which builds the TCP header and sends the packets to the network layer.

2.3.2. Data Reception by TCP

Received packets must be transferred from the network layer to the transport layer for the TCP
header and data processing by the following functions.

1. tcp_v4_rcv: which verifies the packet integrity, it checks if the packet is properly destined, process
the transport layer checksum and removes the IP header.

2. tcp_v4_do_rcv: which verifies that the received packet has a complete header and checks the
current TCP connection state.

3. tcp_rcv_established: If the current TCP connection state is “ESTABLISHED”, it processes the
received packets and copies the data to the user space. If the packets are error-free, a fast process
denominated “fast path” is executed, otherwise a “slow path” process is executed.

2.3.3. TCP Header Modifications

We used one of the TCP header reserved bits for the NACK implementation, as showed in Figure 3.
If the NACK bit is “1”, it means that a “corrupted” packet was received, otherwise it corresponds
to an ACK. In the same way that ACK header, NACK header has a NACK information field and a
NACK number.
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The code that defines the TCP header is in the /include/Linux/tcp.h file. Inside the tcphdr structure,
we created the nack attribute for the NACK flag creation, and we reduced to three bits the attribute res1
that corresponds to the reserved TCP field. Algorithm 1 shows the tcp.h file modifications implemented.

Algorithm 1 tcphdr structure modifications for the NACK flag insertion

res1 = 4 bits
if little or big endian bitfield is used then
define nack = 1 bit

res1 = res1 - size(nack)
end if

The TCP flag position in the header is defined inside the tcp_flag_world structure with the
TCP_FLAG_FLAGNAME = __cputobe32(0xXXXXXXXX) format, where “X” corresponds to the bit flag
position. Hence, we added the TCP_FLAG_NACK = cpu_to_be32 (0x01000000) line in order to assign
the NACK flag position in the TCP header.

Moreover, we added the #define TCPCB_FLAG_NACK 0x100 line inside the tcp_skb_cb structure
in order to assign the value that NACK flag takes when it is assigned to a packet. Additionally, it was
necessary to increase the flags attribute type from u8 (8 bits) to u16 (16 bits).

2.3.4. Sending NACK Notifications

We created and implemented the NACK sending function based on the tcp_send_ack function,
located inside the /net/ipv4/tcp_output.c file, due to the similarity between NACK and ACK approach.

• New tcp_send_nack function: This function, declared inside the /include/net/tcp.h file, sends
NACK notifica- tions by four steps. First, it checks if the connection was restarted, if this is true, then
the NACK notification is annulled. After that, it calls the skb_reserve function, that creates a socket
buffer with a memory space of the maximum TCP header size. Then, the tcp_init_nondata_skb
function sends the posi- tive NACK flag state and the sequence number to be retransmitted to
the control buffer. Finally, the packet is transmitted to the network layer by the tcp_transmit_skb
function. Algorithm 2 shows the description of the NACK sending function.

Algorithm 2 tcp_send_nack function algorithm

if TCP state == close then
return

end if
skb_reserve(maximum TCP header size)
tcp_init_nondata_skb(NACK flag state, sequence number)
tcp_transmit_skb()
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• tcp_transmit_skb modification: If the packet to be transmitted has raised the TCP_FLAG_NACK
flag, the TCP confirmation number field must contain the sequence number of the corrupted packet.
Algorithm 3 shows this modification.

Algorithm 3 tcp_transmit_skb function modification

if NACK flag == 1 then
TCP header <- sequence number of the corrupted packet

else
TCP header <- sequence number of the next expected packet

end if

The negative confirmations must be triggered by reception of the corrupted TCP packets, thus
tcp_send_nack function is then called inside tcp_rcv_established function for detecting an error.

2.3.5. Receiving NACK Notifications

There are two possible paths for the received packets treatment, “Fast Path” and “Slow Path”.
All the packets with a raised NACK flag use the “Slow Path”. First the packet integrity is checked
by a checksum to consequently verify the NACK flag state, if this is positive, the tcp_retransmit_skb
function is called for an immediate retransmission of the requested packet, which is determined by the
tcp_write_queue_head function.

3. Results

We evaluated the proposed TCP-NACK protocol under different configuration environments
and distances by using laptops with the modified TCP-NACK protocol under the Ubuntu kernel,
and applying the necessary communication standards for each experiment. We choose to evaluate the
general Quality of Service (QoS) provisioning parameters from a networking perspective using the
θ , the delay, δ, and jitter metrics [18]. Hence, those parameters were obtained by the intrusive traffic
technique, for which we employed the Distributed Internet Traffic Generator (D-ITG) software. D-ITG
is a platform capable of producing IPv4 and IPv6 traffic, following stochastic models for packet size
and inter departure time [19]. The details of our fulfilled experiments are described next.

3.1. Wireless Link Emulation

In this experiment, we evaluated TCP-NACK performance by the Network Emulator (Netem)
software, which is an utility available within the Linux kernel from the 2.6.7 version, and allows
emulating the link properties by specifying bandwidth parameters, δ, losses, and traffic control using
statistical probability [20].

This experiment required a computer with the Ubuntu Operating System and with two network
interfaces configured in bridge mode to emulate the wireless link. As user equipment, we employed
two computers with the modified TCP-NACK Ubuntu Operating System, which acted as a client and
a server, respectively. In each user equipment, we used the “Iperf” and “Tcpprobe” tools, available
within the Linux repositories, those tools allowed to obtain the CWND and θ values.

The scenario consisted of two computers interconnected by an emulated wireless link, which
was managed in an intermediate computer by the Netem software, as showed in Figure 4. The link
emulation was required to maintain a fixed error rate for multiple traffic injections.
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Netem is a utility available within the Linux kernel, it allows to emulate a communication link by the
specification of its parameters [20]. Table 1 shows the parameters used for a 25-second emulation of the
wireless link, with high packet errors probability, greater than 0.5% (Pseg,TCP ≥ 5 × 10−3). The commands
used to define Netem parameters in the Linux terminal were:

1. sudo tc qdisc add dev ethX root handle 1:0 tbf rate Bandwidthkbit
2. sudo tc qdisc add dev ethX parent 1:1 handle 10: netem corrupt Y% delay Z

where ethX is the network interface name, Bandwidth is the link bandwidth in kb/s, Y is the error
probability in percent, and Z is the δ in milliseconds.

Table 1. Wireless Link emulation Paramenters.

Parameter Value

Bandwidth 5000 kb/s
δ 70 ms

Packet error probability 0.5%, 1% and 5%

3.1.1. Iperf and Tcpprobe Configuration

Iperf allowed to do a client-server TCP connection and to size its θ. Table 2 shows the necessary
configuration commands for both user equipment. It usually runs in the emitter side with Tcpprobe
tool, which allowed us to extract parameters as CWND, ssthresh and Congestion Avoidance threshold,
and then to store the results in the data.out file.

Table 2. IPERF Configuration Commands.

TCP Entity Linux Command

Emitter (server) iperf -c IPdirection -t time
Receiver (client) iperf -s

3.1.2. θ Evaluation

We did tests with the Iperf tool to obtain the θ values under different error probabilities. Each test
consisted in establishing a TCP connection and to perform a data transference for 1 minute.

3.1.3. CWND Evaluation

For the CWND evaluation, we started a TCP connection between both terminal equipment and
transmitted the maximum possible raw bit rate through the emulated link for 25 seconds.

3.2. Short Distance Link Whit a Real-Time Video Game

We evaluated the TCP-NACK performance over a video gaming scenario with two players and
one server wirelessly connected by an AP, where players and server were laptops with the modified
TCP-NACK Ubuntu Operating System. The game at the server was “Quake IV” and the employed
topology was Point-to-Multipoint (PtM), as Figure 5 shows.
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We perform this experiment over two scenarios. The first one was an in-door scenario with a 7-m
distance between user equipment and the Netgear N600 wireless router configured as AP, using IEEE
802.11n as communication standard. The second one was an out-door scenario with 160 m’ distance
between the user equipment and the Ubiquiti PowerStation2 antenna configured as AP, using IEEE
802.11b/g as communication standard. The experiments were carried out with a 128.8 kb/s bandwidth
between the user equipment and the server (uplink), and a 222 kb/s bandwidth between the server and
the user equipment (downlink). Additionally, we introduced the OpenVPN tool for the adequacy of
the multiplayer communication system. OpenVPN allows to connect multiple remote clients to the
server, where any client can communicate with the rest of them [21].

3.2.1. Server Equipment Configuration

After the OpenVPN software was installed, we configured some parameters in the server.conf file
with the data shown in Table 3.

Table 3. Server configuration parameters.

Parameters Data

Transmission model
Interphase to implement

Keys importation

TCP
TUN

.crt, .key, .ca
Receiver (client) IP Direction

3.2.2. User Equipment Configuration

At the user side of the network, we modified the client.conf file for the connectivity between
equipment, with the parameters shown in Table 4 Additionally, we copied to the /etc/openvpn path,
the user keys created at the server.

Table 4. Client configuration parameters.

Parameters Data

Interface
Interphase to implement

IP direction

dev tun
ca.crt, client.crt, client.key
remote 10.0.0.7 port 1194

Compression TCP

After configuring the client and server, the clients executed the sudo./quake4-linux-1.4.2.x86.run
command in a terminal, the command displayed the principal menu for the game, giving them the
option to enter to the multiplayer mode. More details about this experiment are presented in [22].

3.2.3. Short-Medium Distance Scenario

This experiment included short distance IEEE 802.11b/g WiFi links (6, 12, 100, 150, 60 and 260 m)
using an Ubiquiti PowerStation2 antenna configured as AP, and medium distance IEEE 802.16-2009
WiMAX links (312, 364, 414 and 826 m) using an Albentia System ARBA550 BS and two CPE150
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Customer Premises Equipment (CPE). Both links used laptops with the modified TCP-NACK Ubuntu
Operating System as user equipment in a Point-to-Point (PtP) topology. Figure 6a shows the used WiFi
link topology and Figure 6b shows the used WiMAX link topology.Future Internet 2020, 12, x FOR PEER REVIEW 11 of 17 
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We performed tests under different bandwidth values by the modification of the number of
packets per second and the frame size, as shown in Table 5 More details about this experiment are
presented in [23].

Table 5. Data injection configuration.

Packets/s Frame Size [Bytes] Resulting Bandwidth [kb/s]

1500
2500
1000

512
512

1500

6624
11,880
12,320

1500 1024 12,768

3.3. Long Distance Scenario

For this experiment, we considered a 92 km PtP link with line-of-sight between the Crocker
hill in Santa Cruz island (0◦38′50.0′′ S 90◦19′21.0′′ W) and San Joaquin tower in San Cristóbal
island (0◦53′26.9′′ S 89◦29′40.0′′ W), using the IEEE 802.16-2009 WiMAX as communication standard,
and employed 1, 2, 3 and 4 Mb/s bandwidth. First, we validated the link by simulation through the
“SImulation of Radio-Electric NETworks” (SIRENET) software and the Motorola PTP LINKPlanner
software, with the aim of eliminating most design assumptions. Eventually, we used two parabolic
antennas with 24 dBi gain, two computers with the TCP-NACK modified kernel, and the Motorola
PTP 58,600 proprietary radio equipment to implement the network. Figure 7 shows the PtP topology
used for this experiment. More details about this experiment are presented in [24].
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4. Discussion

Several tests were executed in each experiment scenario with the aim of obtaining average
results. We obtained, from emulation experiment, θ values by the computation of the area under the
CWND performance curve. Likewise, we obtained from field experiments, θ , δ, and jitter values by
D-ITG software.
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4.1. Results from Mathematical Analysis

A normalized throughput (ηϑ) was obtained for TCP Reno, TCP Westwood, TCP-NACK Reno
and TCP-NACK Westwood. The TCP Reno and Westwood results were calculated by (16), and the
TCP-NACK results by (17). Figure 8 shows a comparison of the generated curves for each protocol as a
function of the error packet probability. We found that both TCP-NACK versions had a similar behavior
among them, and a better performance that its generic versions. Therefore, based on this analysis,
for the next experiments, we only compare TCP-NACK with TCP Reno, declared as Generic TCP.
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4.2. Results from Emulation Experiment

For this experiment, we obtained a ηϑ comparison between Generic TCP and TCP-NACK as
a function of the error packet probability. Figure 9 shows the generated curves for each emulated
protocol. We obtained the CWND size as a function of the BER value through time and calculated
the area under each CWND curve. Hence, we obtained the θ values shown in Table 6. We found
that the CWND size of TCP-NACK surpass the CWND size of Generic TCP in 2 average packets,
leading to a higher area under the curve, or a θ increment. The throughput of the TCP-NACK was
better than TCP-Reno and if we compare the results presented in Figure 8, the throughput of the
TCP-NACK also appear better than TCP-Westwood, and the algorithm of the TCP-NACK has less
complexity than TCP-Westwood. Therefore, TCP-NACK will be used in practical experiments to
validate its performance.
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Table 6. Emulated link results.

BER
Generic TCP TCP-NACK

¯
θ (Mb/s) η

¯
ϑ [%]

¯
θ (Mb/s) η

¯
ϑ [%]

0.5% 1.53 30.6 1.79 35.8
1% 1.27 25.4 1.46 29.2
5% 0.52 10.4 0.74 14.8

4.3. Results from Indoor Short Distance Experiment

For this experiment by using WiFi technology in indoor scenarios, we obtained θ, δ, and jitter as a
function of the distance and the traffic direction (uplink or downlink). Figure 10 shows the performance
results obtained by using the D-ITG software. The results show a lower θ performance for TCP-NACK,
but a better δ and jitter performance when compared to Generic TCP.
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4.4. Results from Outdoor Short-Medium Distance Experiment

For this experiment in outdoor scenarios, we obtained θ, δ, and jitter as a function of the distance
and bandwidth, therefore we decided to represent the obtained results as 3D surfaces, as Figure 11
shows. Figure 11a,c,e show the θ, δ, and jitter results, respectively. Hence, in order to show which
protocol has a better performance, Figure 11b corresponds to a top view of Figure 11a, Figure 11d
corresponds to a bottom view of Figure 11c, and Figure 11f corresponds to a bottom view of Figure 11e,
the better protocol corresponds to the one that encloses a long area. Additionally, the left side of
the yellow surface in all the subfigures inside Figure 11 corresponds to outdoor scenarios with short
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distances (to 300 m) by using WiFi Technology, and the right side to medium distances (from 300 m to
826 m) by using WiMAX technology. Figure 11b,d,f suggest that TCP-NACK has best performance than
the Generic TCP in the majority of the cases. We observed that TCP-NACK had a better performance in
terms of throughput, delay and jitter. We found that the algorithm TCP-NACK, by not decreasing the
congestion window, as we could observe in Figure 11, for WiFi technology TCP-NACK in mean has
offer an improvement over the 70% in terms of throughput, delay and jitter, meanwhile for WiMAX
technology over the 70% for throughput and jitter, and almost 100% in terms of delay.
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4.5. Results from Long Distance Experiment

For this experiment, we obtained θ, δ, and jitter as a function of the bandwidth for a 94 km distance
between terminals. Figure 12 shows θ, δ, and jitter results obtained by using the D-ITG software.
The results show that there are low θ and jitter variance between TCP-NACK and Generic TCP, but a
better δ performance for TCP-NACK for bandwidth up to 3000 kbps.
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We determined that this was not improved in terms of throughput and jitter, but in terms of delay,
we observed a significantly reduction; this is due to the fact that we considered to modify the ACK
timeout value for MAC layer in order to reach long distance [24], but we did not consider changing the
main parameters related to ACK timeout at Transport layer as this is out of this study’s scope.

5. Conclusion and Future Work

Since the TCP protocol was designed to work in wired networks, its performance is not adequate
for wireless networks, where the packets corrupted for interference, obstacles or fading are discarded
and taken as a fictional congestion con- sequence. This assumption entails to an unnecessary CWND
reduction which decreases the transmission bit rate.

In this paper, we proposed a TCP-NACK protocol that endures wireless performance problems
by the incorporation of an error notification or “NACK” to the Generic TCP protocol functionality.
This notification indicates to the transmitter the arrival of corrupted packets, proceeding to an immediate
re- transmission without the CWND reduction. For its validation, we exposed the mathematical
analysis, configurations to the Linux source code, emulation, and the testbed analysis in real scenarios.

The results obtained demonstrate a better performance of TCP-NACK protocol against its generic
counterpart (TCP Reno) under different scenarios including different distances, bandwidths, packet
error rates and technologies employed. Regardless of the fact that the experimental results obtained
are lower than the mathematical results, we achieved an average improvement of 54% in θ, 26% in δ,
and 5% in jitter when compared to Generic TCP. It is important to highlight that we obtained the best θ
results between 100 and 414 m, where, on average, there is an improvement of 90%. The principal
differences among our work and those described in the literature are the performance evaluation as a
function of the distance, and the experimentation tests over networks with exclusively wireless links.
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In summary, TCP-NACK is a good option for wireless networks, and it is perfectly attachable to
any personal computer as a modified Linux operating system. This proposal was evaluated under
several real conditions and demonstrated high improvements when compared with TCP Reno protocol.

As future works we are interested in considering the communication standard, frequency and
the running application (e.g., VoIP) as variables. We are also interested in performing tests with
larger distances and bandwidths evenly distributed. We are also planning to include tests with an
optimization of the RTT calculation, by applying the mathematical modeling described in [24] with
the aim of improving the θ values for wireless links with short and long distances. Finally, we are
interested in comparing with other proposals which are available to be implemented in open hardware.
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