
future internet

Review

Revisiting the High-Performance Reconfigurable
Computing for Future Datacenters

Qaiser Ijaz 1,2,*, El-Bay Bourennane 1, Ali Kashif Bashir 3 and Hira Asghar 2

1 ImViA Laboratory, University of Burgundy, 21000 Dijon, France; ebourenn@u-bourgogne.fr
2 Department of Computer System Engineering, Islamia University of Bahawalpur,

Bahawalpur 63100, Pakistan; hira.asghar@iub.edu.pk
3 Department of Computing and Mathematics, Manchester Metropolitan University,

Manchester M15 6BH, UK; dr.alikashif.b@ieee.org
* Correspondence: qaiser.ijaz@iub.edu.pk

Received: 2 February 2020; Accepted: 1 April 2020; Published: 6 April 2020
����������
�������

Abstract: Modern datacenters are reinforcing the computational power and energy efficiency by
assimilating field programmable gate arrays (FPGAs). The sustainability of this large-scale integration
depends on enabling multi-tenant FPGAs. This requisite amplifies the importance of communication
architecture and virtualization method with the required features in order to meet the high-end
objective. Consequently, in the last decade, academia and industry proposed several virtualization
techniques and hardware architectures for addressing resource management, scheduling, adoptability,
segregation, scalability, performance-overhead, availability, programmability, time-to-market, security,
and mainly, multitenancy. This paper provides an extensive survey covering three important
aspects—discussion on non-standard terms used in existing literature, network-on-chip evaluation
choices as a mean to explore the communication architecture, and virtualization methods under latest
classification. The purpose is to emphasize the importance of choosing appropriate communication
architecture, virtualization technique and standard language to evolve the multi-tenant FPGAs in
datacenters. None of the previous surveys encapsulated these aspects in one writing. Open problems
are indicated for scientific community as well.

Keywords: FPGA virtualization; datacenters; network on chip; multi tenancy; multi FPGA;
reconfigurable computing

1. Introduction

Today, datacenters are equipped with the heterogeneous computing resources that range from
Central Processing Units (CPUs), Graphical Processing Units (GPUs), Networks on Chip (NoCs) to
Field Programmable Gate Arrays (FPGAs), each suited for a certain type of operation, as concluded by
Escobar et al. in [1]. They all purvey the scalability and parallelism; hence, unfold new fronts for the
existing body of knowledge in algorithmic optimization, computer architecture, micro-architecture,
and platform-based design methods [2]. FPGAs are considered as a competitive computational resource
for two reasons, added performance and lower power consumption. The cost of electrical power in
datacenters is far-reaching, as it contributes roughly half of lifetime cost, as concluded in [3]. This factor
alone motivates the companies to deploy FPGAs in datacenters, hence urging the scientific community
to exploit High-Performance Reconfigurable Computing (HRC).

Industrial and academic works both incorporated the FPGAs to accelerate large-scale datacenter
services; Microsoft’s Catapult is one such example [4]. Putnam et al. chose FPGA over GPU on the
question of power demand. The flagship project accelerated Bing search engine by 95% as compared to
a software-only solution, at the cost of 10% additional power.
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The deployment of FPGAs in datacenters will neither be sustainable nor economical, without
realizing the multi-tenancy feature of virtualization across multiple FPGAs. To achieve this ambitious
goal, the scientific community needs to master two crafts, an interconnect solution preferably Network
on Chip (NoC) as a communication architecture and an improved virtualization method with all the
features of an operating system. Accumulating the state of the art in a survey can foster the development
in this area and direct the researchers into more focused and challenging problems. Despite of the
two excellent surveys, [5] in 2004 and [6] in 2018, former one categorized the FPGA virtualization as
temporal partitioning, virtualized execution, and virtual machines, while, after fourteen years, the later
one classified based on abstraction levels to accommodate the future changes, but the communication
architecture or interconnect possibilities are not fully explored. To address this gap, an improved
survey on FPGA virtualization is presented with the coverage of network-on-chip evaluation choices
as a mean to explore the communication architecture, and commentary on nomenclature of existing
body of knowledge. We revisited the network-on-chip evaluation platforms in order to highlight its
importance as compared to bus-based architectures. We stretched our review from acceleration of
standalone FPGA to FPGAs connected as a computational resource in heterogeneous environment.
We attempted to create a synergy through combining three domains to assist the designers to choose
right communication architecture for the right virtualization technique and, finally, share the work in
the right language, only then, multi-tenant FPGAs in datacenters can be realized.

The remaining of the review paper is organized, as follows. Section 2 includes the commentary on
nomenclature and recommendations for the scientific community. Section 3 talks about the available
NoC evaluation tools to find out precise communication architecture in relatively less time. Section 4
puts the virtualization works into limelight with focus on architectures that are scalable and support
multi-applications or multi-FPGAs. Section 5 indicates the trends and open problems as well presents
a closing discussion about the area.

2. Revisiting the Nomenclature

The applications of FPGAs as computing resource are diverse that includes data analytics, financial
computing and cloud computing. This broad range of applications in different areas requires efficient
applications and resource management. This lays the foundation for the need of virtualizing the
FPGA as a potential resource. Nomenclature is much varying due to the different backgrounds of
the researchers contributing to this area. There are many such examples in literature where similar
concepts or architecture is described using a different name or term. There is also an abundance of
jargon terms and acronyms, which confuse the researchers rather enhancing their understanding.
Table 1 identifies and lists non-standard terms in literature from the last decade.

Table 1. Non-Standard Nomenclature Present in Literature.

Year Non-Standard Term(s) in Published Literature

2010 RAMPSoC in [7]
2011 Lightweight IP (LwIP) in [8]
2012 ASIF (Application Specific FPGA) in [9]
2013 sAES (FPGA based data protection system) in [10]
2014 PFC (FPGA cloud for privacy preserving computation in [11]
2015 CPU-Cache-FPGA in [12]
2016 HwAcc (Hardware accelerators), RIPaaS and RRaaS in [13]
2017 FPGA as a Service (FaaS) and Secure FaaS in [14]
2018 ACCLOUD (Accelerated CLOUD) in [15], FPGAVirt in [16]
2019 vFPGA-based CCMs (Custom Computing Machines) in [17]

This area is stagnated for a lack of a standard nomenclature. We recommend that the scientific
community should use a unified nomenclature to present the viewpoint in order to improve the clarity
and precision of communication for advancing the knowledge base. We also recommend that this area
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must be referred as High-Performance Reconfigurable Computing (HRC) in literature. Moreover, it has
been observed that the use of computer science language is more conveying as virtualization in FPGAs
is comparable to an operating system in CPUs.

We urge the scientific community to come together to develop nomenclature, as it will improve the
communication among researchers. It will ease the classification of works for entry-level researchers
and help them to focus on complex research problems.

We acknowledge some quality examples such as the suitability of FPGAs has been discussed in
depth in the context of high performance computing and heterogenous computing resources in [1],
a new classification of FPGA virtualization has been presented in [5], and state of the art has been
explored in the context of cloud computing, as defined by the National Institute of Standards and
Technology in [18]. These authors have used the standard language of computer science and written in
such a way that it added value to the understanding of readers.

3. Revisiting the Network on Chip Evaluation Tools

Data transfers in most of the high-performance architectures are limited by memory hierarchy
and communication architecture, as summarized in [19,20]. Exploiting communication architecture
suggests the use of NoC, an effective replacement for buses or dedicated links in a system with large
number of processing cores [21,22]. NoC is composed of several tunable parameters like network
architecture, algorithm, network topology and flow control. No System on Chip (SoC) is outright
without NoC, today, due to promised high communication bandwidth with low latency as compared
to the alternate communication architectures.

Researchers heavily rely on automated evaluation tools, where performance and power evaluation
can be viewed early in design, given the complexity of NoC. Figure 1 describes a typical cycle of
NoC evaluation, with FPGA being connected to a Central Processing Unit (CPU). Traffic scenarios are
generated through traffic generator, sent to NoC that resides in FPGA, and the evaluation results are
received through traffic receptors. Tools for FPGA based NoC prototyping are diverse architecture-wise.
De Lima et al. in [23] identified an architectural model comprising of three layers: network, traffic,
and management.
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Figure 1. Generic Architecture of Networks on Chip (NoC) Evaluation on Field Programmable Gate
Arrays (FPGA)(s).

There are four different types of network: Direct Mapping on Single or Multi FPGA(s), Fast
Prototyping and Virtualization. The choice of the network affects the accuracy and resource utilization.
Traffic on network can be generated in two different ways: synthetic and application-specific.
Synthetic traffic is a kind of load testing to evaluate the overall performance, but it fails to forecast
the performance under real traffic flow. Application-specific traffic, on the other hand, is based on the
behavior of real traffic flow that is difficult to acquire but gives more accurate results. These patterns can
be acquired either through trace, statistical method or executing application cores. As traces comprises
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of millions of packets so the size becomes a limiting factor. Running application cores to generate traffic
is also resource-expensive method.

Table 2 lists some FPGA based NoC evaluation tools, describing every architecture with network
type, traffic type, number of routers, target board, and execution frequency, while hiding the complexity
of NoC designs. The number of routers in NoC depends on the network type, architecture with
relatively more routers, are based on second group type of network, fast prototyping and virtualization.
We have used the direct mapping network type in our previous works due to relatively high execution
frequency [24,25].

Table 2. NoC Evaluation Tools based on FPGA(s).

Year Network Type Traffic Type No. of
Routers

Target
FPGA

Freq.
(M.Hz.) Work

2010 Multiple FPGA Real: App. Cores 16 Virtex 5 × 5 - [26]
2010 Direct Mapping Real: Traces based 64 Virtex 2 45 [27]
2010 Fast Prototyping Synthetic 49 Virtex 6 50 [28]
2011 Direct Mapping Real: Traces based 25 Virtex 5 - [29]
2011 Virtualization Real: Traces based 256 Virtex 6 152 [30]
2011 Fast Prototyping Synthetic 576 Virtex 6 300 [31]
2011 Virtualization Real: App. Cores 64 Virtex 2 - [32]
2011 Virtualization Real: App. Cores 16 Virtex 5 3, 15 [33]
2011 Direct Mapping Synthetic 36 Virtex 5 - [34]
2012 Direct Mapping Real: App. Cores 9 Virtex 5 - [35]
2013 Multiple FPGA Synthetic 18 Virtex 5 × 2 - [36]
2014 Virtualization Synthetic 1024 Virtex 7 42 [37]
2015 Direct Mapping Synthetic 64 Virtex 6 50 [38]
2016 Direct Mapping Synthetic 16 Virtex 6 250 [13]
2017 Direct Mapping Synthetic 16 Virtex 6 250 [24]
2018 Direct Mapping Synthetic 16 Virtex 6 250 [25]

These evaluation platforms assist the designers to reach the design-specific communication
architecture, meeting most of the requirement specifications, for a certain application. These evaluation
platforms take comparatively more time to synthesize the change, while on the other hand, a simulator
can accommodate the same change in much lesser time. Designers offer dynamic reconfiguration, as a
peroration to this limitation, but simulators are still the first choice of many entry-level researchers.
However, the choice of NoC to realize the future datacenters with multi-tenant multi-FPGAs is yet to
explore. The linking of several computational nodes becomes complicated and affects the performance
of the overall system. Although NoC is not the only choice for communication within an FPGA
as well as among multiple FPGAs but offer a competitive and promising solution. Other solutions
include traditional bus, bus combined with a soft shell, different types of soft NoC and hard NoC.
Many comparative studies evaluated these choices based on parameters like useable bandwidth, area
consumption, latency, wire requirement and routing congestion. The way NoC is generated, also affects
the performance so designers must be careful while choosing the NoC or an alternate for their design.

4. Revisiting the FPGA Virtualization

Resources are time multiplexed in a cloud services provider datacenter, referred as Infrastructure
as a Service (IaaS). The sharing of resources is achieved through virtualization, an abstraction layer for
hiding the physical resources from users. The process of virtualization raises issues like ease-of-use,
privacy and performance but yet IaaS provide individual users and small organizations with an
economic choice of renting over spending on infrastructure. Other than an academic example, such
as SAVI testbed [39], industry offers plenty of solutions that are equally popular among designers.
Amazon Web Services EC2 [40], IBM Zurich [41], and Intel are important competitors. Alveo on
the Nimbix Cloud [42] is suitable for the designers working on Xilinx tools. Maxeler Technologies,
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however, offers specific solutions, like an algorithmic contribution for memory mapping [43] and an
area optimization technique [44].

Virtualization plays a relatable role to an operating system in a computer, but the term is being
used in different meanings in this area, due to non-uniform nomenclature discussed earlier. Yet,
the universal concept of an abstraction layer remains unchanged, a layer for the user to hide the
underlying complexity of the computing machine, where the computing machine is not a traditional
one, but FPGA. Many virtualization architectures have been proposed as per the requirements of the
diverse applications. In 2004, a survey in this regard categorized the virtualization architectures into
three broad categories, temporal partitioning, virtualized execution, and overlays [5]. Since then, no
serious effort has been recorded on the classification of virtualization, until Vaishnav et al. [6] in 2018
classified the virtualization architectures based on abstraction levels. This much-needed classification
contributed by Vaishnav et al. has been adopted as is, to discuss the works in this survey. We reiterated
them with some of the representative work examples in Table 3. The works have been discussed under
the same abstract classification.

Table 3. Classification of FPGA Virtualization adopted from [6].

Abstract Classification Sub-Class Work Examples References

Resource Level
Overlays [45–74]

Input Output (I/O) Virtualization [4,75–80]

Node Level
Virtual Machine Monitors [81–84]

Shells [4,41,75–78,85–97]
Scheduling [82,89,98–112]

Multi Node Level
Custom Clusters [113–117]

Frameworks [77,103,118–123]
Cloud Services [4,40,124–130]

Although there are many features of virtualization like management, scheduling, adoptability,
segregation, scalability, performance-overhead, availability, programmability, time-to-market, security,
but the most important feature in the context of scope of this research is the multi-tenancy because
it is essential for a sustainable and economically viable deployment in datacenters. FPGA has two
types of fabric: reconfigurable and non-reconfigurable. The virtualization for the non-reconfigurable
fabric is the same as of CPU, but there are several variations when it comes to the virtualization of the
reconfigurable fabric.

4.1. Resource Level Virtualization

4.1.1. Overlays

Overlay architectures are diverse based on application and respective requirements.
Overlays provide another higher abstraction layer on lower level fabric of FPGA, as depicted in Figure 2.
The primary objective is to enhance the ease of programming for the software programmer. The reduced
compilation time is an added advantage, given that the computer-aided design part to generate an
accelerator is left out in the compilation process.

With respect to the ability of functional units, overlays are categorized in spatially-configured
and time-multiplexed architectures. Li et al. compiled a comprehensive account of time-multiplexed
overlays in a recent survey [45]. However, overlays are often discussed with respect to their
implementation architectures in most of the literature that divides them into processor-based and
coarse-grained reconfigurable architectures (CGRAs). A complete review of CGRAs can be found in
Jain’s doctorate thesis [46]. Processor-based comes in a variety of soft processor, either single-issue or
multi-issue or multithreaded. They all add value to programmability, but the limited throughput is
not suitable for the very high speed applications. Processor-based comes with a parallel processor as
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well, either in the form or multithreaded or VLIW or soft vector processor or soft GPU. One form of
the soft-core processors is [47], and similar solutions [48,49] are available from industry. Other forms
include soft vector processors [50–54].
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CGRAs offer higher performance and scalability with lower power consumption, the very
characteristics FPGAs are used for. CGRAs exist in the form of processing arrays or coarse to
medium grained processing elements, where operations are performed at the processing element level.
Examples of connected arrays of processing elements with programmable interconnects are [55–59].
Some CGRAs are kept dynamic by programming the processing elements and interconnect logic [60–63],
while other architectures are kept static in spatial-configuration, as in [56,57]. Frequently appearing
interconnect topologies in CGRAs are the nearest neighbor [55,56] and island model [57–59]. NoC are
also found abundantly in CGRAs, some examples are [64–67]. NoC based architectures offer flexibility
at the cost of higher implementation cost, but some works, like Hoplite soft NoC [67] and hard NoC [22],
offer resource-efficient fast interconnects. Although an effort to reduce the cost by mapping the overlay
look-up tables and multiplexers to the FPGA fabric has been achieved in [68]. Table 4 summarizes
time-multiplexed CGRA overlays.

Table 4. Summary of CGRA based Overlays (*only industrial work).

Author(s) [Ref.] Year Language Board Frequency Granularity Size

Ferreira et al. [69] 2011 VHDL Virtex 6 100 MHz 8 / 32 / 64 bits 30
Kinsy et al. [70] 2011 Verilog Virtex 5 155 MHz 32 bits 4 × 4
Brant [61] 2012 Verilog Stratix III 150 MHz 32 bits 2 × 2
Paul et al. [63] 2012 - Virtex 6 400 MHz 32 bits 40
Liu et al. [71] 2013 HLS Method Zynq 7000 250 MHz 32 bits 2 × 2
Gray [72] 2016* RISC V ISA UltraScale 375 MHz 32 bits 10 × 5 × 8
Li et al. [73] 2016 HLS Method Zynq 7000 286 MHz 32 bits 8
Kumar et al. [74] 2017 C Stratix V 94 MHz 32 bits 60 × 2

Overlays are opted only to meet the requirement of rapid functionality change, where partial
reconfiguration fails to cope with the speed of change, due to the sizable cost of implementation.
Many solution providers have also commercialized this idea, like VectorBlox [50].

4.1.2. Input Output (I/O) Virtualization

I/O virtualization enables the access of different resources through the same interface or the
sharing of resources among multiple applications. Figure 3 depicts the generic architecture where
many virtual channels are represented with dashed lines, that do not equate to available physical
channels. The middle layer in I/O virtualization plays multiple roles, like enforcing security mechanism,
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monitoring resource utilization, ensuring Quality of Service (QoS) in datacenters, improving access
time, and installing memory buffers.
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There are two possibilities for the design of control logic, either software or hardware. The software
approach offers high flexibility and space efficiency [75–77]. On the other hand, the hardware module
offers improved performance at the cost of consuming some reconfigurable resources [78,79].

Designers, as in [80], employed I/O virtualization to accelerate the storage up to 6x, beneficial for
data intensive applications. Microsoft used the same to reduce the traffic of the network by directly
handing over the requests to FPGA [4]. These are examples of the diverse use of I/O virtualization
middle layer.

4.2. Node Level Virtualization

4.2.1. Virtual Machine Monitors (VMMs)

VMMs is the trouble-free method, as it takes many challenges away from FPGA. The scenario of
treating FPGA as an attached peripheral to CPU provides the software programmers with multiple
benefits, like familiar interface, libraries, and programming. Integrating accelerator with Virtual
Machine Monitor (VMM) has almost zero performance overhead, as the experimental results showed
in [81]. However, there are other approaches that further enhance the VMM capability to control many
partial reconfigurable regions, like using micro-kernel [82], using micro-kernel to make a portable
accelerator [83], and using OpenStack [84]. The idea of disassociating the static and dynamic fragments
pays off at so many levels.

VMMs through resource allocation contribute to achieve many objectives for virtualization, such
as multi-tenancy, management and scheduling, segregation, security, and availability. As FPGA is
connected to CPU using standard frameworks, so multiple FPGAs can be added in the same arrangement.

4.2.2. Shells

Shells are referred as the static part of the system, which fundamentally provides the functionality
of an operating system (OS); hence, various other names exist in literature, like FPGA operating system
or hypervisor. It manages resources, I/O mechanism, required drivers and other essentials to configure
or reconfigure the desired application. Figure 4 lays out the important infrastructures that have been
proposed, developed, and tested. These architectures have been exhibiting a certain level of one or
more virtualization characteristics and significant performance.
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Multiple partial reconfiguration regions, symmetric and asymmetric, are being used for achieving
multiple applications on a single FPGA. Symmetric or tiled regions are uniform in size, as in [85].
In this way, the resource allocation becomes flexible, as it can reside in one or more neighboring regions,
which further minimizes the internal fragmentation, as in [78]. On the other hand, asymmetric regions
support the modules of different sizes and save us from reconfiguring the whole FPGA [86] altogether.
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The connectivity is crucial for every execution model, it can either be host connectivity, or
independent connectivity or the hybrid of the two. The architectures that are based on host connectivity
only, CPU control the resources of the FPGA and reserve most of the reconfigurable resources and
regions for the applications [76]. Multi-processors System on Chip (MPSoC) products from the FPGA
vendors makes the implementation easier, however employing such products results in wastage of
resources. Solutions, like [41,87], offer sharing among multiple CPUs, where [4,41,75,88] offer sharing
among standalone FPGAs to avoid the underutilization of the FPGA resources. But the required
support for the network layer consume a reasonable resource of FPGA. However, Asiatici et al. [89]
developed a lightweight version featuring high-end application program interface (API), with a
simpler execution model and shared memory. They proved their concept by measuring the marginal
performance overhead. The hybrid approach offers more control intensive connectivity by exploiting
offload to CPU, but additional hardware is required for I/O acceleration, as in [4]. Another type
of shell called, container [90], is described as one without VMM, a process-level virtualization of
application. This design has been accomplished by providing features like segregation, management
and scheduling, and resolve for driver dependencies.
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Considerable architectures have been tested in the last decade. The works that did impact the research
in this area have been summarized in Table 5, along with hardware and virtualization characteristics.

Table 5. Research Highlights of the Decade.

Works Hardware Characteristics Virtualization Characteristics
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Kirchgessner et al.
[91] 2012

StratixIII,
Virtex6,

Nallatech H101

1% Area
Overhead - No No Low High High

Byma et al.
[75] 2014 Virtex5 74%

BRAM 0.128 Yes Yes Med Med Med

Chen et al.
[84] 2014 Kintex7 51%

Logic 1.866 Yes Yes Med Med High

Putnam et al.
[4] 2014

Virtex6,
Stratix V

76%
All 8 Yes No High High Low

Fahmy et al.
[76] 2015 Virtex7 7%

All 8 Yes No Low Low Med

Weerasinghe et al.
[41] 2015 Zynq7100 33%

Logic - No Yes High Med Med

Asghari et al.
[92] 2016 Virtex7 - - No Yes Med Med Low

Bourennane et al.
[13] 2016 Virtex6 11%

LUTs - Yes No Med Low Low

Weerasinghe et al.
[87] 2016 Virtex7 32%

BRAM 8 Yes No High Med Med

Asiatici et al.
[89] 2017 Virtex7 5% Area

Overhead 8 Yes Yes Med Low Med

Kondel et al.
[78] 2017 Virtex7 42%

Logic Virtualized Yes Yes High High Med

Najem et al.
[93] 2017

Artix7,
CycloneV

30% FFs, 55%
FFs

On
Board Yes No Low Med Med

Tarafdar et al.
[77] 2017 Virtex7 20%

BRAM 8 Yes No High Med High

Zhang et al.
[79] 2017 StratixV 13%

Logic - Yes Yes High High High

Bourennane et al.
[25] 2018 Virtex6 3%

LUTs - Yes Yes Med Med Med

Yazdanshenas et al.
[22] 2018 Arria10 2%

Logic 8 Yes Yes Med High Med

Tarafdar et al.
[94] 2019

Kintex
UltraScale

15–20%
LUTs - No Yes High Med High

Vaishnav et al.
[95] 2019

Zynq
UltraScale+

Ultra96

12% LUTs
25% LUTs 2 Yes Yes High High High

Partial reconfiguration (PR) is used to reconfigure a part of FPGA dynamically, many architectures
run more than one application using this function provided by the FPGA vendors. Multitenancy is
defined as the capacity to serve multiple users using the same FPGA. Scalability is the qualitative
measure of potential to scale up to multi FPGAs or multiple users with low overhead and congestion.
Adoptability is featured as an acceptance of wide range of workload and applications, also referred as
flexibility in previous works. Time-to-Market is a development time, directly the function of complexity
of deployment on FPGA from design specifications. All these features of the shells are summarized in
tabular form.

Industry also offers an API based solution, Intel’s Open Programmable Acceleration Engine
(OPAE) [96] is a collection of drivers, libraries, user and programmers’ tools to enumerate, access,
manipulate, and reconfigure programmable accelerators. Figure 5 provides detailed insight.
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The designer must recognize that using shells can cause performance overheads due to layout
limitations that are enforced by the partially reconfigurable slots. Furthermore, limiting the logic
placement to a specific region on the chip can lead to longer wires that can result in slower modules [97].
Finding the optimal number of partial reconfigurable regions is a compelling open problem to explore,
given the complexity of the shell and impact on the overall performance.

4.2.3. Scheduling

Scheduling is the key to multi-tenancy, but the conventional techniques (preemptive,
non-preemptive, and cooperative) cannot be used for FPGA accelerators unchanged, as the state of
the system that needs to be saved and restored is not trivial. The state data may be distributed across
all different resources on FPGA fabric and one single operation to save or restore the state can add
micro to milli seconds to the latency [98]. However, the requirement of mandatory dedicated hardware
module can be avoided, as in [99], where such jobs are either blocked or sent back to CPU to perform.

The concept of scan-chain to provide the state data through an external interface, in order to make
preemptive scheduling cost-effective and fast, has been implemented in [100] while using High-Level
Synthesis (HLS) extension but for only a subset of registers. Non-preemptive scheduling has a low-cost
implementation and a simpler design. Cooperative, on the other hand, only offer context switching at
certain check points on the run time with the least overhead [82].

With the mature HLS methodology and availability of MPSoC platforms, hardware threads have
been proposed as ReconOS [101] and Hthreads [102] with a pre-condition of tightly coupled CPU-FPGA
to bring the scheduling closer to standard hardware description languages (HDLs).

Largely, scheduling techniques fall in non-preemptive category, which is fundamentally a time
domain optimization. However, a dynamic approach has recently been introduced in [89], which
takes advantage of the empty slots and keeps the utilization balanced on the run time. This dynamic
scheduling technique enables the multi-tenancy like none other, as it gives the power of increasing or
decreasing the resources usage, as per the workload requirement.

Some scheduling approaches are good for certain scenarios, like the one in [103,104], serve the
multiple users at the same time without going through tedious partial reconfiguration, given that the
accelerator needs of multiple users are the same. Another work, VineTalk [105], enables the FPGA
sharing to a server or virtual machine in a datacenter, where the user has the liberty to choose through
an API [106] among the GPU or FPGA accelerator, as per the need of the algorithm. In the heterogenous
computing environment, OpenCL [107] is popular in practice and recommendation like SparkCL [108]
solidified it further by bridging OpenCL and Java. OpenCPI [109] is an open source alternate of OpenCL.
Important methodologies to mention are Intel HLS Compiler [110], Vivado High-Level Synthesis [111],
and OpenSPL [112], as the programmability wall of FPGA remains a significant problem to this day.
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With these platform and practices combined, the idea of future datacenters can be realized, as pictured
in introduction. However, the process automation for the selection of appropriate accelerator in
heterogenous computing environment is yet to be explored by the community.

4.3. Multi-Node Level Virtualization

The primary job is to distribute an acceleration job among multiple FPGAs, while abstracting the
complex details from the user. The architecture of virtualization largely depends on how the multiple
FPGAs are connected, there ways are depicted in Figure 6. This is not a standard, but the works so far
have exhibited these formations. The direct model where FPGAs directly communicate with other
FPGAs, where link represent the physical connection or virtualized I/O interface. The slave model
where FPGAs are connected to the CPUs through PCIe or other links and CPUs are connected to
the network, so if FPGA wants to send data to another FPGA, it goes through CPUs and network.
The standalone model where FPGAs and CPUs are accessible though the network as standalone node.
The designer can also combine them to form a hybrid model to meet the certain objectives.
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Figure 6. Multi-FPGA Architectures: (a) Direct Model represents FPGA to FPGA communication; (b)
Slave Model represents FPGAs as special peripherals connected to Central Processing Units (CPUs)
through PCIe; (c) Standalone Model represents accessible FPGAs, CPUs, or Graphical Processing Units
(GPUs) through connected network.

Before discussing the sub classes, the salient features of some representative works of multiple
FPGAs are to be discussed. Byma et al. [75] focused on the minimum virtualization overhead of medium
scale datacenter providing commercial cloud services. They achieved significant performance when
compared to regular virtual machines along with reduced iteration time for design. Kondel et al. [78]
focused on maximizing the utilization of high-end FPGAs through paravirtualization and provided
homogeneous virtualized FPGA regions for the clients. This flexible multi tenancy approach enables the
individual resources to adopt the user requirements. Zhang et al. [79] developed an operating system
to share single FPGA chip among different users at run-time with an improved resource manager.
However, these mentioned works have not discussed the FPGA to FPGA or CPU connectivity in
detail and the interfaces are not clearly described, except an indication of PCIe. Weerasinghe et al. [41]
presented a different approach, FPGA as a standalone connected to datacenter network. The decoupled
approach can utilize FPGA as an equal processing resource, especially in hyperscale datacenters.
They chalked out a detailed system architecture with an outlook analysis on resource estimation and
scaling perspectives.

A relatively recent trend is the emergence of tightly coupled CPU-FPGA platforms.
Examples include Heterogeneous Architecture Research Platform (HARP) by the Intel and power chip
combined with Coherent Accelerator Processor Interface (CAPI) by IBM. Academics responded to
the call for proposals by Intel and several works have been published in last four years, some recent
examples are [113,114].

4.3.1. Custom Clusters

Custom clusters are based on the concept of systolic array model in parallel computing
architecture, where every node acts as a data processing unit and processed data move from
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one node to another through first-in first-out (FIFO) buffer or network semantics. Some of these
architectures [115–118] use Peer to Peer (P2P) connection MaxRing, fast series transceivers with FIFO
buffers, and Peripheral Component Interconnect Express (PCIe) links, for transmitting data across
multiple nodes. Tailored designs allow the direct communication among the nodes through explicit
network connections. A cluster of 512 FPGAs [119] exploits the systolic array model to perform
computations on multiple FPGAs.

4.3.2. Frameworks

Frameworks exploit the conventional server-client architecture, where only the computational
part is assigned to one or more FPGAs, but the CPU server manages the rest, including configuration,
application related data, and scheduling. The central piece in this architecture is the data management
model, and models for CPU are equally extendible to FPGAs. For example, the idea of the MapReduce
framework has been extended on FPGAs where mapping and reduction operations are performed by
FPGA accelerators [103,118,119] in similar way as CPU client-server architecture. These frameworks
have an added advantage of bridging the gap between the heterogeneity of datacenters, [120] is one such
cluster comprised of FPGAs and GPUs while using MapReduce. Furthermore, Chen and colleagues
in [104] extended java virtual machine (JVM) framework using Apache Spark to accommodate the
FPGAs, this however comes with a communication overhead and requires precision.

Tarafdar [77] and his colleagues utilized OpenCL via Xilinx SDAccel framework using an abstract
layer to assign the data to multiple FPGAs and maintaining a transparent directory to virtualize the
FPGAs at the lower abstraction level. The approach of the FPGA groups [121] suggests that multiple
FPGAs can be shared by one group but configured with a matching accelerator. However, this comes
with a limitation of occupying a complete FPGA that results in under-utilization but it can be addressed
with an automation of the scaling algorithm. A similar concept has been proposed in [122] while using
Hadoop YARN with a value-added advantage of ease of programming.

In the heterogeneous computing environment, the performance is also a function of execution
strategy. For the exploration of alternative execution strategies on disaggregated environments, the
evaluation platform presented in [123] is useful.

4.3.3. Cloud Services

Cloud services architecture guarantees QoS and promises computational correctness while
abstracting the underlying architecture. Therefore, as the user has no concern about the choice of
computational node, the job can be computed on an employed FPGA. Amazon offering FPGA as a
resource in [40] does not fall into this category but the landmark work of Microsoft [4] on search ranking
that achieved a substantial speed-up, with relatively higher power consumption. This is also a good
example of hybrid architecture as Catapult can allow for the acceleration jobs to both, host CPU core,
and standalone FPGA. Baidu [124] achieved the same performance for deep neural networks. The use
of FPGAs as co-processors in compute-intensive problems has been implemented [125], exploiting the
multiple data streams.

The architectures with network support widen the choice of connectivity, which allows the CPU
provisioning either as a soft-core or embedded on-chip. OpenStack is the most common method
for directly allowing the user to program the FPGA [75,77,87] through physical or virtual address.
It provides the flexibility to the expert user for exploiting either socket or remote routine approach
to establish connectivity to an FPGA. Bashir et al. addressed the issue of poor utility and high
computation complexity on high-dimensional data in [126] and proposed many network architectures
for datacenters in [127,130,131].

4.4. Execution Model based Distribution

The execution model is used as a decision parameter while doing system partitioning, process to
place certain modules in shell. Inspired from the Flynn Taxonomy in [132], the execution models can
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be categorized as four, as described in Table 6. All of the works in the last decade have been distributed
in any of the four boxes, as per relevance, for quick navigation.

Table 6. Distribution of Works based on Execution Model.

Single Application Multiple Applications

Single FPGA [4,76,77,86,87,106,107,109,115,117,118,125] [23,25,75,78,79,84–86,89,107]

Multiple FPGAs [4,77,87,106,115,117,125] [41,75,78,79]

5. Open Problems and Discussion

There is plenty to do in this area, but we would like to mention a few open problems. The foremost
goal is to enable multi-tenant multi-FPGAs for medium to large-scale datacenters, only then we can
unleash the real potential of FPGAs as a heterogeneous computing resource. This can be achieved
either by developing FPGA operating system or improving existing virtualization methods. An intense
investigation is required on how to compute over multiple FPGAs in a scalable manner. A design is
required that can exploit multiple FPGAs via streaming between Catapult style or batching MapReduce
style, other than OpenStack.

A serious effort is required to make the shell and development stack modular. Currently, everything
must compile against a shell and any change in shell requires recompiling accelerators. Likewise, a
change in the Linux kernel means the recompilation of all user software, so one can imagine how bad
is the FPGA ecosystem yet today. However, FPGAs provide a lot of customization, without which it
would be meaningless to use FPGAs in the first place. Overlays solve this issue to an extent for a small
class of application, but the solution is not scalable for general computation with FPGAs. Therefore, we
need a set of APIs and standards in software stack to manage this heterogeneity in a sensible manner.
Dynamic resource allocation somehow addresses this issue, but largely it remains an ignored area by
the community.

With multi-tenant support, efficient management and scheduling is required for the resources, an
advanced resource manager that can fit the same workload on fewer FPGA resources should be the
key point of future development.

Security is another aspect that needs intense attention of the community with a lot of potential for
development. The complex case of FPGAs in datacenter is vulnerable to all sorts of attacks, as the
reported attacks include malicious bitstream and side channel that severely damage the availability.
It also assists in segregation of many accelerators on same FPGA or network.

6. Conclusions

The integration of FPGAs in datacenters might have different motivations from acceleration to
energy efficiency, but the ultimate objective of better performance remained unshaken. FPGAs are
being utilized in a variety of ways today, tightly coupled with heterogenous computing resources and a
standalone network of homogenous resources. Open source software stacks, propriety tool chain, and
programming languages with advanced methodologies are hitting hard on the programmability wall of the
FPGA. Therefore, it was important to visualize this area as high-performance reconfigurable computing.

In this paper, we rendered a survey on high-performance reconfigurable computing. We pointed
out the use of non-standard nomenclature in published research as an obstacle to the growth of the
body of knowledge. We further identified, the contributors of different background, approaching for
a wide range of applications, to be the reason of this phenomenon. We indicated some examples of
using standard language and nomenclature. We revisited the network-on-chip evaluation platforms to
highlight its importance as compared to the bus-based architectures. The limitations of virtualization
shells like frequency drop, high wire demand, increased design latency, and routing congestion
leading to routing failure, can be addressed using a suitable network-on-chip. We highlighted the
need of network-on-chip evaluation platforms to quickly analyze the performance to reach a required
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communication architecture. We updated the scientific community on classical and recent virtualization
techniques, from the last decade. We stretched our review from acceleration of standalone FPGA to
FPGAs that are connected as a computational resource in heterogeneous environment. The purpose
of this research was to create a synergy through combining three domains to assist the designers
to choose right communication architecture for the right virtualization technique and to emphasize
the importance of using the standard language, so that multi-tenant FPGAs in the datacenters can
be evolved.

We have chalked out open problems in this area. Our future research will be focused on finding
optimal communication architecture, for multi FPGAs. Other than the interconnection between different
processing elements within one FPGA, the communication among multiple FPGAs poses a bigger
challenge in our future work, and an opportunity for the community as well.
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