
future internet

Review

Revisiting the High-Performance Reconfigurable
Computing for Future Datacenters

Qaiser Ijaz 1,2,*, El-Bay Bourennane 1, Ali Kashif Bashir 3 and Hira Asghar 2

1 ImViA Laboratory, University of Burgundy, 21000 Dijon, France; ebourenn@u-bourgogne.fr
2 Department of Computer System Engineering, Islamia University of Bahawalpur,

Bahawalpur 63100, Pakistan; hira.asghar@iub.edu.pk
3 Department of Computing and Mathematics, Manchester Metropolitan University,

Manchester M15 6BH, UK; dr.alikashif.b@ieee.org
* Correspondence: qaiser.ijaz@iub.edu.pk

Received: 2 February 2020; Accepted: 1 April 2020; Published: 6 April 2020
����������
�������

Abstract: Modern datacenters are reinforcing the computational power and energy efficiency by
assimilating field programmable gate arrays (FPGAs). The sustainability of this large-scale integration
depends on enabling multi-tenant FPGAs. This requisite amplifies the importance of communication
architecture and virtualization method with the required features in order to meet the high-end
objective. Consequently, in the last decade, academia and industry proposed several virtualization
techniques and hardware architectures for addressing resource management, scheduling, adoptability,
segregation, scalability, performance-overhead, availability, programmability, time-to-market, security,
and mainly, multitenancy. This paper provides an extensive survey covering three important
aspects—discussion on non-standard terms used in existing literature, network-on-chip evaluation
choices as a mean to explore the communication architecture, and virtualization methods under latest
classification. The purpose is to emphasize the importance of choosing appropriate communication
architecture, virtualization technique and standard language to evolve the multi-tenant FPGAs in
datacenters. None of the previous surveys encapsulated these aspects in one writing. Open problems
are indicated for scientific community as well.

Keywords: FPGA virtualization; datacenters; network on chip; multi tenancy; multi FPGA;
reconfigurable computing

1. Introduction

Today, datacenters are equipped with the heterogeneous computing resources that range from
Central Processing Units (CPUs), Graphical Processing Units (GPUs), Networks on Chip (NoCs) to
Field Programmable Gate Arrays (FPGAs), each suited for a certain type of operation, as concluded by
Escobar et al. in [1]. They all purvey the scalability and parallelism; hence, unfold new fronts for the
existing body of knowledge in algorithmic optimization, computer architecture, micro-architecture,
and platform-based design methods [2]. FPGAs are considered as a competitive computational resource
for two reasons, added performance and lower power consumption. The cost of electrical power in
datacenters is far-reaching, as it contributes roughly half of lifetime cost, as concluded in [3]. This factor
alone motivates the companies to deploy FPGAs in datacenters, hence urging the scientific community
to exploit High-Performance Reconfigurable Computing (HRC).

Industrial and academic works both incorporated the FPGAs to accelerate large-scale datacenter
services; Microsoft’s Catapult is one such example [4]. Putnam et al. chose FPGA over GPU on the
question of power demand. The flagship project accelerated Bing search engine by 95% as compared to
a software-only solution, at the cost of 10% additional power.

Future Internet 2020, 12, 64; doi:10.3390/fi12040064 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
https://orcid.org/0000-0003-2601-9327
http://dx.doi.org/10.3390/fi12040064
http://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/1999-5903/12/4/64?type=check_update&version=2

Future Internet 2020, 12, 64 2 of 21

The deployment of FPGAs in datacenters will neither be sustainable nor economical, without
realizing the multi-tenancy feature of virtualization across multiple FPGAs. To achieve this ambitious
goal, the scientific community needs to master two crafts, an interconnect solution preferably Network
on Chip (NoC) as a communication architecture and an improved virtualization method with all the
features of an operating system. Accumulating the state of the art in a survey can foster the development
in this area and direct the researchers into more focused and challenging problems. Despite of the
two excellent surveys, [5] in 2004 and [6] in 2018, former one categorized the FPGA virtualization as
temporal partitioning, virtualized execution, and virtual machines, while, after fourteen years, the later
one classified based on abstraction levels to accommodate the future changes, but the communication
architecture or interconnect possibilities are not fully explored. To address this gap, an improved
survey on FPGA virtualization is presented with the coverage of network-on-chip evaluation choices
as a mean to explore the communication architecture, and commentary on nomenclature of existing
body of knowledge. We revisited the network-on-chip evaluation platforms in order to highlight its
importance as compared to bus-based architectures. We stretched our review from acceleration of
standalone FPGA to FPGAs connected as a computational resource in heterogeneous environment.
We attempted to create a synergy through combining three domains to assist the designers to choose
right communication architecture for the right virtualization technique and, finally, share the work in
the right language, only then, multi-tenant FPGAs in datacenters can be realized.

The remaining of the review paper is organized, as follows. Section 2 includes the commentary on
nomenclature and recommendations for the scientific community. Section 3 talks about the available
NoC evaluation tools to find out precise communication architecture in relatively less time. Section 4
puts the virtualization works into limelight with focus on architectures that are scalable and support
multi-applications or multi-FPGAs. Section 5 indicates the trends and open problems as well presents
a closing discussion about the area.

2. Revisiting the Nomenclature

The applications of FPGAs as computing resource are diverse that includes data analytics, financial
computing and cloud computing. This broad range of applications in different areas requires efficient
applications and resource management. This lays the foundation for the need of virtualizing the
FPGA as a potential resource. Nomenclature is much varying due to the different backgrounds of
the researchers contributing to this area. There are many such examples in literature where similar
concepts or architecture is described using a different name or term. There is also an abundance of
jargon terms and acronyms, which confuse the researchers rather enhancing their understanding.
Table 1 identifies and lists non-standard terms in literature from the last decade.

Table 1. Non-Standard Nomenclature Present in Literature.

Year Non-Standard Term(s) in Published Literature

2010 RAMPSoC in [7]
2011 Lightweight IP (LwIP) in [8]
2012 ASIF (Application Specific FPGA) in [9]
2013 sAES (FPGA based data protection system) in [10]
2014 PFC (FPGA cloud for privacy preserving computation in [11]
2015 CPU-Cache-FPGA in [12]
2016 HwAcc (Hardware accelerators), RIPaaS and RRaaS in [13]
2017 FPGA as a Service (FaaS) and Secure FaaS in [14]
2018 ACCLOUD (Accelerated CLOUD) in [15], FPGAVirt in [16]
2019 vFPGA-based CCMs (Custom Computing Machines) in [17]

This area is stagnated for a lack of a standard nomenclature. We recommend that the scientific
community should use a unified nomenclature to present the viewpoint in order to improve the clarity
and precision of communication for advancing the knowledge base. We also recommend that this area

Future Internet 2020, 12, 64 3 of 21

must be referred as High-Performance Reconfigurable Computing (HRC) in literature. Moreover, it has
been observed that the use of computer science language is more conveying as virtualization in FPGAs
is comparable to an operating system in CPUs.

We urge the scientific community to come together to develop nomenclature, as it will improve the
communication among researchers. It will ease the classification of works for entry-level researchers
and help them to focus on complex research problems.

We acknowledge some quality examples such as the suitability of FPGAs has been discussed in
depth in the context of high performance computing and heterogenous computing resources in [1],
a new classification of FPGA virtualization has been presented in [5], and state of the art has been
explored in the context of cloud computing, as defined by the National Institute of Standards and
Technology in [18]. These authors have used the standard language of computer science and written in
such a way that it added value to the understanding of readers.

3. Revisiting the Network on Chip Evaluation Tools

Data transfers in most of the high-performance architectures are limited by memory hierarchy
and communication architecture, as summarized in [19,20]. Exploiting communication architecture
suggests the use of NoC, an effective replacement for buses or dedicated links in a system with large
number of processing cores [21,22]. NoC is composed of several tunable parameters like network
architecture, algorithm, network topology and flow control. No System on Chip (SoC) is outright
without NoC, today, due to promised high communication bandwidth with low latency as compared
to the alternate communication architectures.

Researchers heavily rely on automated evaluation tools, where performance and power evaluation
can be viewed early in design, given the complexity of NoC. Figure 1 describes a typical cycle of
NoC evaluation, with FPGA being connected to a Central Processing Unit (CPU). Traffic scenarios are
generated through traffic generator, sent to NoC that resides in FPGA, and the evaluation results are
received through traffic receptors. Tools for FPGA based NoC prototyping are diverse architecture-wise.
De Lima et al. in [23] identified an architectural model comprising of three layers: network, traffic,
and management.

Future Internet 2020, 12, 64 3 of 21

This area is stagnated for a lack of a standard nomenclature. We recommend that the scientific

community should use a unified nomenclature to present the viewpoint in order to improve the

clarity and precision of communication for advancing the knowledge base. We also recommend that

this area must be referred as High-Performance Reconfigurable Computing (HRC) in literature.

Moreover, it has been observed that the use of computer science language is more conveying as

virtualization in FPGAs is comparable to an operating system in CPUs.

We urge the scientific community to come together to develop nomenclature, as it will improve

the communication among researchers. It will ease the classification of works for entry-level

researchers and help them to focus on complex research problems.

We acknowledge some quality examples such as the suitability of FPGAs has been discussed in

depth in the context of high performance computing and heterogenous computing resources in [1], a

new classification of FPGA virtualization has been presented in [5], and state of the art has been

explored in the context of cloud computing, as defined by the National Institute of Standards and

Technology in [18]. These authors have used the standard language of computer science and written

in such a way that it added value to the understanding of readers.

3. Revisiting the Network on Chip Evaluation Tools

Data transfers in most of the high-performance architectures are limited by memory hierarchy

and communication architecture, as summarized in [19,20]. Exploiting communication architecture

suggests the use of NoC, an effective replacement for buses or dedicated links in a system with large

number of processing cores [21,22]. NoC is composed of several tunable parameters like network

architecture, algorithm, network topology and flow control. No System on Chip (SoC) is outright

without NoC, today, due to promised high communication bandwidth with low latency as compared

to the alternate communication architectures.

Researchers heavily rely on automated evaluation tools, where performance and power

evaluation can be viewed early in design, given the complexity of NoC. Figure 1 describes a typical

cycle of NoC evaluation, with FPGA being connected to a Central Processing Unit (CPU). Traffic

scenarios are generated through traffic generator, sent to NoC that resides in FPGA, and the

evaluation results are received through traffic receptors. Tools for FPGA based NoC prototyping are

diverse architecture-wise. De Lima et al. in [23] identified an architectural model comprising of three

layers: network, traffic, and management.

Figure 1. Generic Architecture of Networks on Chip (NoC) Evaluation on Field Programmable Gate

Arrays (FPGA)(s).

There are four different types of network: Direct Mapping on Single or Multi FPGA(s), Fast

Prototyping and Virtualization. The choice of the network affects the accuracy and resource

utilization. Traffic on network can be generated in two different ways: synthetic and application-

specific. Synthetic traffic is a kind of load testing to evaluate the overall performance, but it fails to

forecast the performance under real traffic flow. Application-specific traffic, on the other hand, is

based on the behavior of real traffic flow that is difficult to acquire but gives more accurate results.

Figure 1. Generic Architecture of Networks on Chip (NoC) Evaluation on Field Programmable Gate
Arrays (FPGA)(s).

There are four different types of network: Direct Mapping on Single or Multi FPGA(s), Fast
Prototyping and Virtualization. The choice of the network affects the accuracy and resource utilization.
Traffic on network can be generated in two different ways: synthetic and application-specific.
Synthetic traffic is a kind of load testing to evaluate the overall performance, but it fails to forecast
the performance under real traffic flow. Application-specific traffic, on the other hand, is based on the
behavior of real traffic flow that is difficult to acquire but gives more accurate results. These patterns can
be acquired either through trace, statistical method or executing application cores. As traces comprises

Future Internet 2020, 12, 64 4 of 21

of millions of packets so the size becomes a limiting factor. Running application cores to generate traffic
is also resource-expensive method.

Table 2 lists some FPGA based NoC evaluation tools, describing every architecture with network
type, traffic type, number of routers, target board, and execution frequency, while hiding the complexity
of NoC designs. The number of routers in NoC depends on the network type, architecture with
relatively more routers, are based on second group type of network, fast prototyping and virtualization.
We have used the direct mapping network type in our previous works due to relatively high execution
frequency [24,25].

Table 2. NoC Evaluation Tools based on FPGA(s).

Year Network Type Traffic Type No. of
Routers

Target
FPGA

Freq.
(M.Hz.) Work

2010 Multiple FPGA Real: App. Cores 16 Virtex 5 × 5 - [26]
2010 Direct Mapping Real: Traces based 64 Virtex 2 45 [27]
2010 Fast Prototyping Synthetic 49 Virtex 6 50 [28]
2011 Direct Mapping Real: Traces based 25 Virtex 5 - [29]
2011 Virtualization Real: Traces based 256 Virtex 6 152 [30]
2011 Fast Prototyping Synthetic 576 Virtex 6 300 [31]
2011 Virtualization Real: App. Cores 64 Virtex 2 - [32]
2011 Virtualization Real: App. Cores 16 Virtex 5 3, 15 [33]
2011 Direct Mapping Synthetic 36 Virtex 5 - [34]
2012 Direct Mapping Real: App. Cores 9 Virtex 5 - [35]
2013 Multiple FPGA Synthetic 18 Virtex 5 × 2 - [36]
2014 Virtualization Synthetic 1024 Virtex 7 42 [37]
2015 Direct Mapping Synthetic 64 Virtex 6 50 [38]
2016 Direct Mapping Synthetic 16 Virtex 6 250 [13]
2017 Direct Mapping Synthetic 16 Virtex 6 250 [24]
2018 Direct Mapping Synthetic 16 Virtex 6 250 [25]

These evaluation platforms assist the designers to reach the design-specific communication
architecture, meeting most of the requirement specifications, for a certain application. These evaluation
platforms take comparatively more time to synthesize the change, while on the other hand, a simulator
can accommodate the same change in much lesser time. Designers offer dynamic reconfiguration, as a
peroration to this limitation, but simulators are still the first choice of many entry-level researchers.
However, the choice of NoC to realize the future datacenters with multi-tenant multi-FPGAs is yet to
explore. The linking of several computational nodes becomes complicated and affects the performance
of the overall system. Although NoC is not the only choice for communication within an FPGA
as well as among multiple FPGAs but offer a competitive and promising solution. Other solutions
include traditional bus, bus combined with a soft shell, different types of soft NoC and hard NoC.
Many comparative studies evaluated these choices based on parameters like useable bandwidth, area
consumption, latency, wire requirement and routing congestion. The way NoC is generated, also affects
the performance so designers must be careful while choosing the NoC or an alternate for their design.

4. Revisiting the FPGA Virtualization

Resources are time multiplexed in a cloud services provider datacenter, referred as Infrastructure
as a Service (IaaS). The sharing of resources is achieved through virtualization, an abstraction layer for
hiding the physical resources from users. The process of virtualization raises issues like ease-of-use,
privacy and performance but yet IaaS provide individual users and small organizations with an
economic choice of renting over spending on infrastructure. Other than an academic example, such
as SAVI testbed [39], industry offers plenty of solutions that are equally popular among designers.
Amazon Web Services EC2 [40], IBM Zurich [41], and Intel are important competitors. Alveo on
the Nimbix Cloud [42] is suitable for the designers working on Xilinx tools. Maxeler Technologies,

Future Internet 2020, 12, 64 5 of 21

however, offers specific solutions, like an algorithmic contribution for memory mapping [43] and an
area optimization technique [44].

Virtualization plays a relatable role to an operating system in a computer, but the term is being
used in different meanings in this area, due to non-uniform nomenclature discussed earlier. Yet,
the universal concept of an abstraction layer remains unchanged, a layer for the user to hide the
underlying complexity of the computing machine, where the computing machine is not a traditional
one, but FPGA. Many virtualization architectures have been proposed as per the requirements of the
diverse applications. In 2004, a survey in this regard categorized the virtualization architectures into
three broad categories, temporal partitioning, virtualized execution, and overlays [5]. Since then, no
serious effort has been recorded on the classification of virtualization, until Vaishnav et al. [6] in 2018
classified the virtualization architectures based on abstraction levels. This much-needed classification
contributed by Vaishnav et al. has been adopted as is, to discuss the works in this survey. We reiterated
them with some of the representative work examples in Table 3. The works have been discussed under
the same abstract classification.

Table 3. Classification of FPGA Virtualization adopted from [6].

Abstract Classification Sub-Class Work Examples References

Resource Level
Overlays [45–74]

Input Output (I/O) Virtualization [4,75–80]

Node Level
Virtual Machine Monitors [81–84]

Shells [4,41,75–78,85–97]
Scheduling [82,89,98–112]

Multi Node Level
Custom Clusters [113–117]

Frameworks [77,103,118–123]
Cloud Services [4,40,124–130]

Although there are many features of virtualization like management, scheduling, adoptability,
segregation, scalability, performance-overhead, availability, programmability, time-to-market, security,
but the most important feature in the context of scope of this research is the multi-tenancy because
it is essential for a sustainable and economically viable deployment in datacenters. FPGA has two
types of fabric: reconfigurable and non-reconfigurable. The virtualization for the non-reconfigurable
fabric is the same as of CPU, but there are several variations when it comes to the virtualization of the
reconfigurable fabric.

4.1. Resource Level Virtualization

4.1.1. Overlays

Overlay architectures are diverse based on application and respective requirements.
Overlays provide another higher abstraction layer on lower level fabric of FPGA, as depicted in Figure 2.
The primary objective is to enhance the ease of programming for the software programmer. The reduced
compilation time is an added advantage, given that the computer-aided design part to generate an
accelerator is left out in the compilation process.

With respect to the ability of functional units, overlays are categorized in spatially-configured
and time-multiplexed architectures. Li et al. compiled a comprehensive account of time-multiplexed
overlays in a recent survey [45]. However, overlays are often discussed with respect to their
implementation architectures in most of the literature that divides them into processor-based and
coarse-grained reconfigurable architectures (CGRAs). A complete review of CGRAs can be found in
Jain’s doctorate thesis [46]. Processor-based comes in a variety of soft processor, either single-issue or
multi-issue or multithreaded. They all add value to programmability, but the limited throughput is
not suitable for the very high speed applications. Processor-based comes with a parallel processor as

Future Internet 2020, 12, 64 6 of 21

well, either in the form or multithreaded or VLIW or soft vector processor or soft GPU. One form of
the soft-core processors is [47], and similar solutions [48,49] are available from industry. Other forms
include soft vector processors [50–54].

Future Internet 2020, 12, 64 6 of 21

well, either in the form or multithreaded or VLIW or soft vector processor or soft GPU. One form of

the soft-core processors is [47], and similar solutions [48,49] are available from industry. Other forms

include soft vector processors [50–54].

Figure 2. Generic Overlay Architecture.

CGRAs offer higher performance and scalability with lower power consumption, the very

characteristics FPGAs are used for. CGRAs exist in the form of processing arrays or coarse to medium

grained processing elements, where operations are performed at the processing element level.

Examples of connected arrays of processing elements with programmable interconnects are [55–59].

Some CGRAs are kept dynamic by programming the processing elements and interconnect logic [60–

63], while other architectures are kept static in spatial-configuration, as in [56,57]. Frequently

appearing interconnect topologies in CGRAs are the nearest neighbor [55,56] and island model [57–

59]. NoC are also found abundantly in CGRAs, some examples are [64–67]. NoC based architectures

offer flexibility at the cost of higher implementation cost, but some works, like Hoplite soft NoC [67]

and hard NoC [22], offer resource-efficient fast interconnects. Although an effort to reduce the cost

by mapping the overlay look-up tables and multiplexers to the FPGA fabric has been achieved in

[68]. Table 4 summarizes time-multiplexed CGRA overlays.

Table 4. Summary of CGRA based Overlays (*only industrial work).

Author(s) [Ref.] Year Language Board Frequency Granularity Size

Ferreira et al. [69] 2011 VHDL Virtex 6 100 MHz 8 / 32 / 64 bits 30

Kinsy et al. [70] 2011 Verilog Virtex 5 155 MHz 32 bits 4x4

Brant [61] 2012 Verilog Stratix III 150 MHz 32 bits 2x2

Paul et al. [63] 2012 - Virtex 6 400 MHz 32 bits 40

Liu et al. [71] 2013 HLS Method Zynq 7000 250 MHz 32 bits 2x2

Gray [72] 2016* RISC V ISA UltraScale 375 MHz 32 bits 10x5x8

Li et al. [73] 2016 HLS Method Zynq 7000 286 MHz 32 bits 8

Kumar et al. [74] 2017 C Stratix V 94 MHz 32 bits 60x2

Overlays are opted only to meet the requirement of rapid functionality change, where partial

reconfiguration fails to cope with the speed of change, due to the sizable cost of implementation.

Many solution providers have also commercialized this idea, like VectorBlox [50].

4.1.2. Input Output (I/O) Virtualization

I/O virtualization enables the access of different resources through the same interface or the

sharing of resources among multiple applications. Figure 3 depicts the generic architecture where

Figure 2. Generic Overlay Architecture.

CGRAs offer higher performance and scalability with lower power consumption, the very
characteristics FPGAs are used for. CGRAs exist in the form of processing arrays or coarse to
medium grained processing elements, where operations are performed at the processing element level.
Examples of connected arrays of processing elements with programmable interconnects are [55–59].
Some CGRAs are kept dynamic by programming the processing elements and interconnect logic [60–63],
while other architectures are kept static in spatial-configuration, as in [56,57]. Frequently appearing
interconnect topologies in CGRAs are the nearest neighbor [55,56] and island model [57–59]. NoC are
also found abundantly in CGRAs, some examples are [64–67]. NoC based architectures offer flexibility
at the cost of higher implementation cost, but some works, like Hoplite soft NoC [67] and hard NoC [22],
offer resource-efficient fast interconnects. Although an effort to reduce the cost by mapping the overlay
look-up tables and multiplexers to the FPGA fabric has been achieved in [68]. Table 4 summarizes
time-multiplexed CGRA overlays.

Table 4. Summary of CGRA based Overlays (*only industrial work).

Author(s) [Ref.] Year Language Board Frequency Granularity Size

Ferreira et al. [69] 2011 VHDL Virtex 6 100 MHz 8 / 32 / 64 bits 30
Kinsy et al. [70] 2011 Verilog Virtex 5 155 MHz 32 bits 4 × 4
Brant [61] 2012 Verilog Stratix III 150 MHz 32 bits 2 × 2
Paul et al. [63] 2012 - Virtex 6 400 MHz 32 bits 40
Liu et al. [71] 2013 HLS Method Zynq 7000 250 MHz 32 bits 2 × 2
Gray [72] 2016* RISC V ISA UltraScale 375 MHz 32 bits 10 × 5 × 8
Li et al. [73] 2016 HLS Method Zynq 7000 286 MHz 32 bits 8
Kumar et al. [74] 2017 C Stratix V 94 MHz 32 bits 60 × 2

Overlays are opted only to meet the requirement of rapid functionality change, where partial
reconfiguration fails to cope with the speed of change, due to the sizable cost of implementation.
Many solution providers have also commercialized this idea, like VectorBlox [50].

4.1.2. Input Output (I/O) Virtualization

I/O virtualization enables the access of different resources through the same interface or the
sharing of resources among multiple applications. Figure 3 depicts the generic architecture where
many virtual channels are represented with dashed lines, that do not equate to available physical
channels. The middle layer in I/O virtualization plays multiple roles, like enforcing security mechanism,

Future Internet 2020, 12, 64 7 of 21

monitoring resource utilization, ensuring Quality of Service (QoS) in datacenters, improving access
time, and installing memory buffers.

Future Internet 2020, 12, 64 7 of 21

many virtual channels are represented with dashed lines, that do not equate to available physical

channels. The middle layer in I/O virtualization plays multiple roles, like enforcing security

mechanism, monitoring resource utilization, ensuring Quality of Service (QoS) in datacenters,

improving access time, and installing memory buffers.

Figure 3. Concept of Virtual Channel in Input Output (I/O) Virtualization.

There are two possibilities for the design of control logic, either software or hardware. The

software approach offers high flexibility and space efficiency [75–77]. On the other hand, the

hardware module offers improved performance at the cost of consuming some reconfigurable

resources [78,79].

Designers, as in [80], employed I/O virtualization to accelerate the storage up to 6x, beneficial

for data intensive applications. Microsoft used the same to reduce the traffic of the network by

directly handing over the requests to FPGA [4]. These are examples of the diverse use of I/O

virtualization middle layer.

4.2. Node Level Virtualization

4.2.1. Virtual Machine Monitors (VMMs)

VMMs is the trouble-free method, as it takes many challenges away from FPGA. The scenario of

treating FPGA as an attached peripheral to CPU provides the software programmers with multiple

benefits, like familiar interface, libraries, and programming. Integrating accelerator with Virtual

Machine Monitor (VMM) has almost zero performance overhead, as the experimental results showed

in [81]. However, there are other approaches that further enhance the VMM capability to control

many partial reconfigurable regions, like using micro-kernel [82], using micro-kernel to make a

portable accelerator [83], and using OpenStack [84]. The idea of disassociating the static and dynamic

fragments pays off at so many levels.

VMMs through resource allocation contribute to achieve many objectives for virtualization, such

as multi-tenancy, management and scheduling, segregation, security, and availability. As FPGA is

connected to CPU using standard frameworks, so multiple FPGAs can be added in the same

arrangement.

4.2.2. Shells

Shells are referred as the static part of the system, which fundamentally provides the

functionality of an operating system (OS); hence, various other names exist in literature, like FPGA

operating system or hypervisor. It manages resources, I/O mechanism, required drivers and other

essentials to configure or reconfigure the desired application. Figure 4 lays out the important

Figure 3. Concept of Virtual Channel in Input Output (I/O) Virtualization.

There are two possibilities for the design of control logic, either software or hardware. The software
approach offers high flexibility and space efficiency [75–77]. On the other hand, the hardware module
offers improved performance at the cost of consuming some reconfigurable resources [78,79].

Designers, as in [80], employed I/O virtualization to accelerate the storage up to 6x, beneficial for
data intensive applications. Microsoft used the same to reduce the traffic of the network by directly
handing over the requests to FPGA [4]. These are examples of the diverse use of I/O virtualization
middle layer.

4.2. Node Level Virtualization

4.2.1. Virtual Machine Monitors (VMMs)

VMMs is the trouble-free method, as it takes many challenges away from FPGA. The scenario of
treating FPGA as an attached peripheral to CPU provides the software programmers with multiple
benefits, like familiar interface, libraries, and programming. Integrating accelerator with Virtual
Machine Monitor (VMM) has almost zero performance overhead, as the experimental results showed
in [81]. However, there are other approaches that further enhance the VMM capability to control many
partial reconfigurable regions, like using micro-kernel [82], using micro-kernel to make a portable
accelerator [83], and using OpenStack [84]. The idea of disassociating the static and dynamic fragments
pays off at so many levels.

VMMs through resource allocation contribute to achieve many objectives for virtualization, such
as multi-tenancy, management and scheduling, segregation, security, and availability. As FPGA is
connected to CPU using standard frameworks, so multiple FPGAs can be added in the same arrangement.

4.2.2. Shells

Shells are referred as the static part of the system, which fundamentally provides the functionality
of an operating system (OS); hence, various other names exist in literature, like FPGA operating system
or hypervisor. It manages resources, I/O mechanism, required drivers and other essentials to configure
or reconfigure the desired application. Figure 4 lays out the important infrastructures that have been
proposed, developed, and tested. These architectures have been exhibiting a certain level of one or
more virtualization characteristics and significant performance.

Future Internet 2020, 12, 64 8 of 21

Multiple partial reconfiguration regions, symmetric and asymmetric, are being used for achieving
multiple applications on a single FPGA. Symmetric or tiled regions are uniform in size, as in [85].
In this way, the resource allocation becomes flexible, as it can reside in one or more neighboring regions,
which further minimizes the internal fragmentation, as in [78]. On the other hand, asymmetric regions
support the modules of different sizes and save us from reconfiguring the whole FPGA [86] altogether.

Future Internet 2020, 12, 64 8 of 21

infrastructures that have been proposed, developed, and tested. These architectures have been

exhibiting a certain level of one or more virtualization characteristics and significant performance.

Multiple partial reconfiguration regions, symmetric and asymmetric, are being used for

achieving multiple applications on a single FPGA. Symmetric or tiled regions are uniform in size, as

in [85]. In this way, the resource allocation becomes flexible, as it can reside in one or more

neighboring regions, which further minimizes the internal fragmentation, as in [78]. On the other

hand, asymmetric regions support the modules of different sizes and save us from reconfiguring the

whole FPGA [86] altogether.

Figure 4. Possible Architectures for Utilization of FPGA(s) in Datacenter.

The connectivity is crucial for every execution model, it can either be host connectivity, or

independent connectivity or the hybrid of the two. The architectures that are based on host

connectivity only, CPU control the resources of the FPGA and reserve most of the reconfigurable

resources and regions for the applications [76]. Multi-processors System on Chip (MPSoC) products

from the FPGA vendors makes the implementation easier, however employing such products results

in wastage of resources. Solutions, like [41,87], offer sharing among multiple CPUs, where [4,41,75,88]

offer sharing among standalone FPGAs to avoid the underutilization of the FPGA resources. But the

required support for the network layer consume a reasonable resource of FPGA. However, Asiatici

et al. [89] developed a lightweight version featuring high-end application program interface (API),

with a simpler execution model and shared memory. They proved their concept by measuring the

marginal performance overhead. The hybrid approach offers more control intensive connectivity by

exploiting offload to CPU, but additional hardware is required for I/O acceleration, as in [4]. Another

type of shell called, container [90], is described as one without VMM, a process-level virtualization

Figure 4. Possible Architectures for Utilization of FPGA(s) in Datacenter.

The connectivity is crucial for every execution model, it can either be host connectivity, or
independent connectivity or the hybrid of the two. The architectures that are based on host connectivity
only, CPU control the resources of the FPGA and reserve most of the reconfigurable resources and
regions for the applications [76]. Multi-processors System on Chip (MPSoC) products from the FPGA
vendors makes the implementation easier, however employing such products results in wastage of
resources. Solutions, like [41,87], offer sharing among multiple CPUs, where [4,41,75,88] offer sharing
among standalone FPGAs to avoid the underutilization of the FPGA resources. But the required
support for the network layer consume a reasonable resource of FPGA. However, Asiatici et al. [89]
developed a lightweight version featuring high-end application program interface (API), with a
simpler execution model and shared memory. They proved their concept by measuring the marginal
performance overhead. The hybrid approach offers more control intensive connectivity by exploiting
offload to CPU, but additional hardware is required for I/O acceleration, as in [4]. Another type
of shell called, container [90], is described as one without VMM, a process-level virtualization of
application. This design has been accomplished by providing features like segregation, management
and scheduling, and resolve for driver dependencies.

Future Internet 2020, 12, 64 9 of 21

Considerable architectures have been tested in the last decade. The works that did impact the research
in this area have been summarized in Table 5, along with hardware and virtualization characteristics.

Table 5. Research Highlights of the Decade.

Works Hardware Characteristics Virtualization Characteristics

A
ut

ho
rs

,
R

ef
er

en
ce

,
Ye

ar

Ta
rg

et
FP

G
A

B
oa

rd
(s

)

FP
G

A
U

ti
li

za
ti

on

D
D

R
Si

ze
(G

B
)

Pa
rt

ia
l

R
ec

on
fig

ur
at

io
n

M
ul

ti
te

na
nc

y

Sc
al

ab
il

it
y

A
do

pt
ab

il
it

y

Ti
m

e
to

M
ar

ke
t

Kirchgessner et al.
[91] 2012

StratixIII,
Virtex6,

Nallatech H101

1% Area
Overhead - No No Low High High

Byma et al.
[75] 2014 Virtex5 74%

BRAM 0.128 Yes Yes Med Med Med

Chen et al.
[84] 2014 Kintex7 51%

Logic 1.866 Yes Yes Med Med High

Putnam et al.
[4] 2014

Virtex6,
Stratix V

76%
All 8 Yes No High High Low

Fahmy et al.
[76] 2015 Virtex7 7%

All 8 Yes No Low Low Med

Weerasinghe et al.
[41] 2015 Zynq7100 33%

Logic - No Yes High Med Med

Asghari et al.
[92] 2016 Virtex7 - - No Yes Med Med Low

Bourennane et al.
[13] 2016 Virtex6 11%

LUTs - Yes No Med Low Low

Weerasinghe et al.
[87] 2016 Virtex7 32%

BRAM 8 Yes No High Med Med

Asiatici et al.
[89] 2017 Virtex7 5% Area

Overhead 8 Yes Yes Med Low Med

Kondel et al.
[78] 2017 Virtex7 42%

Logic Virtualized Yes Yes High High Med

Najem et al.
[93] 2017

Artix7,
CycloneV

30% FFs, 55%
FFs

On
Board Yes No Low Med Med

Tarafdar et al.
[77] 2017 Virtex7 20%

BRAM 8 Yes No High Med High

Zhang et al.
[79] 2017 StratixV 13%

Logic - Yes Yes High High High

Bourennane et al.
[25] 2018 Virtex6 3%

LUTs - Yes Yes Med Med Med

Yazdanshenas et al.
[22] 2018 Arria10 2%

Logic 8 Yes Yes Med High Med

Tarafdar et al.
[94] 2019

Kintex
UltraScale

15–20%
LUTs - No Yes High Med High

Vaishnav et al.
[95] 2019

Zynq
UltraScale+

Ultra96

12% LUTs
25% LUTs 2 Yes Yes High High High

Partial reconfiguration (PR) is used to reconfigure a part of FPGA dynamically, many architectures
run more than one application using this function provided by the FPGA vendors. Multitenancy is
defined as the capacity to serve multiple users using the same FPGA. Scalability is the qualitative
measure of potential to scale up to multi FPGAs or multiple users with low overhead and congestion.
Adoptability is featured as an acceptance of wide range of workload and applications, also referred as
flexibility in previous works. Time-to-Market is a development time, directly the function of complexity
of deployment on FPGA from design specifications. All these features of the shells are summarized in
tabular form.

Industry also offers an API based solution, Intel’s Open Programmable Acceleration Engine
(OPAE) [96] is a collection of drivers, libraries, user and programmers’ tools to enumerate, access,
manipulate, and reconfigure programmable accelerators. Figure 5 provides detailed insight.

Future Internet 2020, 12, 64 10 of 21

Future Internet 2020, 12, 64 10 of 21

Yazdanshenas

et al.

[22] 2018

Arria10
2%

Logic
8 Yes Yes Med High Med

Tarafdar et al.

[94] 2019

Kintex

UltraScale

15–20%

LUTs
- No Yes High Med High

Vaishnav et al.

[95] 2019

Zynq

UltraScale+

Ultra96

12% LUTs

25% LUTs
2 Yes Yes High High High

Partial reconfiguration (PR) is used to reconfigure a part of FPGA dynamically, many

architectures run more than one application using this function provided by the FPGA vendors.

Multitenancy is defined as the capacity to serve multiple users using the same FPGA. Scalability is

the qualitative measure of potential to scale up to multi FPGAs or multiple users with low overhead

and congestion. Adoptability is featured as an acceptance of wide range of workload and

applications, also referred as flexibility in previous works. Time-to-Market is a development time,

directly the function of complexity of deployment on FPGA from design specifications. All these

features of the shells are summarized in tabular form.

Industry also offers an API based solution, Intel’s Open Programmable Acceleration Engine

(OPAE) [96] is a collection of drivers, libraries, user and programmers’ tools to enumerate, access,

manipulate, and reconfigure programmable accelerators. Figure 5 provides detailed insight.

Figure 5. Open Programmable Acceleration Engine.

The designer must recognize that using shells can cause performance overheads due to layout

limitations that are enforced by the partially reconfigurable slots. Furthermore, limiting the logic

placement to a specific region on the chip can lead to longer wires that can result in slower modules

[97]. Finding the optimal number of partial reconfigurable regions is a compelling open problem to

explore, given the complexity of the shell and impact on the overall performance.

4.2.3. Scheduling

Scheduling is the key to multi-tenancy, but the conventional techniques (preemptive, non-

preemptive, and cooperative) cannot be used for FPGA accelerators unchanged, as the state of the

system that needs to be saved and restored is not trivial. The state data may be distributed across all

different resources on FPGA fabric and one single operation to save or restore the state can add micro

to milli seconds to the latency [98]. However, the requirement of mandatory dedicated hardware

module can be avoided, as in [99], where such jobs are either blocked or sent back to CPU to perform.

The concept of scan-chain to provide the state data through an external interface, in order to

make preemptive scheduling cost-effective and fast, has been implemented in [100] while using High-

Level Synthesis (HLS) extension but for only a subset of registers. Non-preemptive scheduling has a

Figure 5. Open Programmable Acceleration Engine.

The designer must recognize that using shells can cause performance overheads due to layout
limitations that are enforced by the partially reconfigurable slots. Furthermore, limiting the logic
placement to a specific region on the chip can lead to longer wires that can result in slower modules [97].
Finding the optimal number of partial reconfigurable regions is a compelling open problem to explore,
given the complexity of the shell and impact on the overall performance.

4.2.3. Scheduling

Scheduling is the key to multi-tenancy, but the conventional techniques (preemptive,
non-preemptive, and cooperative) cannot be used for FPGA accelerators unchanged, as the state of
the system that needs to be saved and restored is not trivial. The state data may be distributed across
all different resources on FPGA fabric and one single operation to save or restore the state can add
micro to milli seconds to the latency [98]. However, the requirement of mandatory dedicated hardware
module can be avoided, as in [99], where such jobs are either blocked or sent back to CPU to perform.

The concept of scan-chain to provide the state data through an external interface, in order to make
preemptive scheduling cost-effective and fast, has been implemented in [100] while using High-Level
Synthesis (HLS) extension but for only a subset of registers. Non-preemptive scheduling has a low-cost
implementation and a simpler design. Cooperative, on the other hand, only offer context switching at
certain check points on the run time with the least overhead [82].

With the mature HLS methodology and availability of MPSoC platforms, hardware threads have
been proposed as ReconOS [101] and Hthreads [102] with a pre-condition of tightly coupled CPU-FPGA
to bring the scheduling closer to standard hardware description languages (HDLs).

Largely, scheduling techniques fall in non-preemptive category, which is fundamentally a time
domain optimization. However, a dynamic approach has recently been introduced in [89], which
takes advantage of the empty slots and keeps the utilization balanced on the run time. This dynamic
scheduling technique enables the multi-tenancy like none other, as it gives the power of increasing or
decreasing the resources usage, as per the workload requirement.

Some scheduling approaches are good for certain scenarios, like the one in [103,104], serve the
multiple users at the same time without going through tedious partial reconfiguration, given that the
accelerator needs of multiple users are the same. Another work, VineTalk [105], enables the FPGA
sharing to a server or virtual machine in a datacenter, where the user has the liberty to choose through
an API [106] among the GPU or FPGA accelerator, as per the need of the algorithm. In the heterogenous
computing environment, OpenCL [107] is popular in practice and recommendation like SparkCL [108]
solidified it further by bridging OpenCL and Java. OpenCPI [109] is an open source alternate of OpenCL.
Important methodologies to mention are Intel HLS Compiler [110], Vivado High-Level Synthesis [111],
and OpenSPL [112], as the programmability wall of FPGA remains a significant problem to this day.

Future Internet 2020, 12, 64 11 of 21

With these platform and practices combined, the idea of future datacenters can be realized, as pictured
in introduction. However, the process automation for the selection of appropriate accelerator in
heterogenous computing environment is yet to be explored by the community.

4.3. Multi-Node Level Virtualization

The primary job is to distribute an acceleration job among multiple FPGAs, while abstracting the
complex details from the user. The architecture of virtualization largely depends on how the multiple
FPGAs are connected, there ways are depicted in Figure 6. This is not a standard, but the works so far
have exhibited these formations. The direct model where FPGAs directly communicate with other
FPGAs, where link represent the physical connection or virtualized I/O interface. The slave model
where FPGAs are connected to the CPUs through PCIe or other links and CPUs are connected to
the network, so if FPGA wants to send data to another FPGA, it goes through CPUs and network.
The standalone model where FPGAs and CPUs are accessible though the network as standalone node.
The designer can also combine them to form a hybrid model to meet the certain objectives.

Future Internet 2020, 12, 64 11 of 21

low-cost implementation and a simpler design. Cooperative, on the other hand, only offer context

switching at certain check points on the run time with the least overhead [82].

With the mature HLS methodology and availability of MPSoC platforms, hardware threads have

been proposed as ReconOS [101] and Hthreads [102] with a pre-condition of tightly coupled CPU-

FPGA to bring the scheduling closer to standard hardware description languages (HDLs).

Largely, scheduling techniques fall in non-preemptive category, which is fundamentally a time

domain optimization. However, a dynamic approach has recently been introduced in [89], which

takes advantage of the empty slots and keeps the utilization balanced on the run time. This dynamic

scheduling technique enables the multi-tenancy like none other, as it gives the power of increasing

or decreasing the resources usage, as per the workload requirement.

Some scheduling approaches are good for certain scenarios, like the one in [103,104], serve the

multiple users at the same time without going through tedious partial reconfiguration, given that the

accelerator needs of multiple users are the same. Another work, VineTalk [105], enables the FPGA

sharing to a server or virtual machine in a datacenter, where the user has the liberty to choose through

an API [106] among the GPU or FPGA accelerator, as per the need of the algorithm. In the

heterogenous computing environment, OpenCL [107] is popular in practice and recommendation

like SparkCL [108] solidified it further by bridging OpenCL and Java. OpenCPI [109] is an open

source alternate of OpenCL. Important methodologies to mention are Intel HLS Compiler [110],

Vivado High-Level Synthesis [111], and OpenSPL [112], as the programmability wall of FPGA

remains a significant problem to this day. With these platform and practices combined, the idea of

future datacenters can be realized, as pictured in introduction. However, the process automation for

the selection of appropriate accelerator in heterogenous computing environment is yet to be explored

by the community.

4.3. Multi-Node Level Virtualization

The primary job is to distribute an acceleration job among multiple FPGAs, while abstracting

the complex details from the user. The architecture of virtualization largely depends on how the

multiple FPGAs are connected, there ways are depicted in Figure 6. This is not a standard, but the

works so far have exhibited these formations. The direct model where FPGAs directly communicate

with other FPGAs, where link represent the physical connection or virtualized I/O interface. The slave

model where FPGAs are connected to the CPUs through PCIe or other links and CPUs are connected

to the network, so if FPGA wants to send data to another FPGA, it goes through CPUs and network.

The standalone model where FPGAs and CPUs are accessible though the network as standalone

node. The designer can also combine them to form a hybrid model to meet the certain objectives.

Figure 6. Multi-FPGA Architectures: a) Direct Model represents FPGA to FPGA communication; b)

Slave Model represents FPGAs as special peripherals connected to Central Processing Units (CPUs)

through PCIe; c) Standalone Model represents accessible FPGAs, CPUs, or Graphical Processing Units

(GPUs) through connected network.

Before discussing the sub classes, the salient features of some representative works of multiple

FPGAs are to be discussed. Byma et al. [75] focused on the minimum virtualization overhead of

medium scale datacenter providing commercial cloud services. They achieved significant

performance when compared to regular virtual machines along with reduced iteration time for

design. Kondel et al. [78] focused on maximizing the utilization of high-end FPGAs through

Figure 6. Multi-FPGA Architectures: (a) Direct Model represents FPGA to FPGA communication; (b)
Slave Model represents FPGAs as special peripherals connected to Central Processing Units (CPUs)
through PCIe; (c) Standalone Model represents accessible FPGAs, CPUs, or Graphical Processing Units
(GPUs) through connected network.

Before discussing the sub classes, the salient features of some representative works of multiple
FPGAs are to be discussed. Byma et al. [75] focused on the minimum virtualization overhead of medium
scale datacenter providing commercial cloud services. They achieved significant performance when
compared to regular virtual machines along with reduced iteration time for design. Kondel et al. [78]
focused on maximizing the utilization of high-end FPGAs through paravirtualization and provided
homogeneous virtualized FPGA regions for the clients. This flexible multi tenancy approach enables the
individual resources to adopt the user requirements. Zhang et al. [79] developed an operating system
to share single FPGA chip among different users at run-time with an improved resource manager.
However, these mentioned works have not discussed the FPGA to FPGA or CPU connectivity in
detail and the interfaces are not clearly described, except an indication of PCIe. Weerasinghe et al. [41]
presented a different approach, FPGA as a standalone connected to datacenter network. The decoupled
approach can utilize FPGA as an equal processing resource, especially in hyperscale datacenters.
They chalked out a detailed system architecture with an outlook analysis on resource estimation and
scaling perspectives.

A relatively recent trend is the emergence of tightly coupled CPU-FPGA platforms.
Examples include Heterogeneous Architecture Research Platform (HARP) by the Intel and power chip
combined with Coherent Accelerator Processor Interface (CAPI) by IBM. Academics responded to
the call for proposals by Intel and several works have been published in last four years, some recent
examples are [113,114].

4.3.1. Custom Clusters

Custom clusters are based on the concept of systolic array model in parallel computing
architecture, where every node acts as a data processing unit and processed data move from

Future Internet 2020, 12, 64 12 of 21

one node to another through first-in first-out (FIFO) buffer or network semantics. Some of these
architectures [115–118] use Peer to Peer (P2P) connection MaxRing, fast series transceivers with FIFO
buffers, and Peripheral Component Interconnect Express (PCIe) links, for transmitting data across
multiple nodes. Tailored designs allow the direct communication among the nodes through explicit
network connections. A cluster of 512 FPGAs [119] exploits the systolic array model to perform
computations on multiple FPGAs.

4.3.2. Frameworks

Frameworks exploit the conventional server-client architecture, where only the computational
part is assigned to one or more FPGAs, but the CPU server manages the rest, including configuration,
application related data, and scheduling. The central piece in this architecture is the data management
model, and models for CPU are equally extendible to FPGAs. For example, the idea of the MapReduce
framework has been extended on FPGAs where mapping and reduction operations are performed by
FPGA accelerators [103,118,119] in similar way as CPU client-server architecture. These frameworks
have an added advantage of bridging the gap between the heterogeneity of datacenters, [120] is one such
cluster comprised of FPGAs and GPUs while using MapReduce. Furthermore, Chen and colleagues
in [104] extended java virtual machine (JVM) framework using Apache Spark to accommodate the
FPGAs, this however comes with a communication overhead and requires precision.

Tarafdar [77] and his colleagues utilized OpenCL via Xilinx SDAccel framework using an abstract
layer to assign the data to multiple FPGAs and maintaining a transparent directory to virtualize the
FPGAs at the lower abstraction level. The approach of the FPGA groups [121] suggests that multiple
FPGAs can be shared by one group but configured with a matching accelerator. However, this comes
with a limitation of occupying a complete FPGA that results in under-utilization but it can be addressed
with an automation of the scaling algorithm. A similar concept has been proposed in [122] while using
Hadoop YARN with a value-added advantage of ease of programming.

In the heterogeneous computing environment, the performance is also a function of execution
strategy. For the exploration of alternative execution strategies on disaggregated environments, the
evaluation platform presented in [123] is useful.

4.3.3. Cloud Services

Cloud services architecture guarantees QoS and promises computational correctness while
abstracting the underlying architecture. Therefore, as the user has no concern about the choice of
computational node, the job can be computed on an employed FPGA. Amazon offering FPGA as a
resource in [40] does not fall into this category but the landmark work of Microsoft [4] on search ranking
that achieved a substantial speed-up, with relatively higher power consumption. This is also a good
example of hybrid architecture as Catapult can allow for the acceleration jobs to both, host CPU core,
and standalone FPGA. Baidu [124] achieved the same performance for deep neural networks. The use
of FPGAs as co-processors in compute-intensive problems has been implemented [125], exploiting the
multiple data streams.

The architectures with network support widen the choice of connectivity, which allows the CPU
provisioning either as a soft-core or embedded on-chip. OpenStack is the most common method
for directly allowing the user to program the FPGA [75,77,87] through physical or virtual address.
It provides the flexibility to the expert user for exploiting either socket or remote routine approach
to establish connectivity to an FPGA. Bashir et al. addressed the issue of poor utility and high
computation complexity on high-dimensional data in [126] and proposed many network architectures
for datacenters in [127,130,131].

4.4. Execution Model based Distribution

The execution model is used as a decision parameter while doing system partitioning, process to
place certain modules in shell. Inspired from the Flynn Taxonomy in [132], the execution models can

Future Internet 2020, 12, 64 13 of 21

be categorized as four, as described in Table 6. All of the works in the last decade have been distributed
in any of the four boxes, as per relevance, for quick navigation.

Table 6. Distribution of Works based on Execution Model.

Single Application Multiple Applications

Single FPGA [4,76,77,86,87,106,107,109,115,117,118,125] [23,25,75,78,79,84–86,89,107]

Multiple FPGAs [4,77,87,106,115,117,125] [41,75,78,79]

5. Open Problems and Discussion

There is plenty to do in this area, but we would like to mention a few open problems. The foremost
goal is to enable multi-tenant multi-FPGAs for medium to large-scale datacenters, only then we can
unleash the real potential of FPGAs as a heterogeneous computing resource. This can be achieved
either by developing FPGA operating system or improving existing virtualization methods. An intense
investigation is required on how to compute over multiple FPGAs in a scalable manner. A design is
required that can exploit multiple FPGAs via streaming between Catapult style or batching MapReduce
style, other than OpenStack.

A serious effort is required to make the shell and development stack modular. Currently, everything
must compile against a shell and any change in shell requires recompiling accelerators. Likewise, a
change in the Linux kernel means the recompilation of all user software, so one can imagine how bad
is the FPGA ecosystem yet today. However, FPGAs provide a lot of customization, without which it
would be meaningless to use FPGAs in the first place. Overlays solve this issue to an extent for a small
class of application, but the solution is not scalable for general computation with FPGAs. Therefore, we
need a set of APIs and standards in software stack to manage this heterogeneity in a sensible manner.
Dynamic resource allocation somehow addresses this issue, but largely it remains an ignored area by
the community.

With multi-tenant support, efficient management and scheduling is required for the resources, an
advanced resource manager that can fit the same workload on fewer FPGA resources should be the
key point of future development.

Security is another aspect that needs intense attention of the community with a lot of potential for
development. The complex case of FPGAs in datacenter is vulnerable to all sorts of attacks, as the
reported attacks include malicious bitstream and side channel that severely damage the availability.
It also assists in segregation of many accelerators on same FPGA or network.

6. Conclusions

The integration of FPGAs in datacenters might have different motivations from acceleration to
energy efficiency, but the ultimate objective of better performance remained unshaken. FPGAs are
being utilized in a variety of ways today, tightly coupled with heterogenous computing resources and a
standalone network of homogenous resources. Open source software stacks, propriety tool chain, and
programming languages with advanced methodologies are hitting hard on the programmability wall of the
FPGA. Therefore, it was important to visualize this area as high-performance reconfigurable computing.

In this paper, we rendered a survey on high-performance reconfigurable computing. We pointed
out the use of non-standard nomenclature in published research as an obstacle to the growth of the
body of knowledge. We further identified, the contributors of different background, approaching for
a wide range of applications, to be the reason of this phenomenon. We indicated some examples of
using standard language and nomenclature. We revisited the network-on-chip evaluation platforms to
highlight its importance as compared to the bus-based architectures. The limitations of virtualization
shells like frequency drop, high wire demand, increased design latency, and routing congestion
leading to routing failure, can be addressed using a suitable network-on-chip. We highlighted the
need of network-on-chip evaluation platforms to quickly analyze the performance to reach a required

Future Internet 2020, 12, 64 14 of 21

communication architecture. We updated the scientific community on classical and recent virtualization
techniques, from the last decade. We stretched our review from acceleration of standalone FPGA to
FPGAs that are connected as a computational resource in heterogeneous environment. The purpose
of this research was to create a synergy through combining three domains to assist the designers
to choose right communication architecture for the right virtualization technique and to emphasize
the importance of using the standard language, so that multi-tenant FPGAs in the datacenters can
be evolved.

We have chalked out open problems in this area. Our future research will be focused on finding
optimal communication architecture, for multi FPGAs. Other than the interconnection between different
processing elements within one FPGA, the communication among multiple FPGAs poses a bigger
challenge in our future work, and an opportunity for the community as well.

Author Contributions: Conceptualization, Q.I. and E.-B.B.; methodology, A.K.B.; investigation, Q.I.; data curation,
H.A.; writing—original draft preparation, Q.I.; writing—review and editing, A.K.B. and H.A.; supervision, E.-B.B.;
funding acquisition, Q.I. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank Higher Education Commission, Government of Pakistan
for PhD grant of the corresponding author of this paper. The authors would also like to thank Usman Ahmad,
Dalhousie University of Canada for his advice on research writing in general.

Conflicts of Interest: The authors declare no conflict of interest regarding the publication of this paper.

References

1. Escobar, F.A.; Chang, X.; Valderrama, C. Suitability analysis of FPGAs for heterogeneous platforms in HPC.
IEEE Trans. Parallel Distrib. Syst. 2016, 27, 600–612. [CrossRef]

2. De Bernardinisa, L.P.; Pinelloa, C.; Sgroia, A.L. Platform-based design for embedded systems. In Embedded
Systems Handbook, 1st ed.; CRC Press: San Francisco, CA, USA, 2005.

3. Inta, R.; Bowman, D.J.; Scott, S.M. The chimera: An off-theshelf CPU/GPGPU/FPGA hybrid computing
platform. Int. J. Reconfigurable Comput. 2012, 2012, 241439. [CrossRef] [PubMed]

4. Putnam, A.; Caulfield, A.M.; Chung, E.S.; Chiou, D.; Constantinides, K.; Demme, J.; Esmaeilzadeh, H.;
Fowers, J.; Gopal, G.P.; Gray, J.; et al. A reconfigurable fabric for accelerating large-scale datacenter services.
In Proceedings of the 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA),
Minneapolis, MN, USA, 14–18 June 2014.

5. Plessl, C.; Platzner, M. Virtualization of hardware-introduction and survey. In ERSA; CSREA Press:
Las Vegas, NV, USA, 2004.

6. Vaishnav, A.; Pham, K.D.; Koch, D. A survey on FPGA virtualization. In Proceedings of the 2018
28th International Conference on Field Programmable Logic and Applications (FPL), Dublin, Ireland,
27–31 August 2018.

7. Göhringer, D.; Hübner, M.; Hugot-Derville, L.; Becker, J. Message passing interface support for the runtime
adaptive multi-processor system-on-Chip RAMPSoC. In Proceedings of the 2010 International Conference
on Embedded Computer Systems: Architectures, Modeling and Simulation, Samos, Greece, 19–22 July 2010;
pp. 357–364.

8. Shen, X.; Wang, X.; Zhu, Y.; Huang, T.; Kong, X. Implementing dynamic web page interactions with a
Java processor core on FPGA. In Proceedings of the Engineering and Industries (ICEI), 2nd International
Conference on IEEE, Jeju, Korea, 29 November–1 December 2011.

9. Farooq, U.; Parveza, H.; Mehrez, H.; Marrakchi, Z. A new heterogeneous tree-based application specific
FPGA and its comparison with mesh-based application specific FPGA. Microprocess. Microsyst. 2012, 36,
588–605. [CrossRef]

10. Chen, Y.; Wang, Y.; Ha, Y.; Felipe, M.R.; Ren, S.; Aung, K.M.M. sAES: A high throughput and low latency
secure cloud storage with pipelined DMA based PCIe interface. In Proceedings of the 2013 International
Conference on Field-Programmable Technology (FPT), Kyoto, Japan, 9–11 December 2013; pp. 374–377.

http://dx.doi.org/10.1109/TPDS.2015.2407896
http://dx.doi.org/10.1155/2012/241439
http://www.ncbi.nlm.nih.gov/pubmed/23037367
http://dx.doi.org/10.1016/j.micpro.2012.06.012

Future Internet 2020, 12, 64 15 of 21

11. Xu, L.; Shi, W.; Suh, T. PFC: Privacy preserving FPGA cloud—A case study of mapreduce. In Proceedings
of the IEEE International Conference on Cloud Computing, Anchorage, AK, USA, 27 June–2 July 2014;
pp. 280–287.

12. Yang, H.; Yan, X. Memory coherency based CPU-Cache-FPGA acceleration architecture for cloud computing.
In Proceedings of the Information Science and Control Engineering (ICISCE), 2nd International Conference,
Shanghai, China, 24–26 April 2015; pp. 304–307.

13. Kidane, H.L.; Bourennane, E.B.; Ochoa-Ruiz, G. Noc based virtualized accelerators for cloud computing.
In Proceedings of the IEEE 2016, 10th International Symposium on Embedded Multicore/Many-core
Systems-on-Chip (MCSOC), Lyon, France, 21–23 September 2016; pp. 133–137.

14. Will, M.A.; Ko, R.K. Secure FPGA as a service—Towards secure data processing by physicalizing the cloud.
In Proceedings of the IEEE Trustcom/BigDataSE/ICESS 2017, Sydney, NSW, Australia, 1–4 August 2017;
pp. 449–455.

15. Yazar, A.; Erol, A.; Schmidt, E.G. ACCLOUD (Accelerated CLOUD): A novel FPGA-Accelerated cloud
architecture. In Proceedings of the 26th Signal Processing and Communications Applications (SIU),
Izmir, Turkey, 2–5 May 2018; IEEE: Piscataway, NJ, USA, 2018.

16. Mbongue, J.; Hategekimana, F.; Tchuinkou Kwadjo, D.; Andrews, D.; Bobda, C. FPGAVirt: A Novel
Virtualization Framework for FPGAs in the Cloud. In Proceedings of the IEEE 11th International Conference
on Cloud Computing, San Francisco, CA, USA, 2–7 July 2018.

17. Al-Aghbari, A.A.; Elrabaa, M.E.S. Cloud-based FPGA custom computing machines for streaming applications.
IEEE Access 2019, 7, 38009–38019. [CrossRef]

18. Skhiri, R.; Fresse, V.; Jamont, J.P.; Suffran, B.; Malek, J. From FPGA to support cloud to cloud of FPGA:
State of the art. Int. J. Reconfigurable Comput. 2019, 2019, 8085461. [CrossRef]

19. Bittner, R.; Ruf, E.; Forin, A. Direct GPU/FPGA communication via PCI express. Cluster Comput. 2013, 17,
339–348. [CrossRef]

20. Mueller, R.; Teubner, J.; Alonso, G. Streams on wires: A query compiler for FPGAS. Proc. VLDB Endow. 2009,
2, 229–240. [CrossRef]

21. Dally, W.J.; Towles, B. Route packets, not wires: On-chip interconnection networks. In Proceedings of the
Design Automation Conference, Las Vegas, NV, USA, 18–22 June 2001; pp. 684–689.

22. Yazdanshenas, S.; Betz, V. Interconnect solutions for virtualized field-programmable gate arrays. IEEE Access
2018, 6, 10497–10507. [CrossRef]

23. de Lima, O.A.; Costa, W.N.; Fresse, V.; Rousseau, F. A survey of NoC evaluation platforms on FPGAs.
In Proceedings of the International Conference on Field-Programmable Technology (FPT), Xi’an, China,
7–9 December 2016.

24. Kidane, H.L.; Bourennane, E.B.; Ochoa-Ruiz, G. Run-time scalable noc for fpga based virtualized
ips. In Proceedings of the IEEE 11th International Symposium on Embedded Multicore/Many-core
Systems-on-Chip (MCSoC), Seoul, Korea, 18–20 September 2017; pp. 91–97.

25. Kidane, H.L.; Bourennane, E.B. MARTE and IP-XACT based approach for run-time scalable NoC.
In Proceedings of the IEEE 12th International Symposium on Embedded Multicore/Many-Core
Systems-on-Chip (MCSoC), Hanoi, Vietnam, 12–14 September 2018; pp. 162–167.

26. Liu, Y.; Liu, P.; Jiang, Y.; Yang, M.; Wu, K.; Wang, W.; Yao, Q. Building a multi-FPGA-based emulation
framework to support networks-on-chip design and verification. Int. J. Electron. 2010, 97, 1241–1262.
[CrossRef]

27. Krishnaiah, G.; Silpa, B.V.; Panda, P.R.; Kumar, A. Fastfwd: An efficient hardware acceleration technique
for trace-driven network-on-chip simulation. In Proceedings of the eighth IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis, Scottsdale, AZ, USA, 24–29 October 2010;
ACM: New York, NY, USA, 2010; pp. 247–256.

28. Wang, C.; Hu, W.H.; Lee, S.E.; Bagherzadeh, N. Area and power-efficient innovative network on-chip
architecture. In Proceedings of the 2010 18th Euromicro Conference on Parallel, Distributed and
Network-Based Processing (PDP), Pisa, Italy, 17–19 February 2010; IEEE: Piscataway, NJ, USA, 2010;
pp. 533–539.

http://dx.doi.org/10.1109/ACCESS.2019.2906910
http://dx.doi.org/10.1155/2019/8085461
http://dx.doi.org/10.1007/s10586-013-0280-9
http://dx.doi.org/10.14778/1687627.1687654
http://dx.doi.org/10.1109/ACCESS.2018.2806618
http://dx.doi.org/10.1080/00207217.2010.512017

Future Internet 2020, 12, 64 16 of 21

29. Lotlikar, S.; Pai, V.; Gratz, P. AcENoCs: A configurable HW/SW platform for FPGA accelerated NoC
emulation. In Proceedings of the 24th Internatioal Conference on VLSI Design (VLSI Design), Chennai, India,
2–7 January 2011; pp. 147–152.

30. Papamichael, M.K. Fast scalable FPGA-based network-on-chip simulation models. In Proceedings of the
2011 9th IEEE/ACM Internatioal Conference on Formal Methods and Models for Codesign (MEMOCODE),
Cambridge, UK, 11–13 July 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 77–82.

31. Papamichael, M.K.; Hoe, J.C.; Mutlu, O. Fist: A fast, lightweight, FPGA-friendly packet latency estimator
for noc modeling in full-system simulations. In Proceedings of the 2011 Fifth IEEE/ACM International
Symposium on Networks on Chip (NoCS), Pittsburgh, PA, USA, 1–4 May 2011; IEEE: Piscataway, NJ, USA,
2011; pp. 137–144.

32. Ku, W.-C.; Chen, T.-F. Accelerating manycore simulation by efficient noc interconnection partition on FPGA
simulation platform. In Proceedings of the 2011 International Symposium on VLSI Design, Automation and
Test (VLSI-DAT), Hsinchu, Taiwan, 25–28 April 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–4.

33. Pellauer, M.; Adler, M.; Kinsy, M.; Parashar, A.; Emer, J. Hasim: FPGA-based high-detail multicore simulation
using time-division multiplexing. In Proceedings of the 2011 IEEE 17th International Symposium on
High Performance Computer Architecture (HPCA), San Antonio, TX, USA, 12–16 February 2011; IEEE:
Piscataway, NJ, USA, 2011; pp. 406–417.

34. Tan, J.; Fresse, V.; Rousseau, F. Generation of emulation platforms for NoC exploration on FPGA.
In Proceedings of the 22nd IEEE International Symposium on Rapid System Prototyping (RSP),
Karlsruhe, Germany, 24–27 May 2011; pp. 186–192.

35. Heck, G.; Guazzelli, R.; Moraes, F.; Calazans, N.; Soares, R. HardNoC: A platform to validate networks on
chip through FPGA prototyping. In Proceedings of the VIII Southern Conference on Programmable Logic
(SPL), Bento Goncalves, Spain, 20–23 March 2012; pp. 1–6.

36. Fresse, V.; Ge, Z.; Tan, J.; Rousseau, F. Case study: Deployment of the 2d noc on 3d for the generation of
large emulation platforms. In Proceedings of the 2012 23rd IEEE International Symposium on Rapid System
Prototyping (RSP), Tampere, Finland, 11–12 October 2012; pp. 23–29.

37. van Chu, T.; Sato, S.; Kise, K. Knocemu: High speed fpga emulator for kilo-node scale nocs.
Embedded Multicore/Manycore SoCs (MCSoc). In Proceedings of the 2014 IEEE 8th International
Symposium on Embedded Multicore/Manycore SoCs, Aizu-Wakamatsu, Japan, 23–25 September 2014;
IEEE: Piscataway, NJ, USA, 2014; pp. 215–222.

38. de Lima, O.A.; Fresse, V.; Rousseau, F. Evaluation of snmp-like protocol to manage a NOC emulation
platform. In Proceedings of the 2014 International Conference on Field-Programmable Technology (FPT),
Shanghai, China, 10–12 December2014; pp. 199–206.

39. Kang, J.M.; Bannazadeh, H.; Leon-Garcia, A. Savi testbed: Control and management of converged virtual ict
resources. In Proceedings of the IFIP/IEEE International Symposium on Integrated Network Management,
Ghent, Belgium, 27–31 May 2013.

40. Amazon Web Services EC2. FPGA Hardware and Software Development Kit. Available online: https:
//github.com/aws/aws-fpga (accessed on 2 December 2019).

41. Weerasinghe, J.; Abel, F.; Hagleitner, C.; Herkersdorf, A. Enabling FPGAs in hyperscale data centers.
In Proceedings of the 15th IEEE UIC-ATC-ScalCom, Beijing, China, 10–14 August 2015.

42. Alveo Nimbix Cloud. Available online: https://www.nimbix.net/alveotrial (accessed on 23 March 2020).
43. Voss, N.; Quintana, P.; Mencer, O.; Luk, W.; Gaydadjiev, G. Memory mapping for multi-die FPGAs.

In Proceedings of the IEEE 27th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), San Diego, CA, USA, 28 April–1 May 2019.

44. Voss, N.; Girdlestone, S.; Becker, T.; Mencer, O.; Luk, W.; Gaydadjiev, G. Low area overhead custom
buffering for FFT. In Proceedings of the International Conference on ReConFigurable Computing and FPGAs
(ReConFig), Cancun, Mexico, 9–11 December 2019.

45. Li, X.; Maskell, D.L. Time-multiplexed FPGA overlay architectures: A survey. ACM Trans. Des. Autom.
Electron. Syst. 2019, 24, 54. [CrossRef]

46. Jain, A.K. Architecture Centric Coarse-Grained FPGA Overlays. Ph.D. Thesis, Nanyang Technological
University, Singapore, 2017.

https://github.com/aws/aws-fpga
https://github.com/aws/aws-fpga
https://www.nimbix.net/alveotrial
http://dx.doi.org/10.1145/3339861

Future Internet 2020, 12, 64 17 of 21

47. Cheah, H.Y.; Fahmy, S.A.; Maskell, D.L. iDEA: A DSP block-based FPGA Soft Processor. In Proceedings of the
2012 International Conference on Field-Programmable Technology (FPT), Seoul, Korea, 10–12 December 2012.

48. Xilinx MicroBlaze Soft Processor Core. Available online: https://www.xilinx.com/products/design-tools/mic
roblaze.html (accessed on 3 December 2019).

49. Altera Nios II Processor. Available online: https://www.altera.com/products/processors/overview.html
(accessed on 4 December 2019).

50. Severance, A.; Lemieux, G.G.F. Embedded supercomputing in FPGAs with the VectorBlox MXP matrix
processor. In Proceedings of the International Conference on Hardware/Software Codesign and System
Synthesis, Montreal, QC, Canada, 29 September–4 October 2013.

51. Severance, A.; Lemieux, G. VENICE: A compact vector processor for FPGA Applications. In Proceedings of the
2011 IEEE Hot Chips 23 Symposium (HCS), Stanford, CA, USA, 17–19 August 2011; IEEE: Piscataway, NJ, USA,
2011; pp. 1–5.

52. Chou, C.H.; Severance, A.; Brant, A.D.; Liu, Z.; Sant, S.; Lemieux, G.G. VEGAS: Soft vector processor
with scratchpad memory. In Proceedings of the 19th ACM/SIGDA international symposium on Field
programmable gate arrays 2011, Monterey, CA, USA, 27 February–1 March 2011.

53. Yiannacouras, P.; Steffan, J.G.; Rose, J. VESPA: Portable, scalable, and flexible FPGA-based vector processors.
In Proceedings of the 2008 international conference on Compilers, architectures and synthesis for embedded
systems, Atlanta, GA, USA, 19–24 October 2008.

54. Yu, J.; Lemieux, G.; Eagleston, C. Vector Processing as a Soft-core CPU Accelerator. In Proceedings of the
16th International ACM/SIGDA Symposium on Field Programmable Gate Arrays, Monterey, CA, USA,
24–26 February 2008.

55. Cong, J.; Huang, H.; Ma, C.; Xiao, B.; Zhou, P. A fully pipelined and dynamically composable architecture of
CGRA. In Proceedings of the 2014 IEEE 22nd Annual International Symposium on Field-Programmable
Custom Computing Machines, Boston, MA, USA, 11–13 May 2014.

56. Shukla, S.; Bergmann, N.W.; Becker, J. QUKU: A FPGA based flexible coarse grain architecture design
paradigm using process networks. In Proceedings of the 2007 IEEE International Parallel and Distributed
Processing Symposium, Rome, Italy, 26–30 March 2007.

57. Landy, A.; Stitt, G. A low-overhead interconnect architecture for virtual reconfigurable fabrics. In Proceedings
of the 2012 International Conference on Compilers, Architectures and Synthesis for Embedded Systems,
Tampere, Finland, 7–12 October 2012.

58. Coole, J.; Stitt, G. Fast, flexible high-level synthesis from OpenCL using reconfiguration contexts. IEEE Micro
2014, 34, 42–53. [CrossRef]

59. Govindaraju, V.; Ho, C.H.; Nowatzki, T.; Chhugani, J.; Satish, N.; Sankaralingam, K.; Kim, C. DySER: Unifying
functionality and parallelism specialization for energy-efficient computing. IEEE Micro 2012, 32, 38–51.
[CrossRef]

60. So, H.K.-H.; Liu, C. FPGA Overlays. In FPGAs for Software Programmers; Springer: Cham, Germany, 2016.
61. Brant, A.D. Coarse and Fine Grain Programmable Overlay Architectures for FPGAs. MSc Thesis,

University of British Columbia, Vancouver, BC, Canada, 2012.
62. Rashid, R.; Steffan, J.G.; Betz, V. Comparing performance, productivity and scalability of the TILT overlay

processor to OpenCL HLS. In Proceedings of the 2014 International Conference on Field-Programmable
Technology (FPT), Shanghai, China, 10–12 December 2014.

63. Paul, K.; Dash, C.; Moghaddam, M.S. reMORPH: A runtime reconfigurable architecture. In Proceedings of
the 2012 15th Euromicro Conference on Digital System Design, Cesme, Izmir, Turkey, 5–8 September 2012.

64. Kapre, N.; Mehta, N.; Delorimier, M.; Rubin, R.; Barnor, H.; Wilson, M.J.; Wrighton, M.; DeHon, A.
Packet switched vs. time multiplexed FPGA overlay networks. In Proceedings of the 2006 14th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, Napa, CA, USA, 24–26 April 2006.

65. Papamichael, M.K.; Hoe, J.C. CONNECT: Re-examining conventional wisdom for designing nocs in the
context of FPGAs. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable
Gate Arrays 2012, Monterey, CA, USA, 22–24 February 2012.

66. Huan, Y.; DeHon, A. FPGA optimized packet-switched NoC using split and merge primitives. In Proceedings
of the 2012 International Conference on Field-Programmable Technology, Seoul, Korea, 10–12 December 2012.

https://www.xilinx.com/products/design-tools/microblaze.html
https://www.xilinx.com/products/design-tools/microblaze.html
https://www.altera.com/products/processors/overview.html
http://dx.doi.org/10.1109/MM.2013.108
http://dx.doi.org/10.1109/MM.2012.51

Future Internet 2020, 12, 64 18 of 21

67. Kapre, N.; Gray, J. Hoplite: Building austere overlay NoCs for FPGAs. In Proceedings of the 2015
25th International Conference on Field Programmable Logic and Applications (FPL), London, UK,
2–4 September 2015.

68. Brant, A.; Lemieux, G.G.F. ZUMA: An open FPGA overlay architecture. In Proceedings of the 2012 IEEE
20th international symposium on field-programmable custom computing machines, Toronto, ON, Canada,
29 April–1 May 2012.

69. Ferreira, R.; Vendramini, J.G.; Mucida, L.; Pereira, M.M.; Carro, L. An FPGA-based heterogeneous
coarse-grained dynamically reconfigurable architecture. In Proceedings of the 14th International Conference
on Compilers, Architectures and Synthesis for Embedded Systems, Taipei, Taiwan, 9–14 October 2011.

70. Kinsy, M.A.; Pellauer, M.; Devadas, S. Heracles: Fully synthesizable parameterized mips based multicore
system. In Proceedings of the 21st International Conference on Field Programmable Logic and Applications,
Chania, Greece, 5–7 September 2011.

71. Liu, C.; Yu, C.L.; So, H.K. A soft coarse-grained reconfigurable array based high-level synthesis methodology:
Promoting design productivity and exploring extreme FPGA frequency. In Proceedings of the IEEE 21st
Annual International Symposium on Field-Programmable Custom Computing Machines, Seattle, WA, USA,
28–30 April 2013.

72. Gray, J. GRVI-phalanx: A massively parallel RISC-V FPGA accelerator. In Proceedings of the IEEE 24th Annual
International Symposium on Field-Programmable Custom Computing Machines, Washington, DC, USA,
1–3 May 2016.

73. Li, X.; Jain, A.; Maskell, D.; Fahmy, S.A. An area-efficient FPGA overlay using DSP block based
time-multiplexed functional units. In Proceedings of the 2nd International Workshop on Overlay Architectures
for FPGAs, Monterey, CA, USA, 21–23 February 2016.

74. Kumar, H.B.C.; Ravi, P.; Modi, G.; Kapre, N. 120-core microAptiv MIPS overlay for the Terasic DE5-NET
FPGA board. In Proceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, Monterey, CA, USA, 22–24 February 2017.

75. Byma, S.; Steffan, J.G.; Bannazadeh, H.; Garcia, A.L.; Chow, P. FPGAs in the cloud: Booting virtualized
hardware accelerators with OpenStack. In Proceedings of the 2014 IEEE 22nd Annual International
Symposium on Field-Programmable Custom Computing Machines, Boston, MA, USA, 11–13 May 2014.

76. Fahmy, S.A.; Vipin, K.; Shreejith, S. Virtualized FPGA accelerators for efficient cloud computing.
In Proceedings of the 2015 IEEE 7th International Conference on Cloud Computing Technology and
Science (CloudCom), Vancouver, BC, Canada, 30 November–3 December 2015.

77. Tarafdar, N.; Lin, T.; Fukuda, E.; Bannazadeh, H.; Leon-Garcia, A.; Chow, P. Enabling flexible network
FPGA clusters in a heterogeneous cloud data center. In Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA ’17), Monterey, CA, USA, 22–24 February 2017;
ACM: New York, NY, USA, 2017.

78. Knodel, O.; Genssler, P.R.; Spallek, R.G. Virtualizing reconfigurable hardware to provide scalability in cloud
architectures. In Proceedings of the Tenth International Conference on Advances in Circuits, Electronics and
Micro-electronics (CENICS 2017), Rome, Italy, 10–14 September 2017; IARIA: Wilmington, DE, USA, 2017.

79. Zhang, J.; Xiong, Y.; Xu, N.; Shu, R.; Li, B.; Cheng, P.; Chen, G.; Moscibroda, T. The feniks FPGA operating
system for cloud computing. In Proceedings of the 8th Asia-Pacific Workshop on Systems, Mumbai, India,
2 September 2017.

80. Abbani, N.; Ali, A.; Doa’A, A.O.; Jomaa, M.; Sharafeddine, M.; Artail, H.; Akkary, H.; Saghir, M.A.; Awad, M.;
Hajj, H. A distributed reconfigurable active SSD platform for data intensive applications. In Proceedings
of the 2011 IEEE International Conference on High Performance Computing and Communications,
Banff, AB, Canada, 2–4 September 2011.

81. Wang, W. pvFPGA: Accessing an FPGA-based hardware accelerator in a paravirtualized environment.
In Proceedings of the 2013 International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ ISSS), Montreal, QC, Canada, 29 September–4 October 2013; IEEE: Piscataway, NJ, USA, 2013.

82. Xia, T.; Prévotet, J.C.; Nouvel, F. Hypervisor mechanisms to manage FPGA reconfigurable accelerators.
In Proceedings of the 2016 International Conference on Field-Programmable Technology (FPT), Xi’an, China,
7–9 December 2016.

Future Internet 2020, 12, 64 19 of 21

83. Jain, A.K.; Pham, K.D.; Cui, J.; Fahmy, S.A.; Maskell, D.L. Virtualized execution and management of hardware
tasks on a hybrid ARM-FPGA platform. J. Signal Process. Syst. 2014, 77, 61–76. [CrossRef]

84. Chen, F.; Shan, Y.; Zhang, Y.; Wang, Y.; Franke, H.; Chang, X.; Wang, K. Enabling FPGAs in the cloud.
In Proceedings of the 11th ACM Conference on Computing Frontiers, Cagliari, Italy, 20–22 May 2014.

85. Bobda, C.; Majer, A.; Ahmadinia, A.; Haller, T.; Linarth, A.; Teich, J. The erlangen slot machine:
Increasing flexibility in FPGA-based reconfigurable platforms. In Proceedings of the 2005 IEEE International
Conference on Field-Programmable Technology, Singapore, 11–14 December 2005.

86. Zhao, Q. Enabling FPGA-as-a-service in the cloud with hCODE platform. IEICE Trans. Inf. Syst. 2018, 101,
335–343. [CrossRef]

87. Weerasinghe, J.; Polig, R.; Abel, F.; Hagleitner, C. Network-attached FPGAs for data center applications.
In Proceedings of the 2016 International Conference on Field-Programmable Technology (FPT), Xi’an, China,
7–9 December 2016.

88. Tarafdar, N.; Eskandari, N.; Lin, T.; Chow, P. Designing for FPGAs in the Cloud. IEEE Des. Test 2017, 35,
23–29. [CrossRef]

89. Asiatici, M.; George, N.; Vipin, K.; Fahmy, S.A.; Ienne, P. Virtualized execution runtime for FPGA accelerators
in the cloud. IEEE Access 2017, 5, 1900–1910. [CrossRef]

90. Pahl, C. Containerization and the PaaS cloud. IEEE Cloud Comput. 2015, 2, 24–31. [CrossRef]
91. Kirchgessner, R.; Stitt, G.; George, A.; Lam, H. VirtualRC: A virtual FPGA platform for applications and

tools portability. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA’12), ACM, Monterey, CA, USA, 22–24 February 2012; pp. 205–208.

92. Asghari, M.; Rajabzadeh, A.; Dashtbani, M. HFIaaS: A proposed FPGA infrastructure as a service framework
using high-level synthesis. In Proceedings of the 6th International Conference on Computer and Knowledge
Engineering (ICCKE), Mashhad, Iran, 20–21 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 72–77.

93. Najem, M.; Bollengier, T.; le Lann, J.C.; Lagadec, L. Extended overlay architectures for heterogeneous FPGA
cluster management. J. Syst. Archit. 2017, 78, 1–14. [CrossRef]

94. Eskandari, N.; Tarafdar, N.; Ly-Ma, D.; Chow, P. A modular heterogeneous stack for deploying FPGAs
and CPUs in the data center. In Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, Seaside, CA, USA, 24–26 February 2019; ACM: New York, NY, USA, 2019.

95. Vaishnav, A.; Pham, K.D.; Manev, K.; Koch, D. The FOS (FPGA Operating System) Demo. In Proceedings of
the 29th International Conference on Field Programmable Logic and Application (FPL), Barcelona, Spain,
8–12 September 2019.

96. Intel OPAE. Available online: http://01.org/OPAE (accessed on 24 March 2020).
97. Yazdanshenas, S.; Betz, V. Quantifying and mitigating the costs of FPGA virtualization. In Proceedings of

the 27th International Conference on Field Programmable Logic and Applications (FPL), Ghent, Belgium,
4–8 September 2017.

98. Happe, M.; Traber, A.; Keller, A. Preemptive hardware multitasking in ReconOS. In Applied Reconfigurable
Computing; Springer: Cham, Switzerland, 2015.

99. Rupnow, K.; Fu, W.; Compton, K. Block, drop or roll(back): Alternative preemption methods for RH
multi-tasking. In Proceedings of the 17th IEEE Symposium on Field Programmable Custom Computing
Machines, Napa, CA, USA, 5–7 April 2009.

100. Bourge, A.; Muller, O.; Rousseau, F. Generating efficient context-switch capable circuits through autonomous
design flow. ACM TRETS 2016, 10, 1–23. [CrossRef]

101. Lubbers, E.; Platzner, M. ReconOS: An RTOS supporting hard-and software threads. In Proceedings of the
2007 International Conference on Field Programmable Logic and Applications, Amsterdam, Netherlands,
27–29 August 2007.

102. Peck, W.; Anderson, E.; Agron, J.; Stevens, J.; Baijot, F.; Andrews, D. Hthreads: A computational model for
reconfigurable devices. In Proceedings of the 2006 International Conference on Field Programmable Logic
and Applications, Madrid, Spain, 28–30 August 2006.

103. Shan, Y.; Wang, B.; Yan, J.; Wang, Y.; Xu, N.; Yang, H. FPMR: MapReduce framework on FPGA. In Proceedings
of the 18th annual ACM/SIGDA international symposium on Field programmable gate arrays 2010,
Monterey, CA, USA, 21–23 February 2010.

http://dx.doi.org/10.1007/s11265-014-0884-1
http://dx.doi.org/10.1587/transinf.2017RCP0004
http://dx.doi.org/10.1109/MDAT.2017.2748393
http://dx.doi.org/10.1109/ACCESS.2017.2661582
http://dx.doi.org/10.1109/MCC.2015.51
http://dx.doi.org/10.1016/j.sysarc.2017.06.001
http://01.org/OPAE
http://dx.doi.org/10.1145/2996199

Future Internet 2020, 12, 64 20 of 21

104. Chen, Y.T.; Cong, J.; Fang, Z.; Lei, J.; Wei, P. When spark meets FPGAs: A case study for next generation
DNA sequencing acceleration. In Proceedings of the 24th FCCM, Washington, DC, USA, 1–3 May 2016.

105. Mavridis, S.; Pavlidakis, M.; Stamoulias, I.; Kozanitis, C.; Chrysos, N.; Kachris, C.; Soudris, D.; Bilas, A.
VineTalk: Simplifying software access and sharing of FPGAs in datacenters. In Proceedings of the
27th International Conference on Field Programmable Logic and Applications (FPL), Ghent, Belgium,
4–8 September 2017.

106. Eguro, K. SIRC: An extensible reconfigurable computing communication API. In Proceedings of the 18th
IEEE Annual International Symposium on Field-Programmable Custom Computing Machines, FCCM,
Charlotte, NC, USA, 2–4 May 2010.

107. Intel FPGA. SDK for OpenCL. Programming Guide. UG-OCL002. 2016. Available online:
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/archi
ves/ug-aocl-programming-guide-16.1.pdf (accessed on 23 March 2020).

108. Segal, O.; Colangelo, P.; Nasiri, N.; Qian, Z.; Margala, M. SparkCL: A unified programming framework for
accelerators on heterogeneous clusters. arXiv 2015, arXiv:1505.01120.

109. Kulp, J.; Siegel, S.; Miller, J. Open Component Portability Infrastructure (OPENCPI); Technial Report;
Mercury Federal Systems Inc.: Arlington, VA, USA, 2013.

110. Intel HLS Compiler: Fast Design, Coding and Hardware. Available online: https://www.intel.com/content/
www/us/en/software/programmable/quartus-prime/hls-compiler.html (accessed on 24 March 2020).

111. Vivado High-Level Synthesis: Accelerates IP Creation by Enabling C, C++ and System C
Specifications. Available online: https://www.xilinx.com/products/design-tools/vivado/integration/esl-
design.html (accessed on 24 March 2020).

112. Open Spatial Programming Language (OpenSPL), Maxeler Technologies. Available online: https://www.ma
xeler.com/openspl-announced/ (accessed on 24 March 2020).

113. Pell, O.; Mencer, O.; Tsoi, K.H.; Luk, W. Maximum performance computing with dataflow engines.
In Computing in Science & Engineering; IEEE: Piscataway, NJ, USA, 2012; pp. 98–103.

114. Fleming, K.; Adler, M. The LEAP FPGA Operating System. In FPGAs for Software Programmers; Springer:
Cham, Switzerland, 2016.

115. Vesper, M.; Koch, D.; Vipin, K.; Fahmy, S.A. JetStream: An open-source high-performance PCI express
3 streaming library for FPGA-to-Host and FPGA-to-FPGA communication. In Proceedings of the 2016
26th international conference on field programmable logic and applications (FPL), Lausanne, Switzerland,
29 August–2 September 2016.

116. Jacobsen, M.; Richmond, D.; Hogains, M.; Kastner, R. RIFFA 2.1: A reusable integration framework for FPGA
accelerators. ACM TRETS 2015, 8, 1–23. [CrossRef]

117. Yoshimi, M.; Nishikawa, Y.; Miki, M.; Hiroyasu, T.; Amano, H.; Mencer, O. A performance evaluation of CUBE:
One Dimensional 512 FPGA cluster. In Proceedings of the International Symposium on Applied Reconfigurable
Computing, ARC 2010, Bangkok, Thailand, 17–19 March 2010; Springer: Heidelberg, Germany, 2010.

118. Wang, Z.; Zhang, S.; He, B.; Zhang, W. Melia: A MapReduce framework on OpenCL-Based FPGAs. IEEE Trans.
Parallel Distrib. Syst. 2016, 27, 3547–3560. [CrossRef]

119. Yeung, J.H.C. Map-reduce as a programming model for custom computing machines. In Proceedings
of the 2008 16th International Symposium on Field-Programmable Custom Computing Machines,
Palo Alto, CA, USA, 14–15 April 2008.

120. Tsoi, K.H.; Luk, W. Axel: A Heterogeneous Cluster with FPGAs and GPUs. In Proceedings of the 18th Annual
ACM/SIGDA International Symposium on Field Programmable Gate Arrays 2010, Monterey, CA, USA,
21–23 February 2010.

121. Iordache, A.; Pierre, G.; Sanders, P.; de FCoutinho, J.G.; Stillwell, M. High performance in the cloud
with FPGA groups. In Proceedings of the 9th International Conference on Utility and Cloud Computing,
Shanghai, China, 6–9 December 2016.

122. Huang, M. Programming and runtime support to blaze FPGA accelerator deployment at datacenter scale.
In Proceedings of the Seventh ACM Symposium on Cloud Computing, SoCC ’16, Santa Clara, CA, USA,
5–7 October 2016.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/archives/ug-aocl-programming-guide-16.1.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/archives/ug-aocl-programming-guide-16.1.pdf
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.maxeler.com/openspl-announced/
https://www.maxeler.com/openspl-announced/
http://dx.doi.org/10.1145/2815631
http://dx.doi.org/10.1109/TPDS.2016.2537805

Future Internet 2020, 12, 64 21 of 21

123. Theodoropoulos, D.; Alachiotis, N.; Pnevmatikatos, D. Multi-FPGA evaluation platform for disaggregated
computing. In Proceedings of the 2017 IEEE 25th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), Napa, CA, USA, 30 April–2 May 2017.

124. Ouyang, J.; Lin, S.; Qi, W.; Wang, Y.; Yu, B.; Jiang, S. SDA: Software-defined accelerator for large-scale DNN
systems. In Proceedings of the IEEE Hot Chips 26 Symposium (HCS), Cupertino, CA, USA, 10–12 August 2014.

125. El-Araby, E.; Gonzalez, I.; El-Ghazawi, T. Virtualizing and sharing reconfigurable resources in
high-performance reconfigurable computing systems. In Proceedings of the 2008 Second International
Workshop on High-Performance Reconfigurable Computing Technology and Applications, Austin, TX, USA,
17 November 2008.

126. Zheng, Z.; Wang, T.; Weng, J.; Mumtaz, S.; Bashir, A.K.; Hussain, C.S. Differentially private high-dimensional
data publication in internet of things. IEEE Internet Things J. 2019. [CrossRef]

127. Bashir, A.K.; Ohsita, Y.; Murata, M. A distributed virtual data center network architecture for the future
internet. IEICE Tech. Rep. (IN2014–165) 2015, 114, 261–266.

128. Bashir, A.K.; Ohsita, Y.; Murata, M. Abstraction layer based virtual data center architecture for network
function chaining. In Proceedings of the International Conference on Distributed Computing Systems
Workshops (ICDCSW)—ICDCS, Nara, Japan, 27–30 June 2016.

129. Bashir, A.K.; Ohsita, Y.; Murata, M. Abstraction layer based distributed architecture for virtualized data
centers. In Proceedings of the Cloud Computing 2015: 6th International Conference on Cloud Computing,
Grids, and Virtualization, Nice, France, 22–27 March 2015; pp. 46–51.

130. Flynn, M.J. Flynn’s taxonomy. Encycl. Parallel Comput. 2011, 689–697. [CrossRef]
131. Caldeira, P.; Penha, J.C.; Bragança, L.; Ferreira, R.; Nacif, J.A.; Ferreira, R.; Pereira, F.M. From Java to FPGA:

An experience with the intel HARP system. In Proceedings of the 30th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), Lyon, France, 24–27 September 2018.

132. Feng, L.; Zhao, J.; Liang, T.; Sinha, S.; Zhang, W. LAMA: Link-Aware Hybrid Management for Memory
Accesses in Emerging CPU-FPGA Platforms. In Proceedings of the 56th ACM/IEEE Design Automation
Conference, Las Vegas, NV, USA, 2–6 June 2019.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JIOT.2019.2955503
http://dx.doi.org/10.1007/978-0-387-09766-4_2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Revisiting the Nomenclature
	Revisiting the Network on Chip Evaluation Tools
	Revisiting the FPGA Virtualization
	Resource Level Virtualization
	Overlays
	Input Output (I/O) Virtualization

	Node Level Virtualization
	Virtual Machine Monitors (VMMs)
	Shells
	Scheduling

	Multi-Node Level Virtualization
	Custom Clusters
	Frameworks
	Cloud Services

	Execution Model based Distribution

	Open Problems and Discussion
	Conclusions
	References

