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Abstract: Reinforcement learning algorithms usually require a large number of empirical samples
and give rise to a slow convergence in practical applications. One solution is to introduce transfer
learning: Knowledge from well-learned source tasks can be reused to reduce sample request and
accelerate the learning of target tasks. However, if an unmatched source task is selected, it will slow
down or even disrupt the learning procedure. Therefore, it is very important for knowledge transfer
to select appropriate source tasks that have a high degree of matching with target tasks. In this
paper, a novel task matching algorithm is proposed to derive the latent structures of value functions
of tasks, and align the structures for similarity estimation. Through the latent structure matching,
the highly-matched source tasks are selected effectively, from which knowledge is then transferred to
give action advice, and improve exploration strategies of the target tasks. Experiments are conducted
on the simulated navigation environment and the mountain car environment. The results illustrate
the significant performance gain of the improved exploration strategy, compared with traditional
ε-greedy exploration strategy. A theoretical proof is also given to verify the improvement of the
exploration strategy based on latent structure matching.

Keywords: latent structure matching; reinforcement learning; transfer learning; action advice; policy
improvement; mountain car

1. Introduction

Reinforcement learning (RL) is where an agent guides its actions based on the rewards obtained
from the trial-and-error interaction with the environment [1,2]. The ultimate goal of RL is to achieve
a mapping from states to actions with maximum return [3]. In recent years, reinforcement learning
has been successfully applied to some aspects of life such as medical care [4], finance [5], and
transportation [6]. However, in RL, a small change on the problem configuration usually leads
to a complete new training, which inevitably brings a slow convergence and the growing requirement
of a large amount of empirical samples. The introduction of transfer learning [7] in RL provides a
promising solution to this problem.

Transfer learning guides the transfer of useful knowledge from well-learned source tasks to target
tasks [8]. In RL, the knowledge obtained from previous situations can be reused as heuristics to achieve
effective knowledge transfer, thus speeding up the learning procedure in new situations and reducing
sample request [3]; moreover, knowledge transfer is able to mitigate much the issue caused by a change
on the problem configuration as mentioned above.

However, if an inappropriate source task is selected in knowledge transfer, it will lead to negative
transfer [9], which will slow down or even disrupt the learning of a new target task. Therefore, it is
very important for knowledge transfer to select appropriate source tasks that have a high degree of
matching with target tasks.
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The similarity estimation of tasks is the main way to select matched source tasks in the existing
works on knowledge transfer for RL. The works proposed at the beginning are semi-automatic, because
they require human intervention for similarity estimation. A typical work [10] defined a one-to-one
mapping between states and actions to estimate similarity. In the subsequent work [11], a many-to-one
mapping of relevant states and actions was defined. These semi-automatic works require manual
parameterization of defined mappings; nevertheless, the optimal values of the parameters are not easy
to reach by experience or intuition [12]. In order to overcome this problem, some mechanisms [13,14]
to select optimal mappings were developed. However, human intervention is still needed in these
works [12].

Later, in order to solve the problems in the earlier works mentioned above, some automatic
similarity estimation works [15–21] are presented. These works made use data-driven similarity
metrics, including the Markov decision process (MDP) similarity metric [20], the Hausdorff metric [21],
and the Kantorovich metric [21]. These works are highly interpretative, but computationally expensive
and have trouble when handling situations involving a large number of tasks [19].

Recently, clustering algorithms [22] were used in some works to tackle large number of tasks.
In these works, the clustering of policies, value functions, rewards, and dynamics of tasks, were
modeled as random process to estimate the similarity [23,24]. However, these clustering-based works
suffer from the bias from the modeling for clustering, and are sensitive to noise and variation in policies,
dynamics, and value functions of tasks, resulting in the inaccurate estimation of task similarity.

The classification and characteristics of existing similarity estimation methods mentioned above
are summarized in Table 1.

Table 1. Classification of similarity metrics.

Categories of Similarity Metrics Features Related References

Semi-automatic Depend on the experience of experts [10,11,13,14]
Automatic(non-clustering-based) Highly interpretative, but computationally expensive [15–21]

Automatic(clustering-based) Can tackle large number of tasks, but sensitive to noise [23,24]
Classification and characteristics of existing similarity estimation methods.

To address the limitation of existing works, we propose a novel task matching algorithm, namely
latent structure matching (LSM), which uses low-dimensional embedding to extract latent essential
factors and relationships of tasks. Furthermore, through low-dimensional alignment, LSM effectively
matches tasks in large number, and estimates their similarity, thus finding highly-matched source tasks.
Based on the matched source tasks, useful exploratory advice is formed to improve exploration
strategy, and to accelerate the learning of target tasks. The experiments are conducted on the
simulated maze navigation environment and the mountain car environment. The maze navigation
environment is an environment with discrete state and action space, and the mountain car environment
is an environment with continuous state space. The results of experiments illustrate the significant
performance improvement of RL agents, when taking improved exploration strategies with the action
advice from the matched source tasks selected effectively by LSM.

Our main contributions in this paper can be summed up as follows:

(i) A novel task matching algorithm, namely LSM, is proposed for RL to derive latent structures of
value functions of tasks, and align the structures for similarity estimation. Structural alignment
permits efficient matching of large number of tasks, and locating the correspondences of tasks.

(ii) Based on LSM, we present an improved exploration strategy, that is built on the knowledge
obtained from the highly-matched source task. This improved strategy reduces random
exploration in value function space of tasks, thus effectively improving the performance of
RL agents.

(iii) A theoretical proof is given to verify the improvement of exploration strategy with the latent
structure matching-based knowledge transfer (Please see Appendix B).
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In the remainder of this paper, related work is first discussed in Section 2. The proposed method is
introduced in Section 3. The detailed experimental procedures and experimental results are presented
in Section 4. Finally, a brief conclusion is drawn in Section 5.

2. Related Work

2.1. Knowledge Transfer in RL

The sample complexity and learning inefficiency of the RL algorithms are two of the most critical
aspects that obstruct its feasibility in practical applications [25]. Transfer learning is introduced to
address these problems.

To perform effective knowledge transfer in RL, it is of great importance to select appropriate
source tasks that are highly-matched with the target task. In most of the existing works, similarity
estimation is the main way of selecting a matched source task. Early works were semi-automatic,
as they conducted the similarity estimation of tasks according to human experience or intuition.
Taylor and Whiteson [26] defined one-to-one inter-task mapping (TVITM) as an action in one task
and its image in another task being similar with each other. The similarity was loosely defined so
that it depended on how the action affected the agent’s state and what reward was received. TVITM
was subsequently used by Taylor and Stone [10] for knowledge transfer in RL to speed up learning.
A many-to-one mapping for knowledge transfer in RL was presented in [11], which used a linear
combination of relevant states and actions to initialize learning. However, it needed humans to provide
the parameters of the linear combination, and the optimal values of the parameters were not easy to
reach [12]. To avoid this, some researchers developed mechanisms for optimal mapping selection.
Anestis and Ioannis [13] proposed two algorithms to select the optimal mapping for both model-based
and model-free RLs respectively. In another of their works [14], they proposed a method which
autonomously selected mappings from a set of all possible inter-task mappings.

In order to learn similarity of tasks without human intervention, some automatic works have
been proposed. Ferns [15] measured the distance between Markov decision processes (MDPs)
by constructing bisimulation metrics on rewards and probability functions. Taylor [16] gave a
method called “modeling approximate state transitions by exploiting regression (MASTER)”, which
automatically learned a mapping from one task to another based on evidences gathered from task
environments. A method using neural work to automatically map actions in one domain to actions in
the other domain was proposed in [17]. Carroll and Seppi [18] defined similarity in terms of tasks, and
proposed several possible task similarity measures based on the transfer time, policy overlap, Q-values,
and reward structure respectively to measure the similarity between tasks. Teng [19] proposed to use
self-organization neural networks to make the effective use of domain knowledge to reduce model
complexity in RL. Through minimizing the reconstruction error of a restricted Boltzmann machine
simulating the behavioral dynamics of two compared Markov decision processes, Ammar and Eaton
[20] gave a data-driven automated Markov decision process similarity metric. Song and Gao [21]
introduced two metrics for measuring the distance between finite Markov decision processes: The
Hausdorff metric measuring the distance between two subsets of a metric space, and the Kantorovich
metric measuring the distance between probabilistic distributions. These works are from a purely
computational perspective, so they are computationally intensive, and cannot handle scenarios with a
large number of source tasks [19].

To solve the issue raised when handling large number of tasks, recent works used the clustering to
learn the similarity automatically. Li and Liao [23] used the intrinsic clustering property of the Dirichlet
process to impose sharing of episodes among similar tasks, which effectively reduced the number of
episodes required for learning a good policy in each task, when data sharing was appropriate. Lazaric
and Ghavamzadeh [27] used a Gaussian process hierarchical BNP model to cluster different classes
of source MDPs in sequential batch mode. Wilson and Fern [28] classified different Markov decision
processes by clustering the dynamics and rewards which were drawn from the Dirichlet process
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mixture models. A flexible Bayesian nonparametric model was exploited to cluster different classes
of source Markov decision processes by the dependent Dirichlet process-based clusters of Gaussian
process in [24]. However, these clustering-based methods need to use methods such as Bayesian model
to simulate distributions, bias will arise during the simulation process, and the final results of the
clustering-based methods are based on the simulated distributions, so the effects of these methods are
easily affected by the simulation bias. Further, these methods suffer from the sensitivity to the noise
and variation in the policies, dynamics, and value functions of source tasks.

We follow the automatic work line to select the highly-matched source tasks by LSM. LSM does
not require the distribution model assumption for the task value space, thus reducing the bias from
the assumption. Also, latent structure deriving in LSM benefits the suppression of noise and outliers.
Furthermore, structural alignment of LSM guarantees the efficiency of handling a large number of
tasks.

2.2. Low Rank Embedding

The algorithm we use to derive latent structures of value function space falls in the category of
low rank embedding (LRE) [29]. Low rank embedding is a two-part algorithm for solving embedding
in low-dimensional space by using the low rank matrix approximation method. Now given a data set
X, at the beginning, LRE minimizes the following loss function so as to calculate the reconstruction
coefficient matrix X̂:

1
2
‖X− XX̂‖2

F + λ‖X̂‖∗, (1)

where λ > 0, ‖X‖F =
√

∑i ∑j |Xi,j|2 is the Frobenius norm. As for singular values σi, ‖X‖∗ =

∑i σi(X) is the spectral norm. LRE uses the alternating direction method of multipliers (ADMM)
algorithm [30] to minimize (1) to calculate the reconstruction coefficient matrix X̂, and then minimizes
the reconstruction error of X in low-dimensional space to obtain the embedding F. The reconstruction
error function is as follows:

1
2
‖F− FX̂‖2

Fs.t.FT F = I, (2)

where I is the identity matrix, and the constraint FT F = I can remove arbitrary scaling factors in the
low-dimensional embedding and can ensure that the minimization problem of (2) is a well-posed
problem. In [31], it is shown that (2) can be minimized to obtain the embedding F by calculating the d
smallest non-zero eigenvectors of the Gram matrix (I− X̂)T(I− X̂).

To estimate efficiently the similarity between source and target tasks, we modify low rank
embedding, and utilize the modified algorithm in RL (please see Section 3.1). To the best of our
knowledge, our approach is a novel attempt to use LRE in knowledge transfer for RL.

3. Method

The proposed method is divided into two stages. Figure 1 shows an overview of the two-staged
method composed of latent structure matching and value function transfer.

As shown in Figure 1, in the first stage, latent structures are derived to estimate the similarity
between tasks and find the highly-matched source task for a new target task. In the second stage, value
function transfer is conducted to improve the exploration strategy of agents by using action advice
extracted from the highly-matched source task. The details of each stage will be given in the following
subsections.
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Figure 1. Overview of the two-staged method composed of latent structure matching and value
function transfer. In the first stage, latent structure matching (LSM) is used to measure the similarity
between tasks, so as to find the highly-matched source task for the target task. In the second stage,
value function transfer is used to improve the agent’s exploration strategy, thereby improving the
agent’s performance.

3.1. Latent Structure Matching (LSM)

The algorithmic basis of LSM is manifold alignment [32], through which LSM derives latent
structures of tasks and finds matched source task for a new target task. LSM is actually one of the
variants of LRE. Like normal LRE, it firstly calculates a reconstruction coefficient matrix for source
and target tasks, and then minimizes the reconstruction error in low-dimensional space. However,
compared with normal LRE, several modifications are made in the reconstruction error function and
reconstruction coefficient matrix for efficient estimation of similarity between source and target tasks.

Given action value functions learned for S source tasks, we arrange all these functions into a
vector Q = [Q(s)

l ]1×L, where Q(s)
l is the lth action value function for the sth source task. Similarly, all of

the action value functions learned for T target tasks are also arranged into the vector Q = [Q(t)
γ ]1×Γ,

where Q(t)
γ is the γth action value function for the tth target task.

The Equation (2) can be used to derive source and target tasks’ latent structures, namely the
low-dimensional embeddings of action value functions Q and Q. To match the embeddings in low
dimension, we add an alignment item and obtain our error function:

S(Φ) = (1− µ)‖Φ− BΦ‖2
F + µ

m

∑
i,j=1
‖Φi −Φj‖2Ci,j, (3)

where µ ∈ [0, 1] is a weight parameter. The first item of (3) represents the reconstruction error, and
it is consistent with the right side of (2); the second item is added to represent the alignment error.
Φ ∈ Rm×d, B ∈ Rm×m, and C ∈ Rm×m are all block matrices:

Φ =

[
E
E

]
, B =

[
Q̂ 0
0 Q̂

]
, C =

[
0 C(Q,Q)

C(Q,Q) 0

]
,

where m = L + Γ and d is the dimension of low-dimensional space. E and E are the embeddings
respectively for Q,Q. C(Q,Q) is the proximity matrix, which can be obtained by using cosine similarity
metric. Q̂ and Q̂ are the reconstruction coefficient matrices of Q and Q, respectively, which can
be solved by minimizing (1). However, the minimization of (1) in LRE requires frequent iterative
calculation. For this, we use the closed-form solution of subspace estimation [33] to calculate the
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reconstruction coefficient matrix, thereby reducing the calculation. The specific procedure is described
in Appendix A.

The error function in (3) can be reduced to a sum of matrix traces:

S(Φ) = (1− µ)tr((Φ− BΦ)T(Φ− BΦ)) + µ
d

∑
z=1

m

∑
i,j=1
‖Φi,z −Φj,z‖2

2Ci,j

= (1− µ)tr(((I− B)Φ)T(I− B)Φ) + 2µ
d

∑
z=1

ΦT
.,zLΦ.,z

= (1− µ)tr(ΦT(I− B)T(I− B)Φ) + 2µtr(ΦT LΦ).

(4)

Similar to locally linear embedding [34] and LRE, we introduce the constraint ΦTΦ = I to ensure
that the minimization problem of error function S is a well-posed problem. Thus, we have

argminΦ:ΦT Φ=IS = argminΦ:ΦT Φ=I(1− µ)tr(ΦT AΦ) + 2µtr(ΦT LΦ), (5)

where A = (I− B)T(I− B), and L is the combinatorial graph Laplacian L = D− C, where D is the
diagonal matrix of row sums Di,i = ∑j Ci,j. To construct a loss function from (5), a Lagrange multiplier
δ is introduced to the right side of (5):

L(Φ, δ) = (1− µ)tr(ΦT AΦ) + 2µtr(ΦT LΦ) + 〈δ, ΦTΦ− I〉. (6)

To minimize the loss function (6), the roots for the partial derivatives of L for Φ and δ are
calculated as: {

∂L
∂Φ = (1− µ)AΦ + 2µLΦ− δΦ = 0
∂L
∂δ = ΦTΦ− I = 0.

(7)

Therefore, to optimize (5) to obtain embedding Φ, we need to calculate the d smallest non-zero
eigenvectors of matrix ((1− µ)A + 2µL). After the embedding Φ is obtained, the distance between
E and E , that represents the similarity between source and target task set, can be estimated. Finally,
the highly-matched source task for a target task can be found. The whole procedure of LSM is fully
described in pseudocode Algorithm 1.

Algorithm 1 Latent structure matching

Input: source action value function Q; target action value function Q; embedding dimension d;

weight parameter µ

Output: embedding matrix E of source task; embedding matrix E of target task.
1: Compute the reconstruction coefficient matrices as described in Appendix A:
2: Build the block matrices Φ, B and C.
3: Construct the error function (3), namely

S(Φ) = (1− µ)‖Φ− BΦ‖2
F + µ ∑m

i,j=1 ‖Φi −Φj‖2Ci,j
4: Minimize the loss function (6):

L = (1− µ)tr(ΦT AΦ) + 2µtr(ΦT LΦ) + 〈δ, ΦTΦ− I〉
5: The embedding matrices E and E can be obtained by calculating the d smallest non-zero

eigenvectors of matrix (1− µ)A + 2µL.

3.2. Value Function Transfer

After finding the highly-matched source task, the learnt action value functions of the matched
source task can be directly transferred to the target task. However, if there is not enough similarity
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between source tasks and target tasks, it will result in the risk of negative transfer due to direct transfer.
So using the action value functions of the matched source task to guide the agent in action exploration
may be a safe program.

The most commonly used exploration strategy is the ε-greedy exploration strategy [35], whose
development purpose is to strike a balance between exploration and exploitation. This balance
determines whether one should explore the invisible parts of the space or use the knowledge that has
been acquired during the learning process. Specifically, the ε-greedy exploration strategy performs
exploitation with the probability ε by selecting a known action that maximizes the value function of
a target task, and performs exploration with the probability 1-ε by randomly selecting an unknown
action.

By using the knowledge from the source tasks, the ε-greedy exploration strategy is modified
as shown in Algorithm 2. The modified strategy, which we call an LSM-based exploration strategy,
performs exploitation as normal ε-greedy exploration strategy, but performs exploration with a
probability of 1-ε by selecting the learnt action that maximizes the value function of the matched
source task.

Algorithm 2 LSM-based exploration strategy

Input: targetQ; sourceQ; ε

Output: Action

Action←

 Argmaxa[targetQ], with probability ε

Argmaxa[sourceQ], with probability (1− ε)

This exploratory action advice from LSM-based exploration strategy can reduce the instability
from random exploration. Moreover, the modified exploration strategy can greatly speed up the
learning of a target task, while achieving at least as good performance as ε-greedy exploration strategy.
The Equation (8) gives a definite proof for this assertion, and the specific proof details of (8) are given
in Appendix B.:

Qπ
i (s, a)−Qπ′

i (s, a) ≤ $ minj ∑
s′

p ∑
a′

ω‖Qπ
i (s
′, a′)−Qπ

j (s
′, a′)‖, (8)

where p denotes the probability p(s′|s, a) in brief form, w denotes the average probability (ε/α) over
the total number of actions α. $ is defined as γ/[1− γ(1− ε)] with the discount factor 0 < γ < 1 .
Q denotes the action value function with its superscript denoting the used exploration strategy, and its
subscript denoting the task index. π and π′ denote respectively the ε-greedy exploration strategy, and
the LSM-based exploration strategy.

4. Experiments

In this section, we conduct several experiments on the maze navigation problem and the
mountain car problem to verify the effectiveness of the proposed method. The experiments on
maze navigation problem show how knowledge is transferred between similar environments with a
tabular representation of discrete state and action space, and action value functions. The experiments
on the mountain car problem illustrate a more complex transfer procedure under the continuous
control. In this experiment, the radial basis function (RBF) network [36,37], an effective feed-forward
neural network with the best approximation and global optimal performance, is utilized to estimate
action value functions. Both experiments take Q-Learning framework [38], and the source codes for
the experiments can be downloaded from the github link: https://github.com/yizhouzhouyi/LSM.git.
The experimental results with the modified ε-greedy exploration strategy are compared against the
results from the traditional ε-greedy exploration strategy.

https://github.com/yizhouzhouyi/LSM.git
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4.1. Experiments on Maze Navigation Problem

These experiments are conducted on a 10×10 maze navigation environment in two-dimensional
space, as shown in Figure 2. An agent is required to walk from the start point to the target point, while
avoiding all obstacles in the path and maximizing the total rewards obtained.

The detailed settings about the maze navigation environments are listed below.

• Action: The action space is one-dimensional and discrete. The agent can perform four actions:
Upward, downward, leftward, and rightward.

• State: The state space is also one-dimensional and discrete. Since each grid in the maze represents
one state, there are a total of 100 states.

• Reward: When the agent reaches the target state, it will receive a reward of +10; when the agent
encounters an obstacle, it will get a penalty of −10; and when the agent is in any other state, it
will get a living penalty of −0.1.

We design two maze environments as shown in Figure 2. In two maze environments, the action
value functions obtained from source tasks (the grids marked in blue in Figure 2a) and the action value
functions from target tasks (the grids marked in yellow in Figure 2a,b) are used as the input of LSM.

(a) (b)

Figure 2. The maze navigation environments of two different settings. The red, yellow and gray grids
in the figure denote respectively the starting positions, the target positions, and the obstacles. The goal
of the agent is to walk from the start point (the red grids) to the target point (the yellow grids).

The experimental results are shown in Figure 3, the learning curves are smoothed with a window
of 100 episodes with an error bar at every 100 episodes. The left curve shows the effect of knowledge
transfer under the same environment settings, and the right curve shows the effect of knowledge
transfer under different environment settings.

It can be seen from Figure 3 that LSM-based modified ε-greedy exploration strategy performs
significantly better than normal ε-greedy exploration strategy. For two exploration strategies, the value
of ε is set as 0.9.
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(b) Knowledge transfer in different settings

Figure 3. The learning curves of LSM-based exploration strategy and ε-greedy exploration strategy on
the maze navigation problem. The curves are smoothed with a window of 100 episodes with an error
bar at every 100 episodes.

To have an insight into the effect of ε, we change the value of ε in the range [0.5, 0.9] to observe
the performance variation of two exploration strategies, and the results are given in Figures 4 and 5.
The upper part of Figure 4 shows the average return of 2000 episodes obtained by changing the value
of ε under the same environment settings, and the lower part of Figure 4 shows the average return of
2000 episodes obtained by changing the value of ε under different environment settings. As can be
seen, compared with ε-greedy exploration strategy, the LSM-based exploration strategy can always
achieve a higher average return regardless of the value of ε.
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-20
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Figure 4. The comparison of the average return of 2000 episodes using the LSM-based and the ε-greedy
exploration strategies, and the values of ε are 0.9, 0.7, and 0.5 respectively from left to right. The upper
part shows the results under the same environment settings and the lower part shows the results under
different environment settings.

Figure 5 shows the variation in average return of each episode obtained by changing the value of
ε under the same environment settings and different environment settings, respectively. When the
value of ε is set to 0.7 or 0.5, the Q-Learning algorithm using ε-greedy exploration strategy almost
stops learning; however, the Q-Learning algorithm using LSM-based exploration strategy continues to
perform well whether under the same environment settings or different environment settings. The
reason for this may be that the increase of randomness in action selection greatly will reduce the
possibility of taking sequent actions to find valid paths to target state; the good performance of the
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modified strategy attributes to the knowledge transfer, which can reduce the randomness to some
extent.
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Figure 5. The learning curves of LSM-based and ε-greedy exploration strategies with different values
of ε ( 0.9, 0.7, and 0.5 from left to right). The curves are smoothed with a window of 100 episodes with
an error bar at every 100 episodes.

4.2. Experiments on Mountain Car Problem

These experiments are conducted on the mountain car [39,40] environment under the classical
control problem of the OpenAI gym environment library. The mountain car problem belongs to the
continuous control problem. As shown in Figure 6, in the experimental environment, a car is located
on a two-dimensional track between two mountains; it is required to slide down from the left side of
the mountain and rush to the target position on the right side of the mountain.
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Figure 6. The mountain car environment. The purpose of the agent is to start from the starting position
marked "Start", and use the energy obtained by sliding down from the left side of the mountain to rush
to the position marked "Goal" on the right side of the mountain.

The detailed settings about the mountain car environment are listed below:

• Action: The action space is one-dimensional and discrete. The car can perform three actions,
including leftward, rightward, and neutral, namely:

Action = (le f tward, neutral, rightward).
• Reward: Each time the car arrives at a state, it obtains a reward of −1.0.
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• State: The state space is two-dimensional and continuous. A state consists of speed and position,
defined as: {

Velocity = (−0.007, 0.007)

Position = (−1.2, 0.6)

• Initial state: The position marked "Start" in Figure 6 denotes the initial state of the car. The initial
state is set as: {

Position = −0.5

Velocity = 0.0

• Goal state: The position marked "Goal" in Figure 6 is the target state of the car. The target state is
set as: Position ≥ 0.5.

• State update rule: A state is updated as the rule:{
Velocity = Velocity + 0.001× (Action− 1)− 0.0025× cos(3× Position)

Position = Position + Velocity

As state values in these experiments are continuous, we use the RBF network to approximate
action value functions instead of the tabular representation. The parameters of estimated action value
functions of source and target tasks are the input in LSM, used to find the matched source tasks, from
which knowledge is transferred to improve the ε-greedy exploration strategy.

We compare the traditional ε-greedy exploration strategy with our strategy, namely the LSM-based
exploration strategy, and the experimental results are given in Figure 7. The learning curves are
smoothed with a window of five episodes with an error bar at every five episodes. According
to the evaluation criteria for knowledge transfer methods in reinforcement learning proposed by
Taylor [3], our strategy performs better than the initial performance, called Jumpstart [3], and the final
performance, called Asymptotic Performance [3], of the ε-greedy exploration strategy. In the mountain
car environment, because the agent using ε-greedy exploration strategy explores randomly, it needs to
try many times to know which speed it should take to get to the left side of the mountain so that it can
use the energy of gliding to reach the right side of the mountain. Further, because of the experience
gained in previous tasks, the agent using LSM-based exploration strategy can find a good speed at
the beginning, and then uses the feedback from the environment to quickly find the optimal speed.
Therefore, our method can achieve better performance at the beginning and the end.

0 5 10 15 20 25 30 35 40 45 50
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A
v
e
ra
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LSM-based exploration
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Figure 7. Learning curves for the mountain car problem. The curves are smoothed with a window of
five episodes with an error bar at every five episodes.
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5. Conclusions

In this paper, we propose a novel task matching algorithm to derive the latent structures of tasks,
and align the structures to select highly-matched source tasks. We develop an improved exploration
strategy to draw knowledge from the matched source tasks, in order to speed up the learning and to
improve the performance of RL agents. We also give a theoretical proof to verify the improvement
of the exploration strategy based on latent structure matching. Our method achieves significant
performance improvement, when compared with the traditional ε-greedy exploration strategy on the
maze navigation problem and the mountain car problem. Such a method can prove to be useful for
real-world applications such as autonomous robots, where sample efficiency is a critical factor. Further,
in future work, causal inference may be introduced to transfer knowledge in reinforcement learning by
adding causal factors.
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Appendix A

In this supplementary material, we describe the steps of the reconstruction coefficient matrix
mentioned in Section 3.

First, Singular value decomposition (SVD) [41] is used to decompose Q into the form Q = UKVT ,
where U is the left singular matrix having only a single element, K = [ki]1×L is the singular value
matrix, and V = [vij]L×L is the right singular matrix. According to the value of elements in K, we
divide K into two submatrices, namely K1 and K2. Correspondingly, V is also divided into two
submatrices V1 and V2. The detailed division rule is defined as follows:

(a) for ∀ki ∈ K, if ki > 1, it is put in the submatrix K1; correspondingly, the ith column vector in V is
put in the submatrix V1;

(b) if ki ≤ 1, it is put in the submatrix K2 ; correspondingly, the ith column vector in V is put in the
submatrix V2.

Next, according to [33], the vector Q is reconstructed as the matrix Q̂ ∈ RL×L by the following
formula:

Q̂ = V1(I− K−2
1 )VT

1 ,

where I is the identity matrix. Using the same way, the reconstruction coefficient matrix Q̂ ∈ RΓ×Γ of
Q can be obtained.

Appendix B

In this supplementary material, we give the proof details of (8) mentioned in Section 3. In the
previous literature, two important theories about policy improvement have been proposed. One is
Bellman’s [42] policy improvement theory. This theory states that selecting actions greedily with
respect to a policy’s value function gives rise to another policy whose performance is no worse than the
former’s. Another one is Andre’s [43] generalized policy improvement (GPI), which extends Bellman’s
policy improvement theory to the scenario where the new policy is to be computed based on value
functions of a set of source tasks.

Here, according to GPI, we extend the notations to make it more convenient to depict the quantities
involved in transfer learning. In this supplementary material, j ∈ {1, 2, · · · , L} and i ∈ {1, 2, · · · , Γ}
denote a task from source task set Y and target task set T, respectively. Moreover, we use π to denote
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the ε-greedy exploration strategy, and π
′

to denote the modified exploration strategy with knowledge
transfer, namely LSM-based exploration strategy. Qπ

j is used to denote the action value function with
the policy π on task j.

Suppose we have learnt action value functions Qπ
i and Qπ

′

i . To examine the performance
improvement of LSM-based exploration strategy, we compare it with traditional ε-greedy exploration
strategy by calculating their difference. Based on the Bellman equation [42], we have

Qπ
i (s, a)−Qπ

′

i (s, a)

= Ri(s, a) + γ ∑
s′

p(s′|s, a)∑
a′

π(a′|s′)Qπ
i (s
′, a′)− Ri(s, a)− γ ∑

s′
p(s′|s, a)∑

a′
π
′
(a′|s′)Qπ

′

i (s′, a′)

= γ ∑
s′

p(s′|s, a)∑
a′

π(a′|s′)Qπ
i (s
′, a′)− γ ∑

s′
p(s′|s, a)∑

a′
π
′
(a′|s′)Qπ

′

i (s′, a′)

= γ ∑
s′

p(s′|s, a)[∑
a′

π(a′|s′)Qπ
i (s
′, a′)−∑

a′
π
′
(a′|s′)Qπ

′

i (s′, a′)]

Then, according to the exploration rules of the ε-greedy exploration strategy and the LSM-based
exploration strategy as mentioned above, the above equation is rewritten as

Qπ
i (s, a)−Qπ

′

i (s, a)

= γ ∑
s′

p(s′|s, a)[(1− ε)maxQπ
i (s
′, a′) + ε/w ∑

a′
Qπ

i (s
′, a′)− (1− ε)maxQπ

′

i (s′, a′)− εmaxQπ
j (s
′, a′)]

= γ ∑
s′

p(s′|s, a)[(1− ε)maxQπ
i (s
′, a′)− (1− ε)maxQπ

′

i (s′, a′)] + γ ∑
s′

p(s′|s, a)[ε/w ∑
a′

Qπ
i (s
′, a′)− εmaxQπ

j (s
′, a′)]

≤ γ∑
s′

p(s′|s, a)[(1− ε)maxQπ
i (s
′, a′)− (1− ε)maxQπ

′

i (s′, a′)] + γ ∑
s′

p(s′|s, a)[ε/w ∑
a′

Qπ
i (s
′, a′)− ε/w∑

a′
Qπ

j (s
′, a′)]

≤ γ ∑
s′

p(s′|s, a)(1− ε)max[Qπ
i (s
′, a′)−Qπ

′

i (s′, a′)] + γ ∑
s′

p(s′|s, a)∑
a′

ε/w[Qπ
i (s
′, a′)−Qπ

j (s
′, a′)]

≤ γ ∑
s′

p(s′|s, a)(1− ε)max[Qπ
i (s
′, a′)−Qπ

′

i (s′, a′)] + γ ∑
s′

p(s′|s, a)∑
a′

ε/w | Qπ
i (s
′, a′)−Qπ

j (s
′, a′) |

= γ(1− ε)∆ + γ ∑
s′

p(s′|s, a)∑
a′

ε/w | Qπ
i (s
′, a′)−Qπ

j (s
′, a′) |,

where ∆ = max[Qπ
i (s
′, a′)−Qπ

′

i (s′, a′)], and w represents the total number of actions.

Since all values of [Qπ
i (s
′, a′) − Qπ

′

i (s′, a′)] satisfy the above formula, the maximum value of

[Qπ
i (s
′, a′)−Qπ

′

i (s′, a′)], that is, ∆, also satisfies the above formula. Thus, we obtain

∆ ≤ γ(1− ε)∆ + γ ∑
s′

p(s′|s, a)∑
a′

ε/w‖Qπ
i (s
′, a′)−Qπ

j (s
′, a′)‖

⇒ ∆ ≤ P ∑
s′

p(s′|s, a)∑
a′

ε/w‖Qπ
i (s
′, a′)−Qπ

j (s
′, a′)‖

⇒ Qπ
i (s, a)−Qπ

′

i (s, a) ≤ ∆ ≤ P ∑
s′

p(s′|s, a)∑
a′

ε/w‖Qπ
i (s
′, a′)−Qπ

j (s
′, a′)‖,

where P = γ/[1− γ(1− ε)]. At this point, (8) is proved.

As we can see from (8), the loss [Qπ
i (s
′, a′)−Qπ

′

i (s′, a′)] is upper-bounded by one term. This term
can be seen as a multiple of the differences between Qπ

i (the value function learned on the target task)
and the closest Qπ

j (the value function achieved from the source task). This formalizes the intuition
that an agent should perform well on target task i if it has solved a similar task before. In a word, if we
can match the source task for the target task with enough similarity, and transfer the value function of
the source task to the target task to guide a new exploration strategy based on the ε-greedy exploration
strategy, then this new strategy will perform no worse than the ε-greedy exploration strategy.
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