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Abstract: The presence of obstacles like a tree, buildings, or birds along the path of a drone has the ability
to endanger and harm the UAV’s flight mission. Avoiding obstacles is one of the critical challenging
keys to successfully achieve a UAV’s mission. The path planning needs to be adapted to make
intelligent and accurate avoidance online and in time. In this paper, we propose an energy-aware
grid based solution for obstacle avoidance (EAOA). Our work is based on two phases: in the first one,
a trajectory path is generated offline using the area top-view. The second phase depends on the path
obtained in the first phase. A camera captures a frontal view of the scene that contains the obstacle,
then the algorithm determines the new position where the drone has to move to, in order to bypass
the obstacle. In this paper, the obstacles are static. The results show a gain in energy and completion
time using 3D scene information compared to 2D scene information.

Keywords: coverage path planning; obstacle avoidance; unmanned aerial vehicle; energy consumption;
completion time

1. Introduction

The usage of an Unmanned Aerial Vehicle (UAV) (also known as a drone) has become very
fast-growing recently [1]. It pervades many application domains to achieve different missions such as
terrain monitoring and smart agriculture [2,3], photogrammetry [4], harsh and disaster environments
management [5], smart policing, wildfire tracking [6], and many more. One of the main active research
areas for UAV is the Coverage Path Planning (CPP). It aims to build a path for the drone to explore
every location in an Area of Interest (AoI). Often, the main concerns in CPP are the efficiency and
completeness of the coverage. The effectiveness of a CPP work is mainly related to the following
performance indices such as the path length [7,8], the mission completion time [9,10], and the number
of turns. These metrics are related with energy consumption [11,12]. Most of the approaches try to
reduce them in order to save energy.

One of the key challenges in CCP is also to build paths in scenes with obstacles or pop-up threats.
Areas could have obstacles and non-flying zones. Obstacles could be static or mobile (such as trees and
birds). Pop-up threats are obstacles which are not known a priori by the drone. Different path planning
methods rely on two-dimensional or three-dimensional information of the scene to build the trajectory
path [13].

Recent approaches in 3D path planning concentrate more on detecting and avoiding obstacle in a
3D view [13–19]. They have not given priority to compromise between the energy efficiency and the
completeness of the area coverage [20] in the presence of obstacles. In our work, we propose an energy
aware 3D obstacle avoidance (EAOA) which plans a full coverage path for an area of interest with the
ability to avoid obstacles in a 3D view using a grid-based technique.
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3D trajectory planning shows great benefits, unlike 2D path planning, with graphical limitations.
Solutions are not only constrained by UAV size, weight, and flying mechanisms. There should be
a compromise between the trajectory length, the total coverage rate for the area, and the energy
consumption of the drone. The number of turns a drone makes during the coverage mission is also
another issue and needs to be minimized. More turning points means more energy consumption of
the drone [21].

In this paper, we present a grid-based path planning and a 3D obstacle avoidance technique.
The planned path relies on a previous paper [14]. It combines the top-view and the frontal-view of
the area that includes the obstacle. The algorithm generates the first path offline using the top-view
then re-plans it using the front-view of the scene. We deal with static obstacles whose locations are
known a priori to the UAV. We aim to avoid the obstacle with the shortest path and least number of
turns possible taking into consideration two main factors, energy consumption and completion time.

The remainder of this paper is organized as follows: Section 2 discusses related works; Section 3
provides details about our work; Section 4 presents the evaluation metrics and results; and Section 5
concludes the paper.

2. Related Works

During the path planning mission, avoiding obstacles or non-flying zones is one of the critical
challenges for UAVs. The trajectory needs not only to bypass obstacles but also to be efficient in terms
of energy consumption and completion time. Obstacles could be mobile such as pigeon, waving flag,
or could be fixed such as street lighting column, a building, etc.

Different research works [13,15,16] rely on either two-dimensional or three-dimensional methods
for obstacle detection and avoidance. In [17], a 3D-SWAP technique for 3D collision avoidance with
multiple UAVs is proposed. UAVs rely on local data from sensors and positions of other neighboring
UAVs. Their approach is decentralized and requires low computational load. Another approach is
presented in [18]. Authors propose a Model Predictive Control (MPC), and it aims to find an optimal
path for an (UAV) in a changing environment. The work aims to avoid collision in the presence of non
fly zones and pop-up threats as well as fixed obstacles.

Authors in [19] propose a Fast Geometric Avoidance algorithm (FGA) for 3D collision avoidance.
The algorithm takes into account the avoidance start time based on kinematic considerations, collision
probability, and navigational constraints. The efficiency of the work was evaluated with Monte
Carlo simulations and scenarios in an aircraft simulator. To adapt a real-time path planning to UAV
performances and capability (variations and fluctuations), authors in [22] propose an adaptive path
planning for UAVs.

In [23], a method to detect changes in image patches is proposed in order to understand variations
in the environment and obstacle sizes. In [24], the authors propose an approach for obstacle detection
and avoidance. It uses a monocular camera on UAV and motion control measurements to imitate the
human behavior in detecting objects in the environment.

Authors in [25] developed an algorithm to build a map of the environment and to generate a
collision free path for autonomous UAVs. They used an RGB-D camera with sensors and tested their
work in an indoor environment in the presence of obstacles. A fixed wing UAV is used in [26] in two
phases. They propose a solution for obstacle avoidance by first generating an offline path, then by
relying on it to generate an intelligent real-time pop-up threats avoidance path.

The work in [27] was inspired by the phenomenon of fluid disturbance to re-plan and tune the
trajectory for a 3D collision-free path. The authors use the interfered fluid dynamical system (IFDS)
algorithm for UAV. In [28], the noisy environment is not taken into consideration. The later approach
relies on sensor readings, to localize the obstacle and understand its motion, in order to determine its
velocity and autonomously plan a collision-free path.
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Another algorithm for autonomous obstacle avoidance is proposed in [29]. It relies on radars and
image processing of video frames to detect and avoid obstacles. It aims to reduce the computational
load as UAVs are energy- and memory-constrained. In [30], authors use board passive sensors like
vision systems on fixed wing drones. UAV flies at lower attitude for aerial surveillance. Determining
the position of the obstacle relies on local map of the environment with measurements from sensors
aboard the drone. Authors in [31] provides a 2D solution to avoid obstacles using a grid based
technique. They propose an algorithm that plans a coverage path for UAVs over irregular shaped areas
using a grid-based method with minimum energy consumption. Authors enhanced the algorithm
proposed by Valente et al. [25], by substituting the Cost Function with a novel Energy-Cost Function.
The novel algorithm comes up with 17% in energy gain compared to the algorithm provided in [25].
They also included two techniques that significantly decrease the computation Time. Authors choose
different starting mission points in order to decide about the best path in an offline mode. For each
path planned, they rely on the cost function to move from one cell to another unvisited neighboring
cell. This produces changes in direction and consequently increases the number of turns. In our work,
the UAV movement is parallel to the longest side of the grid (from the top view), which reduces the
number of turns and the path length. As in [14], we take into consideration the percentage of the area
in the cell to be covered, in order to increase the coverage rate. The work in [24] drops the whole cells
that contain obstacles. Hence, if the obstacle occupies a small portion of a cell, the whole cell won’t
be covered, thus the area coverage rate decreases. Additionally, avoiding the whole cell increases
the path length and the turning angles. Consequently, it increases the completion time and energy
consumption.

Authors in [14] propose an energy aware coverage path planning method. They use 2D grid
partitioning to scan an area of interest. Scenarios with one drone and different regular and irregular
area shapes were considered. The algorithm determines the turning positions as well as the start
point and the scan direction of the area. The path is planned in an offline mode and showed efficient
results in terms of energy saving, area coverage, and completion time. However, the areas of interest
were without obstacles and nonflying zones. In this work, we develop an extension for this algorithm.
The objective is to cover an area of interest in the presence of obstacles. Our proposed algorithm
re-plans the original path by scanning the facing area which contains obstacles. We try to avoid
obstacles with the shorter path possible while keeping the completion time and energy consumption
to a minimum.

3. Energy-Aware Grid-Based 3D-Obstacle Avoidance (EAOA)

3.1. Basic Approach

Different grid-based related works avoid the whole cells that contain obstacles by moving
immediately to another grid-cell [10,31]. In Figure 1, the obstacle Ob1 in the second column is
avoided by moving at the edge of the cell. However, in the third column, another way to avoid the
obstacle Ob2 is by making a detour (the basic approach). We noticed that, by making a detour, the path
will have a lower number of turns and shorter path length. In Section 4.2, we present the results of
adopting this approach (Scenario 1). As relying on the 2D top view doesn’t always give a shorter path
or ensures an optimal coverage, we extend the basic approach by including 3D information. We rely on
the area’s frontal view to decide about the obstacles shape and location and the detour to make. In the
next section, we present preliminary concepts and definitions. Results of this approach are presented
in Section 4.2–Scenario 2.

3.2. Preliminaries

In our previous work [14], the area is divided into grid-cells. Each grid-cell has a rectangular
shape and covers a portion of the area. The UAV footprint has a circular shape and is projected to
the area portion below the drone. Hence, each grid-cell represents the inscribed rectangle in the UAV



Future Internet 2020, 12, 29 4 of 20

projected footprint. The original planned path starts with the longest grid-side and crosses the center
of the cells (see Figure 2a). It is plotted using the 2D top-view area scanning and is generated offline.

Figure 1. Different ways in avoiding obstacles.

We denote Ct
χ a grid cell in this figure and Pχ the perpendicular plane to Ct

χ which passes by the
center of the cell. Hence, two consecutive planes Pχ and Pχ+1 on the same grid column are h unit apart,
where h is the length of Ct

χ. In this work, we assume the obstacles positions are fixed and known and
we want to avoid them using 3D information. We lean on the original path in Figure 2a. The drone will
follow it, and, right before the cell that contains the obstacle, an image for the front area is captured in
order to decide later about the next drone’s position. The captured image frame is to be defined in the
coming section.

To illustrate, in Figure 2b, we assume having an obstacle in plane P2. The red line represents
the original path in Figure 2a. The drone re-plans the path and changes it dynamically according
to the locations of the obstacles. The green line represents the new trajectory. The goal of this work
is to determine the new position of the drone while keeping the total trajectory path and energy
consumption to a minimum.

(a) (b)

Figure 2. Illustration of the top and frontal views. (a) top view: a binary image representing an area
of interest [14]: black cells are obstacles, grey cells are free areas; (b) example of a frontal view with
obstacle. The red line is the original path and the green one is the new path.
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The main phases in our work are: (1) Determining the frame dimensions in the front view,
(2) locating the next drone’s position.

3.3. Frame Dimensions

Figure 3a represents the 3D view. The (i, j) plane represents the area top view, (i, k) plane is
parallel to the facing view.

(a) Drone position at A and facing area (b) Scanned area dimensions

Figure 3. 3D view.

After locating the drone in the (i, j) plane, the planner will decide to range the minimum and
maximum allowed heights for the drone (denoted hmin and hmax, respectively). This range will specify
the frame dimensions of the facing area. We denote F as the scanned front frame. We assume that the
drone is located at point A, with height hijk.

In Figure 3b, the frame is represented by the rectangle BCDE of area a × b, where a and b
represent the length and width, respectively. We aim to determine the frame dimensions. The length
a = (hmax − hmin). We assume the facing view is captured with a camera angle φ = 62°, similarly to the
work of Al-Kaff et al. [24]. Authors found that any object detected out of this area angle will not cause
any danger to the UAV.. Point M is the projection of A. Both points represent actually the centers of
two consecutive grid-cells in the plane (i, j). To calculate the length (BE) and width (BC) of the scanned
frame, we have to find the dimensions of the rectangular pyramid (ABCDE). Let us take the isosceles
triangle (AFG) that has angle φ, and height h = AM. The side AF (denoted R) can be computed from
Equation (1), since AM is known and equal to the length of the top-view grid cell:

R =
h

cos( φ
2 )

. (1)

Hence, the length b of the frame F can be computed as follows:

b = 2× R× sin(
φ

2
). (2)

Now that the frame dimensions are known, the next step is to transform F to a grid-based form
denoted Γ . The dimensions of each cell in Γ fit to the height and width of the drone. Hence, we denote
vij a cell located in row i and column j in the grid Γ and has dimensions L×W (L for length and W
for width).

3.4. Determining the Next Position of the Drone

In this section, we aim to determine the closest location where the drone has to move to, in order
to avoid an obstacle on its way. The main steps are described below:
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• Step 1: A heatmap of the frame F is generated. To exemplify, Figure 4 shows a 24 × 40 heatmap
of a tree in the frame:

Γ = {vij | vij ∈ [0, 1], i ∈ [1, b], j ∈ [1, a]} (3)

where vij represents a grid cell element in Γ . We denote Γw the set of zero-cells in the grid:

Γw = {vij | vij = 0} (4)

We denote Γ c the set of non zero-cells in the grid ( Γ c = Γ\Γw):

Γ c = {vij | vij ∈]0, 1]} (5)

Figure 4. Example of a tree Heatmap in the frame. The drone position is (12, 13). The red box represents
boundary cells, and the purple box represents solution cells.

• Step 2: To recall, M is the projection of A in the frame. We check its position in the grid. If M
is located in a cell in Γw, then no obstacle is on the drone’s way. The current path will not be
modified. However, if M is located at a non-zero cell (i.e., a cell in Γ c), then the obstacle exists on
the drone’s way. Hence, the path should be modified. For this purpose, we will investigate the
list of cells surrounding M to find a loophole for the drone and make a detour.

We denote Nij the neighbors of a grid-cell vij. It is the list of cells that directly surround vij:

Nij = {vpq | p ∈ [i− 1, i + 1], q ∈ [j− 1, j + 1]} − {vij} (6)

We denote Bm the nearest non-zero cells to M that are in Γ c (see Equation (7)). We call them
boundary cells. We denote d(v1,v2) the Euclidean distance between two points v1 and v2:

Bm = {vij ∈ Γ c | ∀vpq ∈ Γ c, d(vij, M) = min{d(vpq, M)} ∧ ∃v ∈ Nij | v ∈ Γw} (7)

We aim to find the nearest vij to M and Bm such that vij belongs to Γw. We denote Sn the set of
solutions, where n represents the number of white cells that directly surround Bm:

Sn = {vij ∈ NBm ∩ Γw | ∀vpq ∈ NBm ∩ Γw, d(vij, M) = min{d(vpq, M)}} (8)

To find the list of solutions Sn, we loop in a reverse spiral mode from M (see Figure 5) until we
reach a shell that contains cells with vij = 0.
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Figure 5. Determine set of Solutions Sn.

To illustrate, in Figure 4, the projection of the drone is located at cell (12, 13) in the grid. The set of
boundary cells Bm is represented by the red boxes (|Bm| = 3). The set of possible solutions Sn is
represented by the purple boxes (|Sn| = 3). It should be noted that, if Sn = ∅, the planner has to
increase the frame dimensions.

• Step 3: To choose from Sn the most convenient solution. We denote G = Bm ∪ Sn; see Figure 6.
Then, divide each cell into four sub-cells (see Figure 7a). The reason behind this is to have
better understanding of the obstacles’ location in order to determine the nearest next position
of the drone. After applying the sub division, a new solution set S′ ⊂ Sn is generated (see
Figure 7b). The dashed red box represents the cell where the drone has to move to in order to
avoid the obstacle.

Figure 6. Group of obtained cells G.

(a) (b)

Figure 7. Finding the new position of the drone. (a) the heatmap after subdivision—set of new solutions
after subdivision; (b) the dashed box is the best solution.

The flowchart in Figure 8 summarizes the main steps in our work. Algorithm 1 checks the current
drone’s cell-position (named M) in the facing area. If M is located in a zero-value cell, it becomes
the new drone’s position. Otherwise, the algorithm checks the neighboring cells to find the nearest
non-zero value cell.
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Figure 8. Flow chart of the obstacle detection and avoidance.

Algorithm 1 getDronePosition

Input: M : Cell, F: Frame
Output: new Drone’s position denoted Sposition

1: Sn : Cell[]
2: if M.getvalue() == 0 then

3: Sposition ← M
4: else

5: shellNumber ← 1
6: CheckNeighborCells(M, shellNumber, Sn, F)
7: PossibleDronePos← FilterSolution(M, Sn)
8: Bm ← FindBoundaryCells(PossibleDronePos, F)
9: G ← Bm d Sn

10: {Perform subdivision on G }
11: {Group every 4 subcells after subdivision in one vertex (denote it v

′
)}

12: {We denote (Sn)
′

the list of vertices v
′
}

13: Sposition = FilterSolution(M, (Sn)
′
)

14: end if
15: return Sposition

Algorithm 2 (CheckNeighborCells) looks for the list of possible solutions Sn around M in the
surrounding shells in a spiral mode starting from M. The list of solutions is filtered by Algorithm 3
(FilterSolution) to choose the nearest possible solution cell S′ to M which could be the next
drone’s position.
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Algorithm 2 CheckNeighborCells

Input: M: Cell, shellNumber : int, Sn : Cell[], F :Frame
Output: List of possible Solutions Sn

1: n1← (M.getI()− shellNumber)
2: n2← (M.getI() + shellNumber)
3: m1← (M.getK()− shellNumber)
4: m2← (M.getK() + shellNumber)
5: Celltemp = null
6: a = F.getLength()
7: b = F.getWidth()
8: if (n2 ≤ b ∧m2 ≤ a) then

9: {look into the current shell for a solution (check each cell vik)}
10: for i← n1 to n2 do

11: for k← m1 to m2 do

12: if (i! = M.getI() ∧ k! = M.getK()) then

13: if (vik == 0) then

14: Sn.add(vik)
15: end if
16: end if
17: end for
18: if (Sn.isEmpty()) then

19: CheckNeighborCells(M,++ shellNumber, Sn, F)
20: end if
21: end for
22: end if

Algorithm 3 FilterSolution

Input: M : Cell, Sn : Cell []
Output: The nearest solution to cell M denoted S′

1: x2← M.getI()
2: y2← M.getK()
3: for index ← 0 to Sn.size() do

4: x1← Sn.get(index).getI()
5: y1← Sn.get(index).getK()
6: {Find distance to M}
7: distance←

√
(x2− x1)2 ∗W + (y2− y1)2 ∗ L

8: if (index == 0) then

9: old = distance
10: end if
11: if (old > distance) then

12: old← distance
13: minIndex ← index
14: end if
15: end for
16: S′ ← Sn.get(minIndex)
17: return S′

In order to locate the boundaries of the obstacle around S′, Algorithm 4 (FindBoundaryCells)
finds the list of boundary cells (denoted Bm). We combine Sn and Bm in a group box G, and to decide
whether the drone will pass safely through the solution cell, we perform a subdivision on the cells.
This helps with finding a better solution nearest to M than the one found before the subdivision. We
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group every four zero-value subcells in one vertex (denoted v
′
). The list of these vertices is denoted

(Sn)
′

and is filtered later using Algorithm 3 to find the exact drone position (denoted Sposition). In the
next section, we evaluate the performance of our approach.

Algorithm 4 FindBoundaryCells

Input: S′: Cell, F :Frame
Output: List of boundary cells Bm to S′

1: Bm : cell[]
2: n1← (S′.getI()− 1)
3: n2← (S′.getI() + 1)
4: m1← (S′.getK()− 1)
5: m2← (S′.getK() + 1)
6: for i← n1 to n2 do

7: for k← m1 to m2 do

8: if (i! = S′.getI() ∧ k! = S′.getK()) then

9: if (vik > 0∧ vik <= 1) then

10: Bm.add(vik)
11: end if
12: end if
13: end for
14: end for
15: return Bm

4. Evaluation Metrics and Results

In this section, we present different scenarios with different obstacle shapes along the drone’s path.
To evaluate the performance of the work, we rely on the following metrics: the energy consumption,
completion time, path length, and turning angles.

4.1. Evaluation Metrics

The cells in the grid can be seen as vertices in a graph-like structure G(V, E), where V is the list of
vertices and E is list of edges. We denote v the center of a grid-cell before subdivision and consider it a
vertex in the graph (refer to Figure 9). Each vertex has coordinates in a Cartesian plane.

Figure 9. Graph representation: red points are vertices and blue lines represent edges.

4.1.1. Turning Angle

The power consumption is affected by the turn rate [32]. How many turns are needed during
the whole flight mission is a main concern. Assume that the drone is coming from vertex v1 to v2

and is going to make a turn at v2 to head later to v3 (see Figure 9). The turning angle is computed as
follows [14]:

Φ123 = π − cos−1(∠v1v2v3) (9)
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where cos−1(∠v1v2v3) is computed from the law of cosines in4v1v2v3. Hence, the angle can be found
from the Euclidean distance between vertices as follows:

Φ123 = π − cos−1
[
(e12

2 + e23
2 − e31

2)

2e12e23

]
(10)

where eij = d(vi, vj) is the Euclidean distance between two vertices vi and vj.

4.1.2. Completion Time

Optimizing the trajectory length and the mission completion time is essential in energy-efficient
path planning techniuqes for UAVs [7,10,33,34]. The mission completion time includes flying time and
hovering time. We lean on the following formula from [4] to find the completion time denoted τ:

τ =
>
υ
+

f
∑
ϑ=1

Φϑ

v
(11)

where > is the path length, υ is UAV speed, while f is the number of turns, Φϑ is the angle of ϑth turn,
and v is the UAV rotation rate.

4.1.3. Energy Consumption

The total energy cost of a UAV (denoted Etotal) is the energy consumed to travel the total distance
>total (denoted E(>total)) and the energy consumed to perform the turns (denoted E(Φ)) [14]:

Etotal = E(>total) + E(Φ) = ∑
i∈V

∑
j∈V

λeij + ∑
i∈V

∑
j∈V

∑
k∈V

γ
180
π

Φijk (12)

where λ is the energy consumed per unit distance, and γ is the energy consumed per angle degree.
In this work, we assume that λ = 0.1164 KJ/m and γ = 0.0173 KJ/degree.

4.2. Results

• Scenario 1: The area of interest is 100 m× 115 m. The top view grid is 10 rows× 6 columns (see
Figure 10). The marked red cells contain obstacles. The total trajectory path will be compared
to the one obtained in the basic scenario. For the dimensions of the frame, we assume F is
16.66 m× 15 m. Each grid-cell in F is 0.69× 0.5, Γ is 40 rows×24 columns. We assume that the
drone is located at height 10.5 m and faces cell (12,13) in Γ . Below, we present the heatmaps and
the drone’s position at each obstacle.

Figure 10. Area of Interest in [4].
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- First, Obstacle: We assume having a palm tree of height 15 m. The heatmap of the front area
is shown in Figure 4. The drone’s new position is the center of the dashed group in Figure 7b.
The drone thus chooses to go down through the cell solution by performing a horizontal left turn
by 3 and a vertically down turn by 3°, then cuts a distance of 11.5744 m. This distance is between
initial drone position and the new drone’s position (Sposition). To get to initial the height behind
the tree, it does 6° vertically back up, crossing the same distance.

- Second Obstacle We assume having a signboard of height 13 m. The heatmap of the front area
is shown in Figure 11. The projection of the drone is M(12,13). Figure 12 shows the heatmap after
the subdivision. The nearest border cell is (12,5). The drone passes through the cell by performing
a vertical upward turn by 16°, then cuts a distance of 11.985 m followed by a vertical turn down of
33°. Then, it returns to the initial height behind the obstacle. The red cell represents the solution
cell (i.e., the final drone position Sposition).

Figure 11. Heatmap with signboard as obstacle (second obstacle).

Figure 12. Subdivision for the grid Box G for the second obstacle.

- Third Obstacle: Assume having a tree of height 11.6 m. The heatmap is shown in Figure 13.
The projection of the drone position is the red cell (12,13). The nearest border and solution cells
are shown in Figure 14. The dashed red box represents the solution cell (i.e., the final drone
position Sposition) .

The drone will pass through the solution cell. It performs a horizontal turn by 2°, then turns
upward vertically by 2° cutting a distance of 11.506 m. Then, it turns vertically down 3° to return
to the initial height behind the obstacle and another turn to get back to the initial direction.
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Figure 13. Tree heatmap (third obstacle).

Figure 14. Subdivision for the grid Box G for the third obstacle.

- Fourth obstacle: Assuming the obstacle is part of a building, the heatmap is shown in Figure 15.
The projection of the drone position is cell (12,13). After the subdivision, the cell (3,13) is selected
solution (Sposition). The red cells represent the boundaries set Bm, and the blue cells represent the
solution cells Sn. The final drone position is represented in Figure 16 (the red box). The drone
will pass through the cell. It performs a horizontal turn by 28°cutting a distance of 13.07 m. Then,
it performs a horizontal turn by 57°. After that, it returns to the initial path direction.

Figure 15. Heatmap of the frame containing part of a building.
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Figure 16. Subdivision for the grid Box G for the fourth obstacle.

At the end of the mission, the resulted path by the basic approach is presented in Figure 17a.
The total path obtained by our work is shown in Figure 17b.

(a) (b)

Figure 17. (a) total trajectory paths. Total path generated by our 2D basic obstacle avoidance algorithm;
(b) total path generated in our 3D obstacle avoidance algorithm.

The paths are seen from the top view. Figure 18 shows the total trajectory path in our work seen
from a different view. We compared our trajectory plan to the basic approach. The UAV speed
is considered 8 m/s, and the UAV rotation rate is 30 degree/s. Table 1 shows 13.20% gain in
completion time and 10.37% gain in energy by EAOA over the basic approach. It should be noted
that the 3D path is 4.04% shorter than the 2D path in the basic approach with reduction of 25% in
the total turn angles.

Figure 18. Total trajectory path at the end of the mission.
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Table 1. Our basic approach vs. EAOA.

(a) Basic Approach (b) Our Work (EAOA)

Route length > in meters 507.003 486.514

UAV speed υ in m/s 8 8

Turns in degree 1476 1107

Rotation rate v in degree/s 30 30

Completion-time τ in sec 112.575 97.714

Energy consumption Etotal in KJ 84.551 75.782

In order to understand the behavior of the work, we varied the speed and the rotation rate.
The UAV speed varies between 4 and 14 m/s, and the UAV rotation rate varies between 10 and
60 degree/s. Figure 19a shows the gain in completion time while increasing both the speed and
rotation rate. Figure 19b shows the gain in completion time in our 3D work vs. a 2D path while
increasing the speed and decreasing the rotation rate.

(a) (b)

Figure 19. Gain in completion time in EAOA compared to the basic approach. (a) gain in completion
time while increasing both the speed and rotation rate; (b) gain in completion time while increasing the
speed and decreasing the rotation rate.

Results show that the mission completion time is reduced by an average of 14.46% in 3D path,
with energy saving of 10.37% compared to the results obtained in the basic approach. It should
be noted that the variation between the speed and the rotation rate influences on the completion
time but not on the energy consumption. The gain in energy remains 10.37% due to the fact
that λ and γ are the average total energy consumption with standard deviation for the distance,
and turn, respectively [35].

• Scenario 2: In this scenario, we adopt the area used in [31] (see Figure 20). The area is 202 m ×
172.2 m. It is divided into a grid of 8 rows × 10 columns (top view grid). It shows the area of
interest with the presence of obstacles.

Figure 21a shows a Google Maps 3D view of the cell containing the obstacles. It has two trees
of height max 4 m. Figure 21b shows the Google Maps street view image for the facing area.
We compared our work to [31], in which the drone flies at height of 10 m. We assume that the UAV
speed varies between 4 and 14 m/s and UAV rotation rate varies between 10 and 60 degree/s.
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Figure 20. Scenario 2: Area of Interest [31].

(a) (b)

Figure 21. The Facing area in cell (4,4). (a) Google Maps 3D image for the cell containing obstacle;
(b) Google Maps street view image for the facing area.

The green line in Figure 22a represents the path generated by [31]. The red path in Figure 22b
is generated in our work.

Table 2 shows that our path is 3.89% shorter than the path in [31]. It also shows a reduction of
37.77% in the total turn angles. This means better energy saving. Results show that the mission
completion time is reduced by an average of 15.22% in our work, with energy saving of 11.30%
compared to the results obtained in [31].
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(a) (b)

Figure 22. Trajectory Planning in our work versus the work in [31]. (a) trajectory planning by Di
Franco et al. [31]; (b) trajectory plan by our work.

It should be noted that the area is not totally covered by the work in [31]. The cell that contains
obstacle (example cell (4,4)) is discarded. However, if the obstacle belongs to a small part of the
cell, it is better not to discard the whole cell if there is a possibility to avoid it while maintaining a
higher coverage. In our work, by tackling the frontal view, we can have a better understanding of
the obstacle location which ensures a better coverage of the area.

Table 2. Results obtained by CPP in Ref. [31] (Figure 22a) vs. EAOA (Figure 22b).

(a) Ref. [31] (b) Our work (EAOA)

Route length > in meters 1075.5555 1033.702

UAV speed υ in m/s 8 8

Turns in degree 2025 1260

Rotation rate v in degree/s 30 30

Completion-time τ in sec 201.944 171.212

Energy consumption Etotal in KJ 160.229 142.122

Authors in [31] declare that the cost function presented in the original approach in [10] has not
been able to achieve an optimum energy solution. Therefore, they revised the cost-effectiveness
and updated the cost-function. They proposed an approach based on an accurate energy model
that correctly estimates the energy needed to complete the coverage mission. They showed that
their work achieves minimum energy consumption. Our work achieves 11.3% energy gain over
the work in [31] which in turn achieves a gain up to 17% over the approach in [10]. Moreover,
our work achieves complete area coverage with shorter path over the work in [31], as they avoid
the whole obstacle cell which results in more number of turns and less coverage rate.

Figure 23a shows the gain in completion time in our 3D work vs. 2D work while increasing both
the speed and rotation rate. Figure 23b shows the gain in completion time while increasing the
speed and decreasing the rotation rate. Results show that the mission completion time is reduced
by an average of 15.95% in EAOA compared to the results obtained in [31].
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(a) (b)

Figure 23. Gain in completion time. (a) gain in completion time in our work compared to [31] while
increasing both speed and rotation rate; (b) gain in completion time in our work compared to [31]
while increasing speed and decreasing rotation rate.

5. Conclusions

We proposed an Energy-aware Grid-based 3D-Obstacle Avoidance during path planning missions.
The algorithm is named EAOA and has two phases. It first generates an original path offline using the
area top-view grid, then scans the frontal view of the area to detect an obstacle along the drone’s path.
The algorithm re-plans the path online to find a detour and bypass the obstacle. The results show a
gain in completion time and energy saving. We aim in the future works to test the algorithm in an
actual flight and study the behavior of the algorithm in a noisy environment and in the presence of
dynamic obstacles or pop-up threats. We also intend to boost up the performance of the algorithm by
applying more optimization using dynamic programming.
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