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Abstract: Internet of Things (IoT) is becoming a widespread reality, as interconnected smart devices
and sensors have overtaken the IT market and invaded every aspect of the human life. This kind of
development, while already foreseen by IT experts, implies additional stress to already congested
networks, and may require further investments in computational power when considering centralized
and Cloud based solutions. That is why a common trend is to rely on local resources, provided by
smart devices themselves or by aggregators, to deal with part of the required computations: this is the
base concept behind Fog Computing, which is becoming increasingly adopted as a distributed
calculation solution. In this paper a methodology, initially developed within the TOREADOR
European project for the distribution of Big Data computations over Cloud platforms, will be
described and applied to an algorithm for the prediction of energy consumption on the basis of data
coming from home sensors, already employed within the CoSSMic European Project. The objective
is to demonstrate that, by applying such a methodology, it is possible to improve the calculation
performances and reduce communication with centralized resources.

Keywords: fog computing; cloud computing; parallelizazion strategies; patterns

1. Introduction

One of the trends followed by IT experts in recent years has been the “Cloudification” of most
of the existing software applications, and the consequent movement and storage of massive amount
of data on large, remote servers. While the Cloud model offers tangible advantages and benefits,
especially in terms of revenues, return on investments and better use of existing hardware structures,
it still shows weak points. First of all, as data are not in direct possession of the customer, as it is most
of the time stored remotely, security issues may arise. Second, but not less important, the simple fact
that you need to reach a remote server to start a calculation and receive a result, can hinder the actual
applications. Real time applications need to provide fast and immediate responses, which Cloud
Platforms cannot always guarantee. Furthermore, Cloud is strongly dependant on Internet connection
to operate: if there is a network failure, services simply cannot be reached. This represent a major
difficulty when dealing with real time and potentially critical applications.

The Internet of Things strongly relies on real time to deliver results. Just imagine smart robots
in factories: they need to analyse data coming from sensors immediately, to react to the environment
accordingly. If all the calculations were made in Cloud, delays in communications could slow the work
or result in potential safety threats. Also, under a more general perspective, the huge amount of data
to be transferred using current Internet networks could further aggravate local congestion and cause
communication failures.
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The answer to such issues can be found in the introduction of an intermediate layer, between local
smart devices and the Cloud, in which most (if not all) of the real-time calculations can be executed,
strongly reducing the impact on the network and delays. Fog Computing promises to act as such an
intermediate level, by bringing computational power to the very edge of the applications’ architecture,
in particular by increasing the computing capabilities of devices themselves or of local gateways and
aggregators: this would reduce the amount of data to be transferred, analysed and processed by Cloud
server, which could focus on storage and take care of the heaviest computations that cannot be handled
by local devices.

Fog and Edge computing shift most of the computing burden to peripheral devices and gateways,
which can communicate with each other as long as a local network is up. Such local networks are
most of the time separated from the Internet, they are generally created ad-hoc and are self maintained
and managed. Communication failures are then handled locally, and are not dependant on the public
network’s status.

Having an infrastructure to handle real-time and critical computations locally and reduce data
traffic represent a huge advantage of Fog Computing, but it is not enough: it is also necessary to
accurately restructure the computation in order to take advantage of the infrastructure, and in particular
to balance the computational burden weighting on the calculation nodes.

In this paper we present a data and computation distribution methodology, initially developed to
distribute Big Data computation over Cloud Services within the TOREADOR European project [1],
and we apply it to parallelization and distribution of algorithms created within the CoSSMic European
Project [2] for the calculation and prediction of energy consumption in households, by exploiting local
smart devices and gateways. The application of the computation distribution methodology allows
for the exploitation of computational resources available at the edge of the software network, and
for the balancing of computational loads, which will distributed in order to minimize the needing
of a central Cloud based server. The remainder of this paper is organized as follows: Section 2 will
present related works in the field of Field Computing and computation distribution; Section 3 will
present the methodology; Section 4 will describe the Case Study used to test the approach; Section 5
will provide experimental results conducted within the Case Study; Section 6 closes the paper with
final consideration on the current work and future developments.

2. Related Works

Exploiting the mobile framework to develop distributed applications can open to new interesting
scenarios [3]. Among such applications, Smart Grid related platforms can take great advantages from
the application of Fog Computing paradigms. The work presented in [4] describes such advances,
focusing on challenges such as latency issues, location awareness and transmission of large amounts
of data. In order to reduce the high latencies that may potentially affect real-time applications
which exchange high volumes of data with Cloud services, there is the need of a shift in the whole
computation paradigm: Fog Computing moves the Cloud Computing paradigm to the edge of
networks, in particular those that connect all the devices belonging to the IoT [5].

A commonly accepted definition of Fog Computing, provided in [6], describes the concept as
a scenario where a high number of wireless devices communicate with each other, relying on local
network services, to cooperate and support intense computational processes.

Fog can thus represent an extension of Cloud Computing, an intermediate dedicated level of
interconnections between the Cloud and end devices, bringing benefits like reduced traffic and
latencies, and better data protection. The work presented in [7] shows that applications residing on
Fog nodes are not simply isolated, but they are integrated in a larger solutions that covers Cloud and
user level. Fog nodes are fundamental to collect and forward data for real time processing, but Cloud
resources are still necessary to run complex calculations, such as in Big Data analytic.

The work presented in [8] provides an insight on the application of Fog computing to Smart Grids,
focusing on the Fog Service Placement Problem, in order to investigate the optimal deployment of
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IoT applications on end devices and local gateways. Code-based approaches, that is methodologies
that start from an algorithm source code and try to obtain a distributed version of it, have also been
investigated in different studies. In [9] the authors have described an innovative auto-parallelizing
approach, based on a compiler which implements data flow algorithm. Such an approach leverages
domain knowledge as well as high-level semantics of mathematical operations to find the best
distributions of data and processing tasks over computing nodes.

Several studies have stressed the important role played by network communications when
applications need to to either transfer considerable amounts of data or rapidly exchange information
to provide real-time responses, such as in [10]. Indeed data transmission, especially when the volume
becomes consistent, is more prone to bit errors, packet dropping and high latency. Also, access networks
can contribute to the overall data transmission time, sometimes being determinant [11]. In [12] authors
have provided an insight on the issues that transmission traffic can cause to mobile communications,
even when the amount of data to be exchanged is relatively small, and have also proposed solutions
to resolve the problem in the specific case of Heartbeat Messages. However, since the transmission
of considerable amounts of data is still problematic, the re-distribution of workloads over the end
devices and the consequent reduction of traffic seem to be the better option, provided that the different
capabilities of Cloud and mobile resources are taken in consideration. The data-driven reallocation of
tasks on Edge devices has been considered in [13], with a focus on machine-learning algorithms.

Edge devices generally come with limited computational power and need to tackle energy
consumption issues, which also arise in hybrid mobile-Cloud contexts, as pointed out in [12],
where authors provide their own solution to the issue. Energy consumption is also the main issue
considered in [14], where the authors propose an Online Market mechanism to favour the partecipation
of distributed cloudlets in Emergency Demand Response (EDR) programs.

The aim of our work is to achieve data and task based reallocation of computation over Edge
devices, by guiding the re-engineering of existing applications through Computational patterns.
The approach presented in Section 3 is indeed based on the use of annotation, via pre-defined
parallelization primitives, of existing source code, in order to determine the pattern to be used.
The use of patterns can help in automatically determining the best distribution algorithm to reduce the
data exchange and, depending on the user final objective, also to minimize energy consumption.

3. Description of the Methodology

The methodology we exploit to distribute and balance the computation on edge nodes works
through the annotation, via pre-defined parallelization directives, of the sequential implementation
of an algorithm. The approach, has been designed within the research activities of the TOREADOR
project, has been specifically developed to distribute computational load among nodes hosted by
different platforms/technologies in multi-platform Big Data and Cloud environments, using State
of the Art orchestrators [15]. Use cases where edge computing nodes represented the main target
have been considered and demonstrated the feasibility of the approach in Edge and Fog Computing
environments [16].

The methodology requires that the user annotates her source code with a set of Parallelization
Primitives or parallel directives, which are then analysed by a compiler. The compiler determines
the exact operations to execute on the original sequential code, thanks to a set of transformation
rules which are unique for the specific parallel directive, and employs Skeletons to create the final
executable programs. Directives are modelled after well known Parallelization Patterns, which are
implemented and adapted according to the considered target. Figure 1 provides an overview of the
whole parallelization process, with its three main steps:

1. Code: in the first step, we suppose the user owns a good knowledge of the original algorithm to
be transformed from a sequential to a parallel version. The user will annotate the original code
with the provided Parallel Primitives.
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2. Transform: The second step consists in the actual transformation of the sequential code, that the
user has annotated with the aforementioned primitives, operated by Skeleton-Based Code
Compiler (Source to source Transformer). The compiler will produce a series of parallel versions
of the original code, each one customized for a specific platform/technology, according to a
3-phases sub-workflow.

(a) Parallel Pattern Selection: on the base of the used primitives, the compiler selects
(or asks/helps the user to select) a Parallel Paradigm.

(b) Incarnation of agnostic Skeletons: this is the phase in which the transformation takes place.
A parallel agnostic version of the original sequential algorithm will be created, via the
incarnation of predefined code Skeletons. Transformation rules, part of the the knowledge
base of the compiler, guide the whole transformation and the operation the compiler will
perform on the Abstract Syntax Tree.

(c) Production of technology dependent Skeletons: the agnostic Skeletons produced in the previous
phase are specialized and multiple parallel versions of the code are created, considering
different platform and technologies as a target

3. Deployment: Production of Deployment Scripts.

Figure 1. The Code-Based Approach workflow.

3.1. The Code Phase

As already stated, in our approach the user is considered an expert programmer, who is
aware of the specific parts of her code that can, or cannot, be actually parallelized. However,
once she has annotated the sequential code with parallel primitives, these will allow her to distribute
the sequential computation among processing nodes residing on remote platforms and even in
multi-platform environments.
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The parallel directives used to guide the next transformation phase have well known meaning
within the approach, and have been studied to adapt to most of the situations. Also, directives can be
nested to achieve several levels of parallelization.

Primitives can be roughly divided into two main categories:

• Data Parallel primitives, which organize the distribution of data to be consumed among
processing nodes. General primitives exist, which do not refer to a specific Parallel Pattern,
but most of the primitives are modelled against one.

• Task Parallel primitives, which instead focus on the process, and distribute computing loads
according to a Pattern based schema. General primitives also exist, but they will need to be bound
to a Specific Pattern before the transformations phase.

Examples of used primitives are:

- The data_parallel_region(data, func, *params) represents the most general data parallelization
diretive, which applies a generic set of functions to input data and optional parameters.

- The producer_consumer(data, prod_func, cons_func, *params) directive implies a Producer
Consumer parallelization approach. The data input is split into independent chunks which
represent the input of the prod_func function. A set of computing node elaborates the received
chunk and puts the result in a shared support data structure (Queue, List, Stack or similar), as also
shown in Figure 2. Another set of nodes polls the shared data structure and executes cons_func
on the contained data, until exhaustion.

- The pipeline(data, [order_func_list] *params) directive represents a well known task parallel
paradigm, in which the processing functions to be executed need to be run in the precise order
they appear in the order_func_list input list.

Figure 2. Producer Consumer.

The input data is generally a list of elements, which are fed one by one to the first function,
whose output is passed to the second one and so on, until the last result is obtained. While the i th
function is in execution, the i − 1 th can elaborate another chunk of data (if any), while the i + 1 th
needs to wait for the output from the i th in order to go on. In this way, at regimen, no computational
nodes are idle and resources are fully exploited. Figure 3 reports an example of execution of such a
Primitive, showing how functions are sequentially executed by Computing nodes and fill the pipeline.
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Figure 3. Pipeline.

3.2. Transformation Phase

The Transformation phase represents the core of the entire approach. The annotated code
is analysed and, when the parallelization directives are met, a series of transformation rules are
applied accordingly.

Such rules are strictly dependent on the Pattern the specific directive has been modeled against,
so if the user selects a general primitive she is asked to make a decision at this step.

The final Skeletons obtained after the filling operations can be roughly divided into three categories:

• Main Scripts contain the execution “main”, that is the entry point of the parallelized application,
whose processing is managed by the Skeleton. All code that cannot be distributed is contained
within the Main Script, which will also take care of calling the Secondary Scripts;

• Secondary Scripts contain the distributed code, that will be directly called by the Main Script
and then executed on different computational nodes, according to the selected Parallel Paradigm.
The number of secondary scripts is not fixed, as it depends on the selected Pattern;

• Deployment Templates provide information regarding all the computational nodes that will be
used to execute the filled Skeletons (both Main and Secondary)

The knowledge base of the compiler comprehends a series of Skeleton filling rules, which are
used to analyze and transform the original algorithm. The rules are bound to a specific Pattern, as the
transformations needed on the sequential code will change by selecting a different Pattern. However,
since the Parser will treat the micro-functions contained in the algorithm definition and included in
the analyzed primitives always in the same way, despite the specific Pattern selected, the rules are
completely independent from the algorithm.

3.3. The Deployment Phase

The Deployment step is the last one which needs to performed in order to make the desired
algorithm executable on the target platform. The user does not intervene during the Deployment
phase, as it is completely transparent to her, unless she wants to monitor and dynamically act on the
execution of the algorithm.

Different target deployment environments have been considered:
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• Distributed and parallel frameworks, among which Apache Storm, Spark and Map-Reduce
• Several Cloud Platforms, as an instance Amazon and Azure
• Container-based systems, with a focus on Docker, for which the approach considers two different

parallelization strategies:

– A centralized strategy, where a central server manages the Docker containers. The server can
reside, but non necessarily, in a Cloud environment.

– A distributed strategy, in which a central offloading algorithm takes care of allocating
containers on remote devices, selected by following the execution schema. This second
approach can be applied in the case of Edge and Fog Computing approaches, as also reported
in previous works [16] and further investigated in the present manuscript.

Automatic orchestrators can be employed, if the target environment allows it, as it has been
described in [15].

4. The Case Study

The CoSSMic project focuses on the creation and management of Microgrids, that is local power
grids confined within smart homes or buildings (even adhibited to offices) embedding local generation
and storage of solar energy, together with power consuming devices. Such devices comprehend
electric vehicles that can connect and disconnect dynamically and therefore introduce variability in the
storage capacity.

The CoSSMic user can configure all of her appliances, according to a set of constraints and
preferences: earlier or latest start time, priority in respect to other appliances, duration of the work
and so on. Also, she can supervise the energy consumption, determine how much power is produced
by the local solar facility and how much is shared with the community. All these information help
to determine, and ultimately to reduce, the overall costs. The user can also set specific goals: reduce
battery use, or maximize the consumption of energy from solar panels.

In order to determine the best course of actions, according to the constraints and goals of the user,
a Multi Agent System (MAS) has been exploited to deploy agents that actively participate in the energy
distribution. Agents make use of the information coming from the user’s plan, the weather forecast
and the consumption profiles of the appliances to find the optimal schedule, which will maximize the
neighborhood grid self-consumption.

The main configuration of the CoSSMic platform is All-In-Home, that is all the software resides
on a Home Gateway, which is connected to the local power grid and to the Internet, and encapsulates
the functions of device management, information system and MAS. The computation for the energy
optimization is performed at each home, and the energy exchange occurs within the neighborhood.
Cloud services can be used by agents to storage info about energy consumption.

In order to optimize the energy management, the local nodes execute a series of computations to
determine the consumption profiles of the several devices and appliances connected to the CoSSMic
microgrid. The consumption data coming of each device are analysed and consumption profiles are
built. The calculation of such profiles is fundamental to foresee the future behaviour of the devices
and create an optimized utilization scheduling.

In the original CoSSMic prototype users need to set in advance which kind of program they are
running manually to allow to the system for taking into account energy requirements of that program.
This is a tedious task. Moreover, it needs to run many times the same program of the appliance before
an average profile that represents energy requirements of that program is available. K-means allows
for implementing an extended functionality of the CoSSMic platform to automatically learn energy
profiles corresponding to different working programs of an appliance, and can be used to predict at
device switch time which program is actually going to run. K-means clustering is used to group similar
measured energy consumption time-series. Each cluster corresponds to a different working program.
The centroid of each cluster is used to predict the energy consumption when the same program is
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starting. The clusters are updated after each run of the appliance in order to use the most recent
and significant measures. Collecting and clustering of measures coming from many instances of the
same appliance could help to increase precision, but would require greater computational resources.
Automatic prediction about which program is going to start is out of the scope here, but the interested
reader can refer to [8].

K-means algorithm can be parallelized and distributed over Fog nodes, in order to achieve better
performances and lessen the load burden on each node. Indeed, in order to fully exploit the Fog
stratum, we need to rethink the distribution of the computation to also determine the best hardware
allocation: this is where the application of our approach comes into play.

In our case study we are focusing on the parallelization of the Clustering algorithms,
with particular attention to the k-means implementation. As it will be shown in Section 5 through
code-examples, the task_parallel_region primitives will be mainly used, together with a distributed
container approach, as seen in Section 3.3. The Bag of Tasks Parallel Pattern will be used in our
test case.

5. Application of the Approach and Experimental Results

In this Section we are going to show how we have applied our approach by using a specific
parallel primitive, and we confront the results obtained taking by running the parallelized code on
two Raspberry PIs and the sequential code on a centralized server, acting as a Gateway.

In particular, we have focused on the parallelization of a Clustering algorithm, which is executed
on a single device (the Home Gateway) in the current CoSSmic scenario. In the following, we will use
Python as a reference programming language.

The sequential program run on the Gateway is simply started through the execution of a
compute_cluster function, whose signature is as follows:

compute_cluster(run, data, history) where run is the maximum number of consecutive iterations
the clusterization algorithm can run before stopping and giving a result, data is a reference to the data
to be analyzed and history reports the cluster configuration obtained at the previous run.

The algorithms has been built in order to be embarrassingly parallel, so a data or task parallel
region can be immediately adopted.

As shown in Listing 1 we first provide a definition of the Task Parallel primitive, then we pass
the arguments which should be fed to the clusterization function to a parser in order to format and
prepare them for the parallel execution. Such arguments are necessary to execute the parallel function
and to correctly and store the input/output data. Finally we simply recall the Task Parallel Region
primitive using the function to be parallelized as one of its arguments.

Listing 1: Task Parallel Primitive: definition and application.

#definition of the primitive
def task_parallel_docker(items , docker , func , *args):
avg = len(items) / float(docker)
out = []
last = 0.0

while last < len(items):
out.append(items[int(last):int(last + avg)])
last += avg

return [func(x, *args) for x in out]

#example of application

if __name__ == "__main__":
start = time.time()
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usage = "usage:␣%prog␣[options]␣filename"
parser = ArgumentParser(usage)

parser.add_argument("filename", metavar="FILENAME")

parser.add_argument("-r", "--runs", default=0,
dest="runs", metavar="RUNS", type=int ,
help="number␣of␣runs")

parser.add_argument("-d", "--docker", default=0,
dest="docker", metavar="DOCKER", type=int ,
help="number␣of␣dockers")

parser.add_argument("-n", "--history", default=0,
dest="history", metavar="RUNID", type=int ,
help="number␣of␣timeseries␣for␣clustering")

data_dir = "./ paper_data"
args = parser.parse_args ()
history = args.history
filename = args.filename
docker = args.docker

task_parallel_docker(list(range(args.runs)), docker , compute_cluster ,
filename , history)

The Yaml configuration used to set-up the Dockers running on the final device has been provided
in Listing 2. In the proposed configuration, one master and 4 slaves have been taken in consideration.
The provided code only reports the configuration of the master and of one of the slaves, as they are all
identical. In particular, the instructions that will be executed by the master and the slaves are included
in two python files, which will be, in the future, automatically produced by a parser.

Listing 2: Master and Slave configurations.

master:
build: .
depends_on:
- redis
command: python /fog/docker_master.py
volumes:
- type: bind
source: ./
target: /fog
networks:
redis -network:
ipv4_address:
stdin_open: true
tty: true

slave0:
build: .
command: python /fog/docker_slave.py
depends_on:
- redis
- master
restart: on-failure



Future Internet 2020, 12, 28 10 of 12

volumes:
- type: bind
source: ./
target: /fog
networks:
- redis -network
stdin_open: true
tty: true

The Dockers will run on the target environment simultaneously, being it a Raspberry or the
centralized server. Considering the Raspberries, each of the Dockers will run on a different virtual
CPU. Observing the measurements reported in Figure 4 it is clear that CPU001 is in charge of the
master Docker and of one of the Slaves. Also, from Figure 5 it is possible to determine that not many
process switches take place during the execution. Overall, the Raspberry are not overwhelmed by the
computations, so they can be still be exploited for other concurrent tasks.

Figure 4. CPU utilization in one of the Raspberries.

Figure 5. Process Switching during execution.

The execution times are, of course, much different if we compare the Raspberries with the
centralized server.

As shown in Figure 6, the centralized server is far more efficient than the single Raspberries,
the performances of which slightly differ from one another. However, this last fact is simply due to the
difference in the reading speed of the SD cards used in the two Raspberries, despite it being rather
small: 22.9 MB/s for Raspberry 1 and 23.1 MB/s for Raspberry 2.
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Figure 6. Comparison between Execution Times for different cluster dimensions.

If we take in consideration the medium size of a cluster, which in our case has be considered to be
of 1000 points, the server will take 986 s on average to complete the computation. If we consider a
configuration with N Raspberries, with each of them being given a portion of the points to be clustered,
we would roughly obtain an execution time of 800 s if we considered 10 Raspberries working in
parallel, and not completely focused on the specific clusterization task.

We are not taking in consideration data transmission times at them moment, as all data will be
transmitted within the same local network, with small to negligible delays.

Furthermore, the Raspberries would be available to host the computation of data coming from
different households in the neighborhood, provided they can access a common communication
network, as in the current CoSSMic scenario.

6. Conclusions and Future Work

In this paper, an approach for the parallelization of algorithms on distributed devices, residing in a
Fog Computing layer, has been presented. In particular, the approach has been tested against a real case
scenario, provided by the CoSSMic European Project, regarding the clusterization and classification of
data coming from sensors previously installed in households. Such clusters are then used to predict
energy consumption and plan the use of the devices to maximize the use of solar energy.

What we wanted to achieve was to demonstrate that, through the application of the approach,
it is possible to obtain a performance improvement in the algorithm execution time.

The initial results seem promising, as with the opportune configuration of data and tasks it is
possible to obtain a sensible enhancement of the algorithm performances, provided that a sufficient
number of devices (in the test case we used Raspberry PIs) are available.

However, the approach needs to be polished and to be completely automated, in order to reduce
possible setbacks in the selection of the right configuration and to support the auto-tuning of the
data and tasks distribution. Furthermore, in the future there will the possibility to automatically
detect parallelizable sections of code to support the user in the annotation phase, or possibly to even
completely automatize the whole annotation step.
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