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Abstract: Network tomography has emerged as one of the lean approaches for efficient network
monitoring, especially aiming at addressing the ever-increasing requirements for scaling and
efficiency in modern network architectures and infrastructures. In this paper, we explore network
coding and compressed sensing as enabling technologies in the context of network tomography. Both
approaches capitalize on algebraic tools for achieving accuracy while allowing scaling of operation
as the size of the monitored network increases. Initially, a brief overview of the tomographic
problems and the related classification of methods is provided to better comprehend the problems
encountered and solutions provided to date. Subsequently, we present representative approaches
that employ either one of the aforementioned technologies and we comparatively describe their
fundamental operation. Eventually, we provide a qualitative comparison of features and approaches
that can be used for further research and technology development for network monitoring in future
Internet infrastructures.

Keywords: network tomography; network monitoring; future Internet; network coding; compressed
sensing; network management

1. Introduction

Modern communication network infrastructures exhibit the tendency of more heterogeneous
and larger topologies, larger volumes of transferred data, and faster transmission rates. Traditional
management and monitoring frameworks require reconsideration and, in some cases, clean-slate
approaches in order to cope with the emerging scales of operation. Network monitoring is one of
the prominent functions that needs to be revisited under the aforementioned perspective and will
be a determinant factor for creating advanced communication infrastructures in the future Internet.
Towards this direction, in this review, we focus specifically on network tomography.

Network tomography (NT) is a network-monitoring technique that involves estimating network
performance and Quality of Service (QoS) parameters based on traffic measurements at a limited subset
of the network’s nodes (where each node may represent an end-system, a router, or a subnetwork) [1,2].
The goal is to infer desired characteristics, which are not easily measured directly, by their aggregate
values. These values are possible to obtain through measurements collected at accessible nodes/links
under the administrative responsibility of the network authority. Among other benefits, such an
approach mitigates the need for special purpose cooperation and participation from the various
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network elements while reducing the associated traffic-overhead footprint to the network load
compared to well-known tools such as traceroute and ping, which require Internet Control
Message Protocol (ICMP) responses from routers. Furthermore, this approach avoids the current
problem of an increasing number of Internet routers blocking traceroute requests due to privacy
and security concerns (such routers are referred to as anonymous routers).

Network tomography can be realized in many different ways, each focusing on different goals.
Three main categories can be identified: (1) link-level parameter estimation, (2) path-level traffic intensity
estimation, and (3) topology inference, which are elaborated on in Section 2.2. These goals can be achieved
by means of various approaches such as hierarchical clustering, Expectation-Maximization (EM)
algorithm, Markov Chain Monte Carlo (MCMC) sampling, Method of Moments (MoM) estimation,
and other classical and Bayesian statistical methods. In this review, we focus on two families of
approaches, namely network coding and compressed sensing, due to the fact that (a) they were
recently introduced in the field of NT, (b) they exhibit great potential for designing highly accurate
schemes with low complexity, and( c) they form two independent methods, which can be used in a
broader spectrum of problems and in a complementary fashion.

Network coding (NC) has received considerable attention in recent years due to its potential of
maximizing network resource utilization up to the theoretical upper bound (i.e., max-flow/min-cut)
and its promising applications in the context of ad hoc networks, overlay infrastructures, and sensor
networks. The basic concept of network coding is that the intermediate nodes of the network (i.e., not
sources and destinations) are able to linearly combine, i.e., perform additions and multiplications of the
packets they receive, and to send out the resulted linear combinations on their outgoing links [3,4]. The
packets received eventually at the destination(s) can be written as a linear combination of the packets
sent out by the source(s). This broadcasting nature of network coding ensures that a transmitted probe
will traverse almost every path between the two boundary nodes (located at the network edge) and
can be exploited in the context of network tomography. In particular, the observations obtained at the
end-hosts depend on the underlying network topology and can be used to deterministically recover it.
Furthermore, in the presence of packet losses, one successfully received probe per end-to-end path is
sufficient (there is no need for extensive packet loss statistics), leading to rapid topology discovery.
Compared with the traditional methods that are based on measuring monotonic properties of shared
paths that do not decrease as the number of traversed links increases (e.g., loss rates, mean delay, delay
covariance, link utilization, etc.), the number of required probes under network coding is significantly
smaller. Additionally, the complexity of the local additions and multiplications at the node level is not
particularly high.

Compressed sensing (CS) is a signal-processing technique for efficiently acquiring and reconstructing
a signal, which has demonstrated a wide applicability in communications systems [5]. More precisely,
it is a method to obtain a unique solution from an under-determined linear system (when the number
of measurements is less than that of unknowns, the system is under determined and its solution is
no longer unique) by taking advantage of the prior knowledge that the true solution is sparse [6].
A signal is said to be sparse (or exactly sparse), when most of its components are exactly equal to
zero. It is said to be k-sparse, when it has at most k nonzero elements. The signals that can be well
approximated by sparse signals are called compressible (approximately sparse or relatively sparse).
The basic principle of compressed sensing is that, through `1-optimization (i.e., minimization of the
`1-norm), the sparsity of a signal can be exploited to recover it from far fewer samples than required
by the Nyquist–Shannon sampling theorem [7]. The goal is to reconstruct a finite-dimensional sparse
vector based on its linear measurements of dimension smaller than the size of the unknown sparse
vector. The application of compressed sensing in network tomography stems from the observation
that, usually in typical networks, only a limited number of links exhibit large delays or high loss rates.
If the focus is on the identification of those bottleneck links, one can reasonably assume that the vector
of the unknown parameters of interest will be sparse (or in other words, compressible).
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In this article, we explore in more detail network coding and compressed sensing as enabling
technologies that can be applied in tomographic approaches from the whole range of network
tomography taxonomy, with the goal of improving the estimation accuracy, the time and computational
complexity, the probing and operational cost, as well as facilitating link identifiability. The rest of this
review is organized as follows. Section 2 presents the fundamental concepts of network tomography
and some interesting classifications of relevant approaches. Section 3 presents approaches in the class of
network coding, while Section 4 presents works belonging in the class of compressed sensing. Section 5
provides some overall qualitative discussion on the presented techniques, and finally, Section 6
concludes the paper.

2. Network Tomography Model and Classification Overview

2.1. Linear Measurement Model and Basic Definitions

Network tomography falls in the category of statistical inverse problems. More precisely, network
tomography problems can be approximately described by the linear model Yt = AXt + ε, where Yt is
an I-dimensional vector of measurements taken at a specific time t at various sites/nodes, A is the I × J
routing matrix (with I rows corresponding to measurement paths and J columns corresponding to
links of which the unknown parameters are of interest) that represents the topology of the network, Xt

is a J-dimensional vector of time-dependent performance parameters like mean delays and logarithms
of loss probabilities, and ε is a noise vector. In some cases, the random vector Xt has an underlying
parameterized distribution, and we are interested in those parameters. The routing matrix is usually
binary (entries are 0 or 1, indicating the participation of a particular link—denoted by column index—in
a routing/measurement path—denoted by row index), but its entries can also be probabilities in the
case of multiple paths in a network due to load balancing considerations.

Network inference refers to the inverse problem of estimating the statistics of the unobserved
random vector Xt given the linear measurements model and a set of assumptions regarding the
statistical distribution of the noise ε or the introduction of some form or regularization to induce
identifiability. From the perspective of linear algebra, the components of Xt are uniquely identifiable if
and only if the number of linear independent measurement paths equals the number of Xt-components.
The challenge lies in the fact that A is usually an ill-posed matrix (i.e., the number of observations
I is much smaller than the number of variables J) and, hence, non-invertible. Thus, the number of
variables to be estimated is much larger than the number of equations, resulting in the non-uniqueness
of solutions.

Network tomography problems require the estimation of a possibly large number of instances
of parameters such as link loss rates, delay distributions, and traffic intensity, which are spatially
distributed. To face these estimation tasks, researchers nowadays abandon intricate and complex
statistical models of network traffic and adopt simpler models that do not introduce significant
estimation errors and reduce the complexity. The most common relevant assumptions made are the
spatial independence of the link states (Assumption 1) and the stationary behavior of network traffic
(Assumption 2).

Assumption 1 (Spatial Independence). The link states are independent from each other (but not
identically distributed).

Assumption 2 (Temporal Stationarity). The link states are stationary during the measurement period.

Although the aforementioned simpler models are not suitable for studying network queuing
dynamics and for making detailed analyses of the network behavior, they are sufficient for the inference
of general performance statistics.
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2.2. Network Tomography Classification Overview

Network tomography can be classified into various categories depending on the type of the
observed data (measurements) and the performance parameters of interest [1,2]. More precisely, we
can distinguish the following three wide classes of tomographic approaches (Figure 1):

• Link-level parameter estimation: vector Yt consists of end-to-end traffic measurements such as
accounts of delivered/lost packets and time delays (differences) between packet transmissions
and receptions. The unknown variables (i.e., vector Xt) are the link metrics, which are typically
additive, meaning that the path metric obtained by combining multiple serial links is the sum
of the individual link metrics. Time delays are a good example of an additive metric, whereas
a multiplicative metric, such as loss rates, can be expressed in an additive form by using the
logarithmic function. Since these end-to-end path measurements are carried out between pairs
of nodes with monitoring capabilities, the decision of which nodes will be chosen as monitors
becomes a key problem. This category can be further divided based on the different application
contexts and the specific link metric used (e.g., loss tomography [8–10], delay tomography [11–13],
bandwidth tomography [14], etc.)

• Path-level traffic intensity estimation [15–17]: the goal is to estimate the traffic volume (or to infer
the distribution of the flowing traffic) of end-to-end routes between all pairs of nodes in the
network based on the observed traffic volumes on individual links. At a practical level, the
involved link aggregate data are acquired by monitoring the total number of packets traversing
the respective nodes. The combination of the traffic intensities of all these origin–destination pairs
forms the origin–destination (OD) traffic matrix. Hence, this category aims at the inference of OD
traffic matrices (Xt) based on (aggregated) link traffic counts (Yt). This is the original NT problem
studied in [18].

• Topology inference [19–23]: the network topology, which is expressed by the routing matrix A, is
unknown. Hence, in this category, the goal is the inference of the topology based on end-to-end
measurements conducted at the network edge and obtained without the cooperation and the
participation of the internal nodes. These measurements evaluate the degree of correlation
between receivers. Network topology is usually examined in terms of the logical topology, which
is defined by the branching points between paths to different destination nodes. Internal nodes
where no branching of traffic occurs do not appear in the logical topology. The central idea of the
methods in this category is to obtain a measure of similarity between pairs of terminal nodes (i.e.,
source and destination) by means of end-to-end measurements that behave as a monotonically
increasing function of the number of shared links or common queues between the two receiving
nodes. Knowledge of the pairwise similarity metric values under an additive metric is sufficient
to completely identify the logical topology by employing various statistical techniques such as
hierarchical clustering, maximum likelihood, and Bayesian inference.

Similarly, network tomography can be further categorized based on the measurement
methodology, i.e., the way in which the end-to-end or link-level measurements are acquired. In
particular, the distinction is made between active network probing and passive traffic monitoring.
Active techniques collect measurements by explicitly sending out probe packets between the
participating nodes in order to measure a specific end-to-end characteristic. Passive techniques observe
already existing network traffic and occurring packet sequences. Since they analyze the regular
data flow, no extra network resources are consumed. However, because of exclusively observing
existing communications, there is a negative impact in terms of flexibility. In either case, there exist
development and administrative costs regarding the deployment of data collection and/or probing
software, which directly affect scalability.
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Figure 1. Network tomography classes.

3. Network Coding Enabled Network Tomography

The operation of today’s communication network infrastructures relies on the fundamental
assumption that, although independent information flows may share network resources, the data
themselves are separated. Network coding is a new paradigm based on the idea that independent
data streams can be linearly combined throughout the network in order to achieve benefits in terms
of throughput and robustness. As demonstrated in [3,4], optimal multicast throughput (i.e., the
min-cut/max-flow of the network to each receiver) can be achieved if intermediate nodes can perform
local additions (i.e., Exclusive-Or (XOR) operations) on their incoming packets. Furthermore, network
coding can be leveraged in the setting of packet erasure networks to achieve both optimal rate and
optimal delay at the same time [24]. The basic premise of network coding is to make the network
behave as a linear system with a transfer function that depends on the topology. Nodes are able
to linearly combine (i.e., perform additions and multiplications on) the packets received on their
incoming links and to broadcast the resulted packets on all of their outgoing links. The combined
packets eventually observed at the end receivers can be leveraged to recover the original information
by solving a set of linear equations over the employed finite field [25].

To provide a more educated overview of NC, assuming that each packet consists of L bits (shorter
packets are padded with trailing zeros) and interpreting l consecutive bits of a packet as a symbol
over the finite field Fq with q = 2l (each packet consists of a vector of L/l symbols), under linear
network coding, the outgoing packets are linear combinations of the incoming ones with addition and
multiplication being performed over the field Fq. Given the series of original packets P1, P2, · · · , Pn

that is generated by one or several sources, a combined/coded packet contains the encoding vector
(i.e., the coefficients c = (c1, · · · , cn) with ci ∈ Fq) and the information vector (i.e, the encoded data)
D = ∑n

i=1 ciPi, where the summation occurs for every symbol position (i.e., Dk = ∑n
i=1 ciPi

k, with Pi
k

and Dk as the kth symbol of Pi and D, respectively). Encoding is performed recursively, over the
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original and/or previously encoded packets. An end receiver observing the sets (c1, D1), · · · , (cn, Dn),
where ci and Di are the encoding and the information vectors of the i-th received packet, respectively,
has to solve the system {Dj = ∑n

i=1 cj
i P

i} with unknowns Pi. The coefficients over the field Fq can be
chosen uniformly at random by each node (Random Linear Network Coding—RLNC). Alternatively,
network codes can be constructed by deterministic algorithms (e.g., the polynomial time algorithm
presented in [26]).

In the next subsections, we present more particular approaches exploiting network coding in
tomography, centered around specific problem areas.

3.1. Topology Inference

Among the first efforts to leverage network coding in order to improve network tomography was
the one presented in [27]. In particular, the authors address the problem of topology inference of
binary trees, where multiple sources and receivers are employed at the edge of the network and the
intermediate nodes are equipped with simple network coding capabilities (i.e., local XOR operations).
The basic idea of their approach is that the combination of the incoming information flows by the
intermediate nodes reveals information about the network structure that can be utilized during the
inference. To that end, they develop an algorithm that exploits these topology dependent correlations
and can deterministically infer the underlying topology in one pass, when there are no packet losses.
Furthermore, in the presence of packet losses, the rapid discovery of the network topology is still
possible after a relatively small number of probes, since the only thing required is one successfully
received probe packet per end-to-end path.

More precisely, the proposed algorithm starts by randomly choosing two of the tree leaves as
sources (S1 and S2) that send probe packets (P1 and P2, respectively) to the remaining nodes in the set
of leaves. The intermediate nodes either receive one probe packet (P1 or P2) and forward it to all their
outgoing links or they receive both (within a predetermined time window W) and forward their linear
(i.e., XOR) combination (P1 ⊕ P2). Eventually, each receiver observes one probe packet, either P1 or P2

or P1 ⊕ P2. The set of leaves is divided into three parts based on the observed probe at each node, and
the way these parts are connected to each other is deducted. When one of the constituent parts has
two or less leaves, its internal structure is also revealed given that the tree is binary. The algorithm
then proceeds in iterations within each part, choosing two different sources and repeating the process,
until all edges are inferred. At each iteration, every link is traversed by one probe packet (or linear
combination). The algorithm terminates in a number of iterations that is less than the number of leaves,
and the binary tree topology is exactly discovered.

The only difference in the presence of losses is that, in every iteration, each designated source
sends K(> 1) probe packets instead of just one. In order to avoid the case of probe packets meeting at
different nodes during the same iteration, the direction of the edges is set for each iteration according
to the first probe packet that arrives at each intermediate node. More precisely, each intermediate node
maintains a table of neighbors marked as sources or sinks based on the reception of probes within a
time window W after the first probe arrival. After that window passes, the node accepts probes only if
they originate from one of its source neighbors, whereas it rejects probes coming from sink neighbors
and it does not forward probe packets to source neighbors. The probability of error due to a leaf not
receiving the “correct” probe decreases very fast as K increases, since it is sufficient for each node to
receive exactly one probe packet from each of the sources it is connected to.

The above hierarchical top-down approach is extended to full m-ary (intermediate nodes have a
degree of m + 1, m ≥ 3) and general m-ary (the degree of intermediate nodes is between 3 and m + 1)
trees in [28]. For the former, assuming no probe packets are lost, the number of components that are
revealed in every iteration is increased by applying one of the following modifications. Either the
intermediate nodes deterministically generate different linear combinations when receiving probe
packets from two different neighbors and forward each resulting packet to a different outgoing link
(i.e., different neighbor) or up to m (more than two) sources are used per iteration sending distinct
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probe packets P1, P2, . . . , Pm. In the first case, the leaves are partitioned into m + 1 components in each
iteration based on the probe packet they receive and, once a component has m or less nodes, its internal
structure is revealed, given that the tree is assumed full m-ary. In the second case, the intermediate
nodes (i.e., coding points) send the same linear combination of the k (2 ≤ k ≤ m) probe packets they
receive within a time window W to all of their remaining neighbors and the leaves are divided into
m + 1 or m components. For general m-ary trees, only the first modification can be applied. In the
presence of packet losses, directions are assigned to edges at each iteration, as described before.

Furthermore, the authors propose a method for reconstructing the topology of directed acyclic
graphs (DAGs) with a fixed set of M sources and N receivers and a predetermined routing scheme by
decomposing them into a number of two-source, two-receiver (2-by-2) subnetwork components, which
are then merged accordingly. The multiple-source multiple-destination tomography problem was first
introduced in [29], where it was shown that any DAG can be decomposed into a collection of 2-by-2
topologies, each of which belongs to one of four distinct types of 2-by-2 subnetwork components
(Types 1, 2, 3, and 4). However, contrary to the methods proposed in [29], the network coding enabled
approach can uniquely distinguish among all those 2-by-2 subnetwork component types.

More precisely, the first step of the proposed method involves the identification of the type of
every 2-by-2 component of the original DAG. In the second step, the identified 2-by-2 components are
merged in order to reconstruct the M-by-N topology. To that end, the sources send multicast probe
packets that are spaced apart by intervals of length T (duration of every experiment/iteration) to the
receivers. In order to force the probe packets to meet at different points (or not meet at all) in different
iterations, there is a per iteration randomly chosen time offset u between the sending times of the two
sources. The intermediate nodes are divided into two categories: joining points that add and forward
probe packets and branching points that forward the single received probe to all “interested” links (i.e.,
links that are the next hop for at least one source packet in the linearly combined packet).

Assuming that there are no packet losses, in every 2-by-2 component, sources S1 and S2 multicast
probe packets x1 and x2, respectively, to receivers R1 and R2. Depending on the underlying 2-by-2
topology, the receivers observe variations of the linear combinations r1 = c11x1 + c12x2 and r2 =

c21x1 + c22x2. Types 2 and 3 result in unique observed combinations and can therefore be identified
with the first observation. Types 1 and 4 are identified in subsequent iterations by forcing probes to
meet at only one of the joining points through appropriately tuning the offset u. In particular, Type 4
is identified the first time the two receivers observe different linear combinations, whereas Type 1 is
inferred if the receivers see the same combined (i.e., coded) packets after a specific number of iterations
chosen suitably to ensure small probability of error. A similar procedure is followed in the presence of
packet losses, according to which, after performing several independent experiments and collecting a
number of observations (coded packets that have arrived at the receivers), the candidate topologies can
be distinguished depending on whether r1 = r2 and on the observed coefficient differences c12 − c22.

The described procedures can be applied to a 2-by-N network on every one of the (N
2 ) possible

pairs of receivers, inferring in this way (in parallel and independently) the type of all constituent
2-by-2 components. Two algorithms that merge the identified 2-by-2 components in order to recover
the 2-by-N topology are provided. The first is suitable when the 1-by-N tree rooted at source S1 and
containing only branching points is known (e.g., it can be inferred using some tomographic method),
and the second does not require any such prior knowledge. Both merging algorithms can localize
every joining point between two branching points. Starting from a 2-by-N topology, the inference
technique can be extended to the M-by-N topology by adding one source at a time in order to connect
the 1-by-N (single source) trees of the remaining M− 2 sources.

Another active tomography method for the logical topology inference of directed acyclic graphs
with M sources, N receivers (M-by-N network) and maximum total degree ∆ + 1 is presented in [30].
Assuming the nodes in the network are capable of (scalar linear) network coding, the exact logical
DAG topology is inferred with a single probing experiment during which each link is traversed
by only one probe packet and synchronization between the sources is not required. The proposed
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approach comprises four stages. First, each of the M sources generates and transmits (asynchronously)
a single probe packet. Every probe packet consists of two parts: the information field and the
hop-length field (an integer up to the maximum number of possible intermediate nodes in the topology).
The information field of the probe packet Pi generated by source Si is set according to xj (Pi) =

1{i = j}, j = 1, 2, . . . , M, and the hop-length field h (Pi) is set to 0.
In the second stage, every intermediate node u with k incoming and r outgoing links constructs

the information fields of the outgoing probe packets according to a component-wise multiplication
(provided in [30]). In the third stage, each receiver Ri eventually gets the packet

[
yi, hi

]
, where

yi =
(
yi,1, yi,2, · · · , yi,M

)
∈ FM

q and the hop-length of Ri is hi + 1. The component yi,j can be expressed

as a power of α as yi,j = αci,j with ci,j = ∑hi−1
l=0 cl

i,j∆
l . Based on the above exponents, the hop lengths

of the pairwise joining (between two sources and a receiver) and pairwise branching (between one
source and two receivers) nodes can be computed. These hop lengths can be leveraged for calculating
the path lengths of the three path segments of the 1-by-2 and 2-by-1 components that were proven to
uniquely determine the DAG topology in [29]. A 2-step explicit algorithm that recovers the topology of
the network from the determined hop lengths of the pairwise branching and joining nodes is provided
and comprises the final stage of the proposed approach.

In [31], random linear network coding (RLNC) is explored in the context of passive network
tomography in the presence of errors, both adversarial and random. The main idea is that the
linear transformations produced by RLNC provide insights about the network structure that can
significantly aid tomography. Furthermore, given that end-to-end network error-correcting codes are
employed, no dedicated probe packets are necessary; hence, passive tomography is a suitable option.
Assuming directed acyclic and delay-free networks where the capacity of each edge is normalized to
one symbol of Fq per unit time and there is a single source that communicates with a single receiver,
both topology inference (the receiver wishes to correctly estimate the upstream network topology)
and error localization (the receiver wishes to identify the locations of occurred network errors) are
considered. Common randomness (i.e., all candidate local coding coefficients {β(u, v, w), u, w ∈ V} of
node v ∈ V are chosen from its local random codebookRv and the set of all local random codebooks
R = {Rv, v ∈ V} is a priori known to the receiver) is shown to be necessary and sufficient for
recovering the topology under RLNC. Specifically, two types of common randomness are defined:
(i) weak type for random errors, where each distinct element (u, w) ∈ V × V indexes a distinct element
in the codebook Rv of node v ∈ V and the local coding coefficient β(u, v, w) is chosen as the element
Rv(u, w), and (ii) strong type for adversarial errors, where each distinct element (u, w, w′) ∈ V ×V ×V
indexes a distinct element in the codebook Rv of node v ∈ V and the coding coefficient β(u, v, w)

is chosen as β(u, v, w) = ∑e(v,w′)∈Out(v)Rv(u, w, w′), with e(v, w′) denoting the edge from node v to
node w′ and Out(v) corresponding to the set of all outgoing edges of node v.

Topology inference in the presence of adversarial errors is based on the idea that, for strongly
connected networks, the transform matrices generated by every pair of networks are very different.
Hence, no matter what changes an adversary may perform, he/she is unable to make the transform
matrix of one network resemble that of another. The proposed algorithm operates on the overall
(polluted with the adversarial errors) transform matrix that is observed by the receiver and finds the
closest (in terms of rank distance) matrix that corresponds to an error-free network. The topology is
estimated as the one corresponding to this closest matrix. Furthermore, a polynomial time algorithm
for inferring the topology under random errors is also provided. The algorithm proceeds in two stages.
First, a set of candidate Impulse Response Vectors (IRVs—unit impulse responses, linear transformations
from each edge to receiver) is recovered during several rounds of successful (i.e., the number of errors
does not exceed the bound C-1, where C is the min-cut from source to receiver) source generations.
Then, the obtained IRV information is leveraged to recover the topology after filtering out the fake
candidate IRVs.

Regarding error localization, the detection of the edges where adversarial errors have been
introduced is reduced to the problem of detecting IRVs in the error matrix. This detection is shown
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to be computationally intractable even when the receiver knows in advance the topology and the
local encoding coefficients. A polynomial time algorithm is presented for the localization of random
errors. Finally, a new type of RLNC called Network Reed-Solomon Coding (NRSC) that is based on
Reed–Solomon codes and incorporates the use of virtual IRVs is proposed in order to improve
the performance of tomographic algorithms in terms of computational efficiency and robustness to
dynamicity. This applies especially to the adversarial error model, for which the previously presented
schemes require exponential time in terms of network parameters. Under NRSC, a maximal number
of adversarial errors can be localized in a computationally efficient manner even without knowing the
network topology.

3.2. Loss Estimation

Any link statistic (e.g., loss rate or mean delay) can be mapped to a binary (good/bad) performance
measure by setting a threshold above which the performance is classified as bad (otherwise, it is
classified as good). The same classification can be extended to paths comprising multiple links, i.e., a
path is considered bad if it contains at least one bad link. A class of network tomography in which links
can have one of two states, namely good or bad, and that consists of observing the status of end-to-end
paths and based on that inferring the status of individual network links has been introduced in [32].
In particular, the author presents a quick and simple inference algorithm that identifies with high
likelihood the worst performing links using only uncorrelated end-to-end measurements. The author
considers a logical routing tree network topology consisting of paths from a single source (the root) to
multiple destinations (the leaves), assuming that this topology is accurately known. The proposed
Smallest Consistent Failure Set (SCFS) algorithm infers the locations of bad links in a (logical) routing
tree, using a single measurement (snapshot) of the good/bad status of each source-to-leaf path. It
attributes a pattern of bad paths as being caused by the smallest possible set of bad interior links
consistent with it. Specifically, it designates as bad only the links nearest the root that are consistent
with the observed set of bad paths. A link is classified as bad when there are no good paths from the
corresponding terminating node to its descendant leaves but a path through its parent is known to
be good.

Adopting the previous formulation (i.e., assuming that the vector X of the individual link
attributes is binary with Xi = 1 or 0 indicating if the corresponding link is congested or not), the
authors in [33] focus on the case of a single congested link within the network, i.e., vector X has only
one nonzero component. Sufficient conditions on the network coding coefficients of the intermediate
nodes and the training sequence under which 1-identifiability (congestion status of a single link
can be inferred from the end-to-end measurements) is guaranteed for any logical network (i.e., a
network in which the interior nodes have degrees greater than or equal to three) are derived. Based
on these conditions, a lower bound for the probability of 1-identifiability under random network
coding (i.e, nodes pick their network-coding coefficients randomly) is calculated. Furthermore, a
way to construct a training sequence that allows identifying the location of a congested link inside
the network is presented, and the trade-off between the length of training slots and the size of the
network coding alphabet (i.e., the time needed to identify the congested link and the size of network
coding packets) is established. Although the previous results are derived for networks with a single
source-destination pair, they can be applied to a multiple-source multiple-destination network by
considering the equivalent single-source single-destination network, where the set of sources and
destinations have been substituted by a single super node source and destination, respectively.

In [34], a linear algebraic approach for developing consistent estimators of link loss rates in mesh
topologies using network coding is presented. The network is modeled as a directed acyclic graph
G = (V , E) and S ,R represent the set of source nodes and the set of receiver nodes, respectively. A
path-line matrix (usually denoted as routing matrix A)M = (mi,j)|P|×|E|, whose |P| rows correspond
to the |P| paths and |E | columns correspond to the |E | links, is defined as follows: the element mi,j is
equal to 1 if the i-th path in P includes the j-th link in E and is equal to 0 otherwise. Furthermore, it is
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proven that the identifiability of a link, which only depends on the network topology, is a necessary
and sufficient condition for the consistent estimation of link loss rates.

Building on the concept of identifiability, the authors refer to virtual links as the non-identifiable
links that are included in the same paths. Therefore, a modified path-link matrixM = (mi,j)|P|×|EI×EV |
is defined as before, where EI is the set of identifiable links and EV is the set of virtual links. The
packet losses on different links are modeled by a set of mutually independent Bernoulli processes;
thus, spatial and temporal independence is assumed. Therefore, packet losses may be represented by the
following system:

|EI∪EV |

∏
j=1

(αj)
mi,j = βi, i = 1, ...,|P| , (1)

where αj ∈ (0, 1] is the success rate of the j-th link and βi is the success rate of the i-th path, which,
using a logarithmic transformation, can be written in the following form:

Ma = b. (2)

In most cases, the system described by Equation (2) is under-determined; thus, the authors make
use of the network coding technique in order to reveal the inherent correlation between packet losses
on links and on different sets of paths, which results in increased bandwidth efficiency and reduced
monitoring cost (when compared to multicast probing on trees). More precisely, they implement a
framework in two phases. In the first phase, the probe coding scheme takes place. Specifically, n
batches of probe packets are sent from the sources in a synchronized manner. The probe packets are
binary vectors of length l, which can be interpreted as elements in a finite field Fq with an alphabet
of size q = 2l . In each time window, the coding points (i.e., the intermediate nodes with multiple
incoming links) linearly combine incoming probes according to the coding coefficients. The authors
establish a lower bound on the probe size, which is necessary for a valid probe coding scheme, that is, a
probe coding scheme that enables the identification of the paths that successfully transmitted a probe
from the end-to-end observations. Within valid probe-coding schemes, the probe size l is desired to
be as small as possible because it is directly related to bandwidth efficiency. It has been shown that,
if one is given a directed acyclic graph G = (V , E) with a set of monitored end-to-end paths P , for
valid probe coding schemes, the size l of the probes transmitted on the paths in P(h, r) (i.e., the set of
end-to-end paths that include link (h,r) which is adjacent to receiver r ∈ R) satisfies l ≥

∣∣P(h, r)
∣∣.

The second phase entails the inspection of the content of the received probe packets in order
to estimate the success rate of all paths and combinations of paths, which increases the rank of the
system, thus enabling the estimation of link loss rates. To that end, a modified path-link matrix,
M̃ = (m̃i,j)(|P |−1)×|EI×EV |, is constructed, where P = 2|P| is the power set of P . M̃ is referred to as a
type-2 modified path-link matrix, and the modified system is expressed as follows:

M̃a = c, (3)

where c = (ci)(|P |−1)×1, ci = log θi and θi ∈ {θ1, θ2, ..., θ|P |−1} denotes the success rate of the i-th path
set in P \ ∅. For each path set in P \ ∅, the n probe batches sent can be considered as a binomial
experiment with n trials; thus, a random variable Yi can be defined as the number of received probes
whose contents represent that a probe (or batch of probes) has been successfully transmitted on the
path (or the paths) in the i-th path set. The sample proportion θ̂i = Yi/n is a maximum likelihood
estimator of θi, which gives the estimator ĉ of c. Now that the above system described by Equation (3)
is over-determined (|P | − 1) ≥|EI × EV |), â can be calculated by means of least squares.

Simulations comparing the proposed linear algebraic (LA) approach to the belief propagation
(BP) approach showed that the former achieves better estimation accuracy after sending reasonably
sufficient probes (n > 400 probe batches for a topology consisting of 10 nodes and 15 edges).
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Additionally, the proposed LA approach allows the use of a small number of sources, the locations of
which in the network can be flexibly chosen.

The work in [35] extends [34] by addressing the problems that were not explored there. Firstly, an
algorithm is developed in order to find a valid probe coding scheme such that the minimum probe
size is achieved. To that end, the authors of [35] construct auxiliary tree topologies, Te, each associated
with one particular end link e = (h, r) to the root node, where the root node of Te corresponds to the
destination node r in G. The leaves of the auxiliary tree correspond to the sources of G that use link e to
relay packets to the root node. The number of leaves is equal to the number of paths that traverse link
e. Each Te corresponds to the subgraph Ge. Based on the auxiliary trees and, more specifically, based
on the number ni of leaf nodes that correspond to the i-th incoming link of a coding point uk(υ) in
Te, the coding coefficients are selected as [20, 2n1 , 2n1+n2 , ..., 2n1+n2+...+nt(uk(υ))−1 ], where t(uk(υ)) is the
number of incoming links to uk(υ).

The size of the probe packets is decided by means of combining the different sets of subgraphs with
overlapping links as one subgraph set, where the cardinality of the set of leaf nodes that corresponds
to the combination of these subgraph sets is the maximum of the cardinalities of the sets of leaf nodes
corresponding to each individual subgraph set. This extends the lower bound on probe size of [34] for a
set of subgraphs with overlapping links, as follows: for the probes that are transmitted on subgraph set
Ge, the probe size should satisfy lGe ≥ maxe∈ER(Ge)

∣∣P(e)∣∣ to obtain valid end-to-end observations. The
minimum probe packet size is maxe∈ER(Ge)

∣∣P(e)∣∣, where ER(Ge) is the set of end links in the subgraph
set Ge and

∣∣P(e)∣∣ is the number of paths that contain link e.
Moreover, the authors select the method of normal equations in order to solve the full-rank least

squares problem of Equation (3) (which is formulated based on their LA approach) and prove that the
complexity of the LA approach when using this technique is O(µν2 + µnκ + µνκ), where µ = |P | − 1,
ν = |EI ∪ EV |, n is the number of probe batches, and κ is the number of times that the calculations
are repeated during a monitoring period. Given that the number of path sets (µ = 2|P| − 1) grows
exponentially with the number of paths (|P|), the previous method exhibits lack of scalability. To
address this issue, the authors propose the use of the method of row selection in order to limit the number
of monitoring path sets to a sufficient number ν ≤ µ for estimating all link loss rates (M̃ is converted
to a lower rank matrix M̃1 by means of QR factorization). The complexity of applying the LA technique
using the method of row selection is O(µν2 + νnκ + ν2κ), which is lower than the complexity of the
previous case. Ultimately, they implement an algorithm for efficiently updating M̃ and M̃1, when
links are either deleted from or added to the network. Simulation results again showed that the
proposed LA framework for network tomography achieves better estimation accuracy than the BP
algorithm when the estimators converge.

A passive loss estimation method that employs random linear network coding for Wireless Sensor
Networks (WSNs) is presented in [36]. More precisely, the authors use a slightly modified RLNC
scheme according to which every intermediate node with more than one incoming links randomly
selects two flows from two different incoming links and combines them. By leveraging the subspace
property of NC, they propose estimators for the path loss rates from the sources and virtual sources (i.e.,
intermediate nodes with more than one incoming links) to the sink of the WSN. Furthermore, they
characterize the conditions for the estimation of the loss rate of a particular link to be feasible (a link
can be either identifiable, possibly identifiable, or not identifiable), and they propose an algorithm that
leverages the aforementioned estimated path loss rates to infer the link loss rates that can be identified.

In [37], the authors present a loss tomography scheme for inferring link loss rates on both trees
and general topologies by combining and extending all their previous work, like [38], where they
proposed a low complexity algorithm to compute the MLEs of link loss rates in multiple-source tree
networks with multicast and network-coding capabilities (corresponding to Algorithm 1 in [37] that
will be presented later). Their contribution can be summarized into four main aspects: (a) designing
an appropriate monitoring scheme (which affects the identifiability of network links and paths) in
polynomial time using Linear Programming (LP), (b) describing the necessary and sufficient conditions
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for links and paths to be identifiable and reversible (they introduce the notion of the dual configuration),
(c) designing the probes that are sent from the sources (size and content) as well as the coding that
will be done from the intermediate nodes with multiple incoming links (coding points) based on
appropriate coding coefficients (they introduce the notion of path monomials), and ultimately, (d)
presenting techniques for accurate loss estimation while calculating errors and confidence intervals
using the Fisher information matrix.

The network is again modeled as a graph G = (V , E), where E corresponds to logical links and
packet loss on link e is an independent and identically distributed (i.i.d.) Bernoulli variable with
probability 0 ≤ ae < 1, where ae = 1− ae and ae is the success probability of link e. The observations at
all receivers form a vector Y(R) = (Y1, ..., YN) in the space Ω ⊆ (FqM )N , where M = |S| is the number
of sources and N = |R| is the number of receivers in the network. The probability mass function for
a single observation Y ∈ Ω is p(Y; a) = Pa(Y(R) = Y). By letting n(Y) denote the number of probes
during n conducted experiments for which the observation Y ∈ Ω is obtained, the authors obtain
the probability of n independent observations Y1, ..., Yn analytically. In order to measure the per link
estimation accuracy, they use the mean-squared error (MSE), while the estimation performance of all
links is measured by means of an entropy measure and the covariance matrix is approximated using
the Fisher information matrix I .

Applying network coding in trees can be considered as combining probes from different incoming
links (at the coding points) using the bitwise XOR operation. Hence, network coding increases
bandwidth efficiency as well as the number of identifiable links, since a single packet carries
information on more than one paths, which is a compressed way to carry enhanced information
(taking advantage of the correlation between different links and paths). Based on the mild assumption
that all coding points are located above all branching points, the authors propose an algorithm
that efficiently computes the MLE of all links at the same time. They define the triplet (G,S ,R) as a
configuration and (Gd,Sd,Rd) as the dual configuration of (G,S ,R) on a graph Gd = (V , E d) that has
the same nodes but reversed edges, i.e., e = (i, j) ∈ E if and only if ed = (j, i) ∈ E d, and success rate
ad

e = ae, associated with every edge ed ∈ Ed. They select sources Sd = R and receiversRd = S , noting
that a multicast tree (MT) is the dual configuration of a reversed multicast tree (RMT) and that the
MLE of those two has the same functional form. Algorithm 1 of [37] implements the above mentioned
procedure. The estimates that this algorithm produces are the link loss rates of the original tree.

Additional heuristic approaches are presented for loss estimation. Firstly, subtree decomposition
partitions the original tree into MTs separated by coding points and, in each of them, employs the
Maximum Likelihood Estimator (MLE). Observations of the coding points are inferred from the
observations of the leaves; therefore, this algorithm is suboptimal. In addition, a belief propagation
(BP) approach is presented, which is based on creating a factor graph corresponding to the estimation
problem. The factor graph is a bipartite graph: one set of nodes represents the links (variable nodes)
of which the loss rates need to be estimated, while the other set of nodes represents paths (function
nodes) that are observed by each received probe. An edge exists in the factor graph between a link and
a path if the link belongs to this path in the original graph. This approach can be applied in general
topologies as well, while the previous one is applied only on tree topologies.

In more general topologies, the benefits of network coding are more pronounced than in tree
topologies but so are the challenges posed due to the presence of cycles. Subsequently, an orientation
algorithm is proposed for the construction of DAGs. Additionally, the design of the probe coding
schemes is modified: coding operations over a larger alphabet and coding coefficients satisfying
specific constraints are introduced in order to ensure path identifiability, which refers to the ability of
uniquely mapping each possible observation (received probes at all receivers) to the state of the paths
(i.e., which paths operated during the measurement period and which failed).

Assuming a set I of links, the goal is to estimate the success probability for all links in I at the
minimum bandwidth cost, given a set S of nodes that can act as sources, a set R of nodes that can
act as receivers, and the set I of links whose success rates are of interest. This optimization problem
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can be solved in polynomial time using linear programming (LP), whereas the minimum cost routing
problem when performing tomography with multicast trees (MTs) is NP-hard. To ensure identifiability
in that case, the notion of conceptual flows is introduced: each path corresponds to a flow of fixed rate ρ.
To ensure minimum cost, these flows have to use the minimum resources possible.

If the success rate of all links is to be estimated, then the scheme used is simpler and there is no
need to solve the above LP problem: each source sends a probe, and each intermediate node forwards
a combination of its incoming packets to its outgoing edges. Thus, each edge of the graph is utilized
exactly once per time slot and the required total bandwidth is minimum. An orientation algorithm
is proposed. It requires some flexibility regarding the selection of source nodes and receiver nodes,
and it leads to the construction of an acyclic graph with a small number of receiver nodes (this is
desired for efficient data collection), which can be represented as a factor graph where BP estimation
algorithms can be applied. The proposed algorithm guarantees the identifiability of all links in a
general undirected graph consisting of logical links, for any choice of sources.

Another challenge regarding general topologies besides the presence of cycles rises from the fact
that the design of the code affects identifiability. Therefore, the authors present a result determining the
lower size of the alphabet (i.e., probe size), which ensures path identifiability. However, having a large
alphabet size is necessary but not sufficient to guarantee path identifiability. It is also crucial to assign
coefficients so that the failure of every subset of paths leads to a distinct observable outcome (received
probe content). Finally, the authors employ a low complexity algorithm that offers fast estimation of
link loss rates, that is a suboptimal BP approach.

In the following section, we shift our focus on tomographic techniques based on compressed
sensing, which, as already mentioned, constitute an independent family of network tomography that
could be used in combination to other approaches.

4. Compressed Sensing Enabled Network Tomography

Compressed sensing is an emerging field in signal/image processing that has recently made its
appearance in the field of network tomography, gaining more ground ever since. It is based on the
assumption that only a few network links are responsible for the end-to-end delays and/or losses,
which provides prior information that the solution, i.e., the Xt vector of the linear measurement model,
is sparse (the only nonzero components of the vector are those corresponding to these “bottleneck”
links). According to compressed sensing theory, if a vector is k-sparse (i.e., has k nonzero value
elements), then we can precisely recover it with only O(k log n

k ) measurements, with n being the
vector’s dimension [39,40]. In order to accurately estimate Xt using LP optimization (or a variation of
this method when synchronization errors are taken under consideration), the routing matrix A (often
termed measurement matrix in the context of CS) needs to be constructed following some desirable
(and conflicting) properties:

1. enable accurate reconstruction of Xt from Yt when Xt is known to be sparse;
2. use fast decoding algorithm; and
3. make the least possible measurements (maximum achievable compression of A) [41].

In order to ensure that the measurement paths are selected such that they meet the k-identifiable
condition, i.e., the ability to recover the k-sparse vector Xt from the end-to-end measurements Yt

obtained over these measurement paths, different methods have been proposed.
According to [42], whether one can recover a sparse vector Xt from Yt by means of compressed

sensing can be evaluated by the mutual coherence µ(A), which is defined as the largest absolute norm
inner product between different columns of A:

µ(A) = max
16i,j6m,i 6=j

∣∣∣aT
i aj

∣∣∣∥∥∥ai

∥∥∥
2

∥∥∥aj

∥∥∥
2

, (4)



Future Internet 2020, 12, 20 14 of 27

where ai is the i-th column of A and‖·‖2 represents `2 norm defined as‖w‖2 = ∑n
i=1

∣∣∣w2
i

∣∣∣1/2
, with wi

being the components of vector w. The fact that the equation Yt = AXt is ill-posed means that any
vector Xt ∈ {X0 + N(A)} satisfies the equation, where N(A) is the null space of A and X0 is defined
as the true delay vector that needs to be obtained. If X0 is (exactly) k-sparse and k < 1

2 (1 +
1

µ(A)
), then

X0 can be determined by the `1 optimization:

X̂ = argmin
x

∥∥∥X
∥∥∥

1
subject to AX = Y , (5)

where‖X‖1 = ∑n
i=1|Xi| is the `1 norm of X.

A collaborative and distributed framework according to which nodes cooperate with each other
in order to monitor the status of the entire network (i.e., efficiently recover any k-sparse networked
data vector) is presented in [43]. Every node, apart from its own measurements utilizes measurements
generated by the rest nodes, with the goal of reducing the number of overall required measurements.
To that end, all nodes have their own independent measurement matrices consisting of random walks
initiated by themselves as well as random walks generated by other peers. The authors derive an upper
bound for the number of measurements that each node must generate, such that the collaborative
global view of the entire network is achieved. Based on that upper bound, an optimization method is
proposed to minimize the total number of measurements. The results of the performed simulations
demonstrate that only low degree nodes are necessary to initiate random walks (measurements).

4.1. Delay Estimation

In [41], the authors apply concepts from compressed sensing and expander graphs to the link delay
estimation problem. Specifically, they determine the conditions on the routing matrices under which
the underlying networks are k-identifiable; that is, for every exactly k-sparse vector X, the equation
Y = AX is uniquely solvable. By combining concepts from compressed sensing and expander graphs,
the authors relax the k-identifiability expansion condition of a network, such that its routing matrix
does not have to be the bi-adjacency matrix of a regular bipartite graph but the bi-adjacency matrix
of the union of disjoint expander graphs with error parameter ε ≤ 1

4 . Under this relaxed condition,
the k-sparse link vector can be estimated via `1 minimization. This relaxation expands the list of
identifiable networks with bounded estimation error by 30%. Another work based on expander graphs
is [44], where the authors demonstrate that the routing matrix corresponding to a full tree with q
branches on each node excluding leaves can be used as a measurement matrix in CS for recovering
k-sparse signals with k = q/2 and a bounded expected estimation error. If the tree is not full, they
present a heuristic method that proceeds by adding virtual nodes. Therefore, `1-minimization can be
employed for network topologies that can be interpreted as a series of trees, either full or not full.

In [45], the synchronization error is taken under consideration and it is treated as additive,
zero-mean white Gaussian noise. In addition, link delays are assumed to follow an exponential
distribution, whose parameter value reveals whether Xt is sparse or not. Based on these two
assumptions and in order to account for measurement errors too, a variation of `1-`2 optimization
using Maximum A-Posteriori (MAP) estimation is proposed. An unconstrained `1-`2 optimization
problem is defined:

X̂ = argmin
x

(
1
2

∥∥∥Y − AX
∥∥∥2

2
+ λ

∥∥∥X
∥∥∥

1

)
, (6)

where λ is a function of sparsity and noise. In particular, if vector X is assumed to follow a Laplace
prior distribution, the optimization problem of Equation (6) leads to a MAP estimator. Since link delay
does not follow the Laplace distribution as it cannot be negative, the constraint that X is positive
leads to X following the exponential distribution. Under the assumption that the components Xi
are independent, the authors look for the vector X̂ that maximizes the conditional probability of
link delay vector X given the measurement Y and noise. They apply the Bayes Rule and replace the
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‖X‖1 = ∑n
i=1|Xi| by the weighted form cTX = ∑n

i=1 ci|Xi|. Thus, Equation (6) is transformed to the
constrained `1-`2 optimization problem:

X̂ = argmin
x

(
1

2σ2

∥∥∥Y − AX
∥∥∥2

2
+ cTX

)
, subject to X > 0, (7)

where ci =
1
τi

. Simulation experiments have shown that the constrained `1-`2 optimization outperforms
the original one, achieving smaller `2 norm estimation error and higher detection probability. Yet, the
need for an efficient algorithm to solve Equation (7) remains.

Since delay tomography depends on accurate end-to-end time measurements, clock
synchronization is a requirement that restricts the number of suitable end-to-end paths over which
the measurements can be made. In order to overcome this limitation, an approach called reflective
network tomography is proposed in [46]. This method employs a single transceiver node that transmits
probe packets along different predetermined paths and receives them after they traverse back from
the network. In greater detail, there are the following two types of paths over which packet traveling
time (PTT) measurements are made: fully loop paths (LPs) with nodes that do not appear more than
once except for the transceiver and folded paths (FPs) with all nodes appearing twice except for the
destination. The objective is the identification of a limited number of bottleneck links, whereas small
link delays are approximated as zero. Therefore, compressed sensing based on `1 − `2 minimization
is utilized.

The routing matrix construction (i.e., the selection of measurement paths) is done in two steps.
First, the set of measurement path candidates is constructed by connecting the node-disjoint paths and
respective reverse paths from the transceiver s to every other node v ∈ V \ {s}. We note that the set of
node-disjoint paths from s to v signifies the shortest combination of paths among which no nodes are
shared. Then, from this set of candidates, the path with the minimum cost (or the shortest path in case
of a tie) is iteratively selected until the mutual coherence of the constructed routing matrix becomes
less than one. The aforementioned cost is calculated based on the number of unused links in the path
under examination.

Another method for removing the clock synchronization requirement is presented in [47] and
involves the construction of the differential routing matrix, which preserves the 1-identifiability
property of the original routing matrix, by selecting a path between the source and receiver
measurements nodes as the reference path. More precisely, when the measured path delays are
contaminated with synchronization errors, the measurement vector is defined as Z = Y + ∆ = AX,
where ∆ = [δ1, δ2, . . . , δm]ᵀ is the synchronization error vector and m is the number of paths between
measurement nodes s and d. By defining the n-th component of Z as the reference component and
the n-th row of A as the reference row and by subtracting them from all other components and rows,
the following new equation is formed: Z(n) = A(n)X, where Z(n) is the differential measurement
vector and A(n) the differential routing matrix. Although Z(n) still contains some synchronization
errors, if

∣∣yi − yn
∣∣�|δi − δn| with i = 1, 2, ..., m and i 6= n, then Z(n) ≈ Y (n). In spite of the loss of an

equation, given that the goal is the identification of a limited number of bottleneck links with large
delays, `1 − `2 optimization based compressed sensing is utilized to obtain a unique solution from the
under-determined linear system.

In [48], a different approach on link delay inference at mobile networks is proposed. In order
to apply compressed sensing, the authors ensure sparsity of vector X by applying Graph Fourier
Transform (GFT) at base stations’ delays that are assumed to be spatially dependent (the GFT f will be
sparse if X is spatially dependent), while servers’ delays are assumed to be sparse and delays at core
routers are assumed to be negligibly small. This way, elements with different characteristics can be
estimated in the same framework. All previously presented methods based on compressed sensing
realized active measurements, whereas the current one employs a crowd-sourcing approach, which is
considered as a kind of passive measurement method. More specifically, according to this approach
voluntary mobile users implement a measurement tool in their terminals. When mobile users connect
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to servers (e.g., Web servers), RTTs (Round Trip Times) are measured and reported to a data collection
center. Although the crowd-sourcing approach has several issues such as privacy protection, it is
promising because no measurement nodes need to be deployed.

Each path of the given network can be identified by a pair of a base station and a server, so
measurements referring to such a path are given by the following equation:

Z = RBX + RSY , (8)

where RB ∈ {0, 1}M×NB , RS ∈ {0, 1}M×NS and where NB and NS are the number of base stations
and servers, respectively. The rank of R = (RBRS) is proven to be strictly less than NB + NS,
∀M ∈ {1, 2, ..., NBNS}, so even if all possible paths are used, X and Y cannot be uniquely determined
by Equation (8). Therefore, the GFT of X is calculated and approximated by a sparse vector.

In [49], the authors address the dynamic network tomography problem by extending the work of [50]
to link delay estimation with dynamic link operations. In order to use the concept of compressed
sensing, the authors, unlike all previously mentioned works, use a hub set to measure the links with
“small” delays—the remaining links. The set of remaining links is selected randomly in order to ensure
that the measurement matrix satisfies the restricted isometry property (RIP) that characterizes matrices
which are nearly orthonormal, at least when operating on sparse vectors. Then, they adopt a line graph
model and use the vertices of a connected dominated set (CDS—a set of vertices C of the line graph LG
of graph G, such that every vertex in LG either belongs to C or is adjacent to a vertex in C, and C is
connected) on that line graph model as the hub vertices that will be used for recovering the states of all
others. A line graph model LG = (VL, EL) refers to a model where every vertex in LG corresponds to
a link in G, i.e., VL = E and two vertices are adjacent in LG if and only if their corresponding links in
G are incident, i.e., they share a common end vertex.

By assuming that a vertex subset V ′ of a graph G can be measured together in one measurement
if and only if the subgraph induced by V ′ is connected and that the measurement is an additive sum
of values at the corresponding vertices, then in a graph, a maximal independent set S (i.e., a set of
vertices for which no pair of vertices are adjacent to each other and which is not a subset of any other
set with the same property) is also a dominating set, namely every vertex is either in S or has at least
one neighbor in S. This means that a matching (i.e., a set of edges without common vertices) in a
graph G corresponds to an independent set in the line graph LG of G, which in turn allows the authors
to reduce the computation cost of transforming the network tomography problem to a sparse recovery
problem by means of achieving a better selection of hub vertices at O(|E ||V|0.5) time compared to
O(|E |2 log|E |+|E ||EL|) time achieved in [50].

Eventually, they propose an algorithm for link insertion and deletion, thus adopting a dynamic
strategy when dynamic link operations are taking place, instead of simply rerunning the original
algorithm, which would mean that all data—even the unchanged parts—would be recomputed.
Therefore, time complexity is significantly reduced, enabling the proposed technique to be applied
in large-scale networks while maintaining similar recovery performance as the technique proposed
in [50].

4.2. Loss Estimation

Building on [32], the authors in [51] claim that it is not necessary for all links to be equally likely
to be congested, i.e., to have the same prior probability of being congested. They present a different
approach consisting of two steps: (i) the congestion probabilities of the links are uniquely identified
from a small set of full network measurements (snapshots) over a period of time by using properties
of Boolean algebra, and (ii) the estimated link congestion probabilities are used as prior information,
together with subsequent snapshots, to find the links that are actually congested at any time using a
Maximum A-Posteriori (MAP) estimator.

Let P be the set of all paths between the nodes of the overlay monitoring system, referred to as
vantage points. The number of paths is np = |P| = nB · (nB − 1), where nB is the number of vantage
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points. For a known topology G = (V , E) and set of paths P , the routing matrix A is computed as
follows: aij = 1 if the path p(s, t) ≡ pi, with i = (s, t), contains the link ej and aij = 0 otherwise.
Therefore, each row of A corresponds to a path and each column corresponds to a link. If a column
has only zero entries, then the state of the corresponding link cannot be inferred from measurements
of the paths in P . Therefore, by dropping the columns that contain only zero entries, a matrix of
dimensions np × nc, where nc = |Ec| ≤ |E | is the number of links that are covered by at least one path
in P , is obtained.

If Yi represents the state of the path pi (i.e., Yi = 0 if pi is good and Yi = 1 otherwise) and Zk ≡ Zek

is the state of link ek (Zk = 0 if ek is good and Zk = 1 otherwise), the following system of Boolean
algebra linear equations between link and path states is established:

Yi =
nc∨

k=1

Zk · aik, (9)

where “∨” denotes the binary max operation and each input Yi is obtained from end-to-end
measurements by comparing the path transmission rate φi to a threshold tp = th

l , with tl being the link
threshold and h being the length of the path: Yi = 0 if φi ≥ tp and Yi = 1 otherwise. Although these
equations have multiple solutions (since it is very rare in practice that all the columns of A are linearly
independent in Boolean algebra), the most probable solution can be found by using the additional
information of the probability qk that link ek is congested. The vector q = [q1 q2 . . . qnc ]

ᵀ of the link
state probabilities can be uniquely identified from a small number of snapshots. The actual congested
links can be estimated by using the resulting vector q as prior link state probabilities. Assuming
that the set of paths remains unchanged during the measurement period, that the link states are
independent from each other, and that there are no disconnected links (i.e., 0 ≤ qk < 1 f or 1 ≤ k ≤ nc),
the link state probability vector q is identifiable if and only if the columns of the routing matrix A are
all distinct, i.e., the prior probabilities can be learned by a sufficient large number of snapshots.

Given the routing matrix A and m measured snapshots Y = {y1, y2, . . . , ym}, with yt =

[Yt
1 Yt

2 . . . Yt
np ]

ᵀ denoting the t-th snapshot, the prior probabilities can be calculated. Then, given
the routing matrix A, a measured snapshot y = [Y1 Y2 . . . Ynp ]

ᵀ and the prior link state probabilities
calculated in the previous step, the links that are currently congested (and not just simply their
probabilities of congestion) can be located by solving Equation (9) for z = [Z1 Z2 . . . Znc ]

ᵀ. Given that
Equation (9) has multiple solutions, the goal is to find the most likely one. Let PG denote the set of
paths measured as being good (i.e., pi ∈ PG when Yi = 0) and PC as the set of paths found to be
congested (i.e., pi ∈ PC when Yi = 1). The reduced routing matrix B is obtained by removing from A
all rows that correspond to good paths and all columns that correspond to links in the good paths.
Therefore, each row of B represents a congested path and each column is a link that belongs to at
least one congested path. Let EB denote the set of links represented by columns of B. Then, B has
dimensions |PC| × |EB|. The congested link identification problem is simplified to finding a set of links
H ⊆ EB, such that all congested paths are covered by at least one link in H and:

argmax
H⊆EB

Pq(H) = argmax
H⊆EB

|EB |

∑
k=1

Zk log

(
qk

1− qk

)
= argmin

H⊆EB

|EB |

∑
k=1

Zk log

(
1− qk

qk

)
, (10)

subject to ∑
|EB |
k=1 bikZk ≥ 1 for all 1 ≥ i ≥ |PC|, where Pq is the probability measure on the set of network

links when the link probability vector is q.
Let S(ek) denote the domain of the link ek ∈ Ec, i.e., the set of paths that contain it. The optimization

problem described by Equation (10) is an instance of the Weighted Set Cover Problem (WSCP), and
the proposed CLINK algorithm [51] is a computationally effective heuristic algorithm (the best
polynomial-time approximation algorithm, O(ncnp)) capable of constructing a feasible solution set by
a sequence of steps, each of which consists of selecting a link ek (i.e., setting the variable Zk to 1) that
minimizes log

(
1−qk

qk

)
/|S(ek)|.
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In order to localize congested links and infer loss rates, the authors in [52] connect compressed
sensing theory with Bayesian theory, in the sense that they propose a variation of the `1 minimization
method, the weighted `1 minimization method, and use MAP estimation based on the prior congestion
probability to determine the weights. Prior probabilities of link congestion are determined from
path congestion probabilities based on Boolean algebra. By taking the expectations and logarithms
of Equation (9), n equations containing the prior probabilities qk are obtained. Nevertheless, more
equations are needed in order to determine qk. To that end, by combining different paths, new
n(n− 1)/2 independent equations can be created, containing the joint probabilities that two or more
paths are congested. Now, qk can be determined.

In practice, since the Boolean random variable which represents link state follows the Bernoulli
distribution, q can be updated based on former diagnostic results, thus easing the expensive
time consumption of computing prior probabilities, using the maximum likelihood estimator for
Bernoulli distribution:

q̂k =
congestion times of link k

all diagnosis times
. (11)

Based on Equation (10), the weights that will be used in the formulation of the weighted `1 minimization
method can be calculated as follows:

ωk = log
(1− qk)

qk
. (12)

Having computed the weights, ωk, weighted `1 minimization can be formulated and solved:

X̂ = argmin
x

n

∑
k=1

ωk

∣∣∣Xk

∣∣∣ subject to AX = Y . (13)

The convex problem of Equation (13) can be recast as a linear problem and can be solved by any
LP optimizer. Assuming that the routing matrix A can be represented as the adjacency matrix of an
expander graph, the estimation that comes from Equation (13) can be upper bounded. We note that a
(t, ε)-expander is a bipartite simple graph G = (A,B, E) with left degree d such that, for any Θ ⊂ A
with|Θ| ≤ t, the following condition holds:

∣∣N (Θ)
∣∣ ≥ (1− ε)d|Θ|, whereN (Θ) is the set of neighbors

of Θ, t is the expansion factor, and ε is the error parameter.
Simulation results show that weighted `1 minimization method performs better than both the

unweighted counterpart and CLINK algorithm [51] in terms of estimation accuracy, detection rate (i.e.,
the fraction of links that are correctly identified as bad), and false positive rate (i.e., the fraction of links
that are good but are diagnosed as bad).

Another method for the localization of the k-sparsely congested links (the rest links have packet
loss rate near zero) with only a limited number of path measurements is presented in [53]. The
authors propose a CS based method for estimating the congestion probabilities of the individual
links based on the deficient (i.e., not full rank) measurement matrix (i.e., the historical deficient path
measurements). These estimated congestion probabilities are then utilized in conjunction with the
most recent measurement snapshot by a greedy iterative estimation algorithm that locates the most
possible sparsely congested links.

In [54], a different approach to loss tomography is proposed. Based on compressed sensing,
the proposed scheme consists of offline and online parts. The offline part is responsible for the
measurement paths (or equivalently the routing matrix) construction when a network with only two
monitoring nodes (a single source and a single destination) is considered. Moreover, it is assumed that
an arbitrary number of bidirectional measurement paths can be established between the two monitoring
nodes. The algorithm that constructs the measurement paths is combined with an algorithm that
discovers if a set of low-quality links (where low-quality links correspond to the nonzero components
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of the link vector Xt in the t-th time window) is a k-sparse-identifiable set or not in order to create a
k-identifiable routing matrix A that enables the solution of equation Yt = AXt, when Xt is k-sparse.

In greater detail, the construction of measurement paths from source s to destination d and vice
versa (reverse paths) takes place in three steps by adding appropriate paths one at a time from the set
of all possible paths between the two nodes. First, the maximum set of link-disjoint paths (i.e., no links
are shared among the paths) is constructed. Then, the set of all existing acyclic paths from s to d and
the respective reverse paths are given by a path enumeration algorithm. New measurement paths are
selected one by one based on the minimization of a suitable cost function until the maximum number
Nmax of k-sparse-identifiable sets corresponding to the potential use of all existing paths and reverse
paths is reached.

The online part is responsible for low quality link detection. The authors consider practical
situations in which link quality vector X is approximately sparse and estimate the steady-state path loss
rates Q(t)

wi (where wi refers to the i-th path and t refers to the t-th time window), which they subtract
from both vector X and the measurement vector Y , thus formulating modified vectors X(t) and Y (t).
Via this procedure, the values of the elements of X(t) representing normal links are closer to 0 than
the corresponding values of X; thus, X(t) is closer than X to an exactly sparse vector. In order to
estimate Q(t)

wi , the authors assume that all measurement paths are in the normal quality states and that

the number of packets lost on each path, L(t)
wi , follows a binomial distribution. Since Q(t)

wi constitute a

proportion of total L(t)
wi , the conjugate prior distribution of Q(t)

wi corresponds to the beta distribution.

When L(t)
wi at a certain time window t is measured, the posterior distribution of Q(t)

wi can be computed.

Then, using the Exponentially Weighted Moving Average (EWMA), Q(t)
wi ’s posterior distribution is

estimated by the mode in the posterior distribution of Q(t−1)
wi . After estimating Q(t)

wi , ∀i ∈ {1, ..., n}, the

authors subtract them from the path loss rates P(t)
wi =

L(t)
wi

Npkt
, ∀i ∈ {1, ..., n}, where Npkt is the number of

packets transmitted from the source node to its destination node during time window t. The modified
measurement vector, Y (t), is set as follows:

Y(t)
i =

− log(1− P(t)
wi )− (− log(1−Qwi )), if P(t)

wi −Qwi > Tp

0, otherwise,
(14)

where Tp is a threshold. In order to classify estimated X̂(t)
i as a low or high quality link, the authors

compare it to a threshold T(t)
l , which is set using Otsu’s binarization method [55]. This paper is the

first to discuss measurement path construction based on compressed sensing.
A Graph Fourier Transform (GFT) based tomography approach for the estimation of packet loss

rates at nodes in wireless multihop networks with spatially dependent channels is presented in [56].
The basic idea is similar to the previously described delay tomography method of [48] (see Section 4.1).
Namely instead of estimating the node state vector (i.e., the vector whose components are the packet
loss rates at the respective nodes) directly, the proposed scheme employs CS to first estimate the GFT of
the node state vector (which has a few dominant components due to the spatially dependent channels)
and then examines the network internal characteristics in the transformed domain.

In [57], the authors propose a scalable (the total number of measurements scales logarithmically
with the number of links) adaptive CS based tomographic scheme for fault localization. The proposed
approach consists of two stages. First, the network is monitored (with a few tomographic path
measurements) for the detection of faults (the initial set of measurements although not sufficient
for localizing the faults, it is indicative of their presence). Then, upon detection of one or more
faults, the adaptive fault localization stage is initiated, during which further path measurements are
iteratively carried out (each adaptive measurement covers a set of links that is identified based on
the previous iteration) in order to localize the faults. Three conditions for convergence (termination)
and two selection criteria for the adaptive measurements are determined, whereas the performed
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simulations demonstrate that the proposed scheme achieves a very high detection rate and a very low
false positive rate.

5. Discussion

The traffic overhead footprint on the total network load and the need for special purpose
cooperation from the network elements involved in network monitoring motivates approaches of
network tomography as a fast and lightweight alternative to traditional techniques. In this review,
we focused on two families of algebraic-based approaches, namely network coding and compressed
sensing, which capitalize on concepts from linear algebra for building more advanced tomographic
techniques. Network coding, although developed for different goals (i.e., improving the throughput of
networks), can be exploited in network tomography due to the introduced topology-dependent
correlations and information that are implicitly present in the obtained measurements. Classic
tomography problems such as link loss inference and topology recovery can be revisited with
approaches that leverage the network coding capabilities of the intermediate nodes in order to
improve the estimation accuracy and to reduce the probing cost and the complexity of selecting
measurement/monitoring paths.

On the other hand, compressed sensing enables the recovering of sparse signals from
lower-dimensional linear measurements (i.e., the inference of the sparse vector X from measurements
Y = AX, where the dimension of Y is smaller than the dimension of X). Furthermore, it can be applied
in cases where measurements are noisy (noise is usually assumed to be Gaussian distributed) and
hard/expensive to collect directly from the sources. Although it is a flexible and data-efficient method,
its application has been restricted by the stringent assumption of sparsity. However, in the context of
network tomography, this sparsity assumption is not so restrictive as in other fields and it is in fact
appropriate, since often path-level performance characteristics (e.g., delays, packet losses, etc.) can be
attributed to a few “bottleneck” links. Therefore, the unknown vector Xt can be considered sparse
with only a few nonzero elements (the components corresponding to the “bottleneck” links) and it can
be recovered nearly perfectly with high probability from the ill-posed routing matrix (or measurement
matrix in CS terminology) and measurement vector Yt based on CS theory [58,59].

Figure 2 illustrates the classification of some of the examined tomographic methods based on the
network tomography category in which they belong and the enabling technology they employ. It can
be used for a quick overview of positioning of each included approach in the state-of-the-art and as a
potential guidance for the novice reader who wants to start becoming acquainted with the field.

Similarly, Table 1 summarizes the key features of the approaches. It can be used as a quick
reference for each approach separately, providing succinctly the key features of each method while at
the same time providing the overall bigger picture at a glance in terms of features. A more educated
overview of the key ideas, strong points, and performance of the presented approaches is provided
in Table 2, in a comparative manner when possible. This table can be used for choosing among the
available approaches, weighing the pros and cons of the included techniques and identifying the most
appropriate for more specific applications and operational objectives.

Finally, Table 3 lists a selection of quantitative performance evaluation results, each in their
relevant context, as compiled from the simulation-based evaluations presented in the respective
original works that proposed them. This table can be used as a performance guide for selecting among
the various approaches given performance operational requirements, i.e., the RMSE error, entropy,
FPR and DR.
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Figure 2. Classification of selected tomographic methods.

Table 1. Key features of selected tomographic methods.

Network Compressed Loss Delay Topology CommentsCoding Sensing

Fragouli et al. [27] X X binary trees
Sattari et al. [28] X X m-ary trees, M-by-N DAGs
Jithin et al. [30] X X M-by-N DAGs, asynchronous

sources
Yao et al. [31] X X RLNC, NRSC, passive tomography

Mohammad et al. [33] X RLNC, congested link location
Gui et al. [34] X X mesh DAG topologies
Gui et al. [35] X X mesh DAG topologies, minimum

probe size
Shah-Mansouri et al. [36] X X WSN, RLNC, subspace property,

virtual sources
Sattari et al. [37] X X trees and general topologies
Sattari et al. [38] X X trees with multiple sources

Fan et al. [52] X X weighted `1 minimization, expander
graphs

Chen et al. [53] X X link congestion probabilities, greedy
iterative algorithm

Takemoto et al. [54] X X measurement paths construction,
low-quality link detection

Morita et al. [56] X X wireless multihop networks, GFT,
spatially dependent channels

Bandara et al. [57] X X scalable, adaptive fault localization
Firooz et al. [41] X X k-identifiability, expander graphs

Fattaholmanan et al. [43] X collaborative distributed framework,
individual matrix for every node

Wang et al. [44] X X expander graphs, `1 minimization
Fan et al. [45] X X synchronization errors, constrained

`1 − `2 optimization
Nakanishi et al. [46] X X no clock synchronization, reflective

NT
Nakanishi et al. [47] X X synchronization errors, differential

routing matrix
Kinsho et al. [48] X X mobile networks, GFT & passive

measurements
Wei et al. [49] X X dynamic networks, line graph model
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Table 2. Overview of key points, advantages, and performance of selected tomographic methods.

Description of Key Points, Advantages, and Concise Performance Evaluation

Fragouli et al. [27] deterministic topology recovery in one pass for binary tree networks without packet losses;
rapid topology inference after only a few probes in the presence of packet losses; the
probability of error is increasing with the loss rates of the links and decreasing with the
number of probes per iteration

Sattari et al. [28] extends [27] to (full or general) m-ary undirected trees; accurately distinguishes among all
different 2-by-2 components for DAGs; more accurate with less experiments compared
to [29]; smaller complexity and less bandwidth consumption than [31]

Jithin et al. [30] deterministically recovers the exact DAG logical topology with a single probing experiment
and one probe packet traversing each link; contrary to [28,29], no synchronization among
sources is required

Yao et al. [31] algorithms with polynomial time computational complexity in the network size for
topology inference under random errors and failure localization under random and
adversarial errors; adversarial error localization under NRSC does not require prior
knowledge of the topology

Mohammad et al. [33] sufficient conditions for successfully identifying a single congested link in any logical
network; speed (length of training sequence)/complexity (size of NC packets) trade-off

Gui et al. [34] lower bound on probe size for valid end-to-end observations under NC; consistent
estimators of link loss rates based on LA approach; LA achieves better accuracy (lower
RMSE) than BP for n > 400

Gui et al. [35] extends [34]; LA using Method of Row Selection (LA-RS) has lower complexity but
similar RMSE compared to LA using Method of Normal Equations (LA-NE); bandwidth
consumption/estimation accuracy trade-off; LA-RS is more accurate than the BP approach;
RMSE decreases as the average link success rate increases; a graph with more sources
achieves better estimation accuracy; RMSE linearly increases with the number of nodes

Sattari et al. [38] proposes a low complexity algorithm to compute MLEs of link loss rates in multiple-source
tree networks with multicast and NC capabilities; the algorithm is efficient as the
computation at each node is at worst proportional to the tree depth

Sattari et al. [37] extends the work in [38]; NC loss tomography is more efficient than traditional methods
without NC; minimum cost routing in polynomial time using NC; BP (applies on trees and
on general topologies) versus MINC-like heuristics (introduced in [8] only apply on trees)
performance depends on number of sources (the more sources the better for both); the
larger the loss rates, the slower the convergence of BP algorithm; BP performance increases
as n increases

Fan et al. [52] CS with weighted `1 minimization; weights are determined based on the prior congestion
probabilities of links; outperforms (unweighted) `1 minimization in terms of estimation
accuracy, DR, and FPR

Chen et al. [53] greedy iterative estimation algorithm to locate congested links based on prior probabilities;
recovered probability is not very accurate; DR is high, whereas FPR not very good;
performance increases while congestion ratio decreases

Takemoto et al. [54] window-based sequential loss tomography scheme for networks with dynamically
changing link loss rates; increases the sparsity of link loss rates by subtracting them
from steady-state path loss rates; path construction algorithm between two monitors that
maximizes identifiability

Morita et al. [56] estimates the GFT of a node state vector and uses CS to estimate packet loss rates in
wireless networks with spatially dependent channels; spatial dependence does not imply
strong correlation between neighboring nodes’ loss rates; limited applicability

Bandara et al. [57] monitors network for anomaly detection and localizes faulty links using CS; scalable
O(log E); cost-effective

Fan et al. [45] link delays as exponential random variables; additive Gaussian clock synchronization
error; constrained `1 − `2 optimization that outperforms the original one [60] in estimation
error and detection probability

Nakanishi et al. [46] reflective NT with a single transceiver for identifying bottleneck links; efficient algorithm
for constructing reflective (fully-loop and folded) paths; no clock synchronization required

Nakanishi et al. [47] synchronization-free delay tomography; differential routing matrix construction by
selecting a path as reference; comparable performance to conventional delay schemes

Kinsho et al. [48] heterogeneous CS-based delay tomography in mobile networks; crowd-sourcing passive
RTT measurements; estimates delays at BSs and at servers from the GFT of the vector of
the spatial-dependent delays at BSs; the scheme captures the spatial dependence of delays
and is robust to the presence of inactive BSs

Wei et al. [49] extends [50] to link delay estimation with dynamic link operations (i.e., insertion and
deletion) and provides an algorithm with better theoretical upper bound on running time;
topological constraints represented by a line graph model
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Table 3. Quantitative performance evaluation of selected tomographic methods.

Error Entropy FPR DR(RMSE)

LA-NE [34] [0.5%, 14.0%)
LA-RS [35] [0.5%, 15.0%)

BP [37] [2.0%, 15.0%) (−320.0, −180.0) ∗

(−400.0, −230.0) †

MINC-like heuristic [37] (−350.0,−180.0) ∗

(−360.0, −200.0) †

Fan et al. [52] (20.0%, 30.0%] ∗∗ (2.0%, 8.0%) (75.0%, 100.0%]
Chen et al. [53] (10.0%, 30.0%] (70.0%, 100.0%)

Takemoto et al. [54] (99.5%, 100.0%)
Bandara et al. [57] [0, 1.0%] [99.0%, 100.0%]

Fan et al. [45] [2.4%, 3.5%] ‡ [0%, 12.0%) [40.0%, 89.0%)
Nakanishi et al. [46] [18.0%, 100.0%]

Kinsho et al. [48] <20.0%
∗ Computed for topology with two sources. † Computed for topology with five sources. ‡ Refers to `2 norm
of estimation error. ∗∗ Refers to normalized `1 norm of estimation error.

6. Conclusions

In this review, we presented some of the latest algebraic-based approaches for network
tomography, which are expected to have considerable practical and theoretical merit in future
communication network infrastructures. We focused on approaches adopting network coding and
compressed sensing as their fundamental machinery for inferring various parameters of the network,
such as delay and packet loss, or the topology of the network itself. We presented various aspects of
some of the specific solutions that have been proposed already. Eventually, we provided a qualitative
comparative discussion on the presented techniques, summarizing in tabular form the key features
of the selected methods. The outcomes of this comparison can be used as basis for the selection of
the most appropriate approach given specific application requirements. From such an analysis, the
network coding based approaches seem to be the more appropriate in an idealized setting where
network routers can be modified at bulk to execute network coding protocols, while compressed
sensing emerged as the more pragmatic and efficient solution that could be realistically applied directly
in today’s infrastructure, paving the way for more advanced network monitoring solutions.
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Abbreviations

The following abbreviations are used in this manuscript:

NT Network Tomography
QoS Quality of Service
ICMP Internet Control Message Protocol
EM Expectation-Maximization
MCMC Markov Chain Monte Carlo
MoM Method of Moments
NC Network Coding
CS Compressed Sensing
OD Origin-Destination
RLNC Random Linear Network Coding
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XOR Exclusive Or
IRV Impulse Response Vector
NRSC Network Reed-Solomon Coding
DAG Directed Acyclic Graph
SCFS Smallest Consistent Failure Set
LA Linear Algebraic
LA-NE Linear Algebraic with Normal Equations
LA-RS Linear Algebraic with Row Selection
BP Belief Propagation
WSN Wireless Sensor Network
MLE Maximum Likelihood Estimator
LP Linear Programming
i.i.d. independent and identically distributed
MSE Mean Squared Error
MT Multicast Tree
RMT Reversed Multicast Tree
MAP Maximum A-Posteriori
WSCP Weighted Set Cover Problem
GFT Graph Fourier Transform
BS Base Station
RTT Round Trip Time
CDS Connected Dominating Set
RIP Restricted Isometry Property
MIS Maximal Independent Set
FPR False Positive Rate
DR Detection Rate
RMSE Root Mean Square Error
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