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Abstract: Immunoglobulin A nephropathy (IgAN) is the most common primary glomerular disease
all over the world and it is a major cause of renal failure. IgAN prediction in children with machine
learning algorithms has been rarely studied. We retrospectively analyzed the electronic medical
records from the Nanjing Eastern War Zone Hospital, chose eXtreme Gradient Boosting (XGBoost),
random forest (RF), CatBoost, support vector machines (SVM), k-nearest neighbor (KNN), and extreme
learning machine (ELM) models in order to predict the probability that the patient would not reach
or reach end-stage renal disease (ESRD) within five years, used the chi-square test to select the most
relevant 16 features as the input of the model, and designed a decision-making system (DMS) of
IgAN prediction in children that is based on XGBoost and Django framework. The receiver operating
characteristic (ROC) curve was used in order to evaluate the performance of the models and XGBoost
had the best performance by comparison. The AUC value, accuracy, precision, recall, and f1-score of
XGBoost were 85.11%, 78.60%, 75.96%, 76.70%, and 76.33%, respectively. The XGBoost model is useful
for physicians and pediatric patients in providing predictions regarding IgAN. As an advantage,
a DMS can be designed based on the XGBoost model to assist a physician to effectively treat IgAN in
children for preventing deterioration.
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1. Introduction

Immunoglobulin A nephropathy (IgAN) is the most common primary glomerular disease all over
the world and it is a major cause of end-stage renal disease (ESRD). Additionally, there are similarities
and differences of IgAN in adults and children. Clinical studies showed that the survival rate of IgAN
patients over 18 years old was 70–80% within 10 years. Among them, 20–30% patients will progress to
ESRD and need renal replacement therapy [1]. Wyatt et al. [2] found that the five-year survival rate
of children with IgAN was 94–98%, and the 20-year survival rate was 70–89%. Although IgAN in
children has relatively lower incidence and less progress in childhood as compared to adults, there is a
continuous hazard of progression as children grow older [3]. The prognosis of children with IgAN
varies from remission to progression to ESRD. Early detection and effective intervention are important
in improving the outcome of IgAN, and the renal biopsy is still the cornerstone of the correct diagnosis
of IgAN. However, most patients have entered ESRD at the time of diagnosis, since it is difficult for
patients to accept invasive renal biopsy. It is difficult to determine a fixed treatment plan for IgAN in
children because it is more troublesome to gather up the course of IgAN in children than in adults.
Therefore, it is necessary to develop new predictive models for the progression of IgAN in children in
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order to guide the selection of cases to be treated [4]. Machine learning has been successfully applied in
many fields, providing a shield for diagnosis of IgAN for non-invasive diagnose in asymptomatic cases.

Traditional medical treatment methods rely entirely on doctors’ diagnosis and the treatment of
patients. In this way, it is difficult to distinguish between diseases with similar symptoms and discover
the hidden diseases, leading to misdiagnosis, which may delay the patient’s treatment or endanger the
patient’s life. With the explosive growth of electronic medical records, machine learning in medicine
has attracted the attention of many scholars [5–7]. Ali et al. proposed intelligent smart healthcare
monitoring systems that are based on machine learning approaches to extract useful features from
the collected healthcare data of patients, reduce the dimensionality of the data, and improve the
classification precision [8,9]. ESRD has the characteristics of high disability, high mortality, and high
medical expenses. A lot of researches were invested in the early detection and prediction of kidney
disease by machine learning algorithms in order to avoid the occurrence of ESRD, such as the prediction
of the kidney disease [10,11], the formulation of the best course of treatment [12], the evaluation of the
risk stratification [13], and so on.

The goal of treating IgAN is still to delay the progression of IgAN, since the exact treatment
plan for IgAN has not yet been established. Researchers mainly focus on the prognosis [14–16],
risk stratification [17–20], and ESRD prediction of IgAN [21,22], whose patients are over 18 years
old. The researches on IgAN in children focused on pathological characteristics and statistics [23–25],
but there are few on the prediction of IgAN in children based on machine learning. Machine learning
algorithms are an effective method for solving the high-dimensional problem of medical data, and it
plays an important role in smart medical care.

In this paper, a novel method is proposed for predicting the probability of children patients with
IgAN reaching ESRD in five years. The main contributions of this paper are:

• A dataset about IgAN in children was created. And the chi-square test was used to extract the
most useful features from the dataset.

• EXtreme Gradient Boosting (XGBoost) was adopted in order to predict whether IgAN disease
in children patients would reach ESRD or not within five years using a new dataset instead of
the traditional clinical pathology. A decision-making system that was based on the XGBoost
algorithm was designed with the Django framework.

• Comparation of the performance of XGBoost with random forest (RF), CatBoost, support vector
machines (SVM), k-nearest neighbor (KNN), and extreme learning machine (ELM) was conducted.

2. Materials and Methods

2.1. Dataset

The initial data include electronic medical records of 1167 patients aged 0–18 years old from 2003
to 2019, which came from the electronic medical records of the Nanjing Eastern War Zone Hospital.
After the initial data cleaning and deletion of information with missing values, the dataset contained
1146 records. Each record contained 37 attributes, where the first 36 attributes are independent variables that
correspond to the patient information, while the remaining attribute is the dependent variable of clinical
interest. The 36 independent variables were collected according to five aspects, which are epidemiology,
blood test, urine test, renal pathology, and treatment options. In detail, age, sex and hypertension are
classified as epidemiology. Serum creatinine (Scr), cholesterol (CHOL), triglycerides (TG), albumin (ALB)
complement C3, and glomerular filtration rate (eGFR) are blood test indicators. Urine tests include
urine C3 (Ur_C3), α2-m, urine NAG enzyme (Ur_NAG), urine RBP (Ur_RBP), and uric acid (UA).
ACEI_ARB, immunosuppression therapy, lipid lowering, and tonsillectomy are the treatment options.
The remaining 19 attributes M, E, S, T, C, IgA, IgG, IgM, C3, C4, C1q, loop necrosis, focal segmental
glomerular sclerosis (FSGS), glomerulosclerosis, arterial hyaline degeneration, crescent ratio, medullary
interstitial fibrosis, thickening and stratification of elastic layer of interlobular artery, and vacuolar
degeneration of arteriole smooth muscle cells are included in renal pathology. The dependent variable
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was whether the patient would reach the end-stage renal disease within five years, which was expressed
by ESRD.

These independent variable attributes are divided into continuous independent variables and
categorical independent variables according to whether they are continuous values or not, as shown in
Tables 1 and 2. Specifically, Table 1 shows the range, mean, and standard deviation for continuous
independent variables and Table 2 displays the possible values, numeric value, as well as the number
of records for categorical independent variables. Table 3 displays the possible values, numeric values,
as well as the number of records for categorical dependent variables. The ESRD is distributed in 567
and 578 records, which correspond to the categories yes and no, respectively, which indicates that
patients reach the final stage of IgAN or do not reach that within five years, respectively.

Table 1. Continuous independent variables.

Variable Range Mean Standard Deviation

Age (years) 0–18 14 3.59
Scr (µmol/L) 16.00–1154.50 71.12 67.86

CHOL (mmol/L) 0.20–19.00 5.49 2.70
TG (mmol/L) 0.17–22.00 1.62 1.25
UA (µmol/L) 0.53–777.00 347.87 97.63
ALB (g/mL) 7.60–65.20 41.88 120.48

Complement C3 (g/L) 0.24–25.00 1.06 0.74
FSGS 0.00–61.50 4.20 8.75

Spherically sclerotic 0.00–84.20 3.75 9.21
Crescent ratio 0.00–77.80 5.25 9.50

eGFR (mL·min−1
·(1.72 m2)−1) 4.90–141.75 111.77 21.11

Scr-Serum creatinine; CHOL-cholesterol; TG-triglycerides; UA-uric acid; ALB-albumin; FSGS-focal segmental
glomerular sclerosis; eGFR-glomerular filtration rate.

Table 2. Categorical independent variables.

Variable Possible Values Numeric Value Number of Records Percentage (%)

Gender M/F 1/0 776/369 67.78/32.22

Ur_C3 normal/abnormal 0/1 347/798 30.31/69.69

α2-m normal/abnormal 0/1 214/931 18.69/81.31

Ur_NAG normal/abnormal 0/1 909/236 79.39/20.61

Ur_RBP normal/abnormal 0/1 164/981 14.32/85.68

M 0/1/2/3 283/562/267/33 24.72/49.08/23.32/2.88

E 0/1/2 756/386/3 66.03/33.71/0.26

S 0/1 728/417 63.58/36.42

T 0/1/2/3 845/251/42/7 73.80/21.92/3.67/0.61

C 0/1/2 648/444/53 56.59/38.78/4.63

IgA 0/1/2/3 16/31/1082/16 1.40/2.70/94.50/1.40

IgG 0/0.5/1/2 882/1/177/85 77.03/0.09/15.46/7.42

IgM 0/0.5/1/2 669/13/418/45 58.43/1.14/36.50/3.93

C3 0/0.5/1/2 207/9/173/756 18.08/0.79/15.11/66.02

C4 0/1 1133/12 98.95/1.05

C1q 0/1/2 1094/49/2 95.55/4.28/0.17

Hypertension yes/no 1/0 322/823 28.12/71.88

ACEI_ARB 0/1 862/283 75.28/24.72

Immunosuppressive therapy 0/1 726/419 63.41/36.59

Lipid lowering 0/1 738/407 64.45/35.55

Tonsillectomy 0/1 1124/21 98.17/1.83

Loop necrosis 0/1/2/3 1039/91/7/8 90.74/7.95/0.61/0.70
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Table 2. Cont.

Variable Possible Values Numeric Value Number of Records Percentage (%)

Arterial hyaline degeneration 0/1/5 1015/129/1 88.65/11.26/0.09

Medullary interstitial fibrosis 0/1/2/3 1090/39/11/5 95.20/3.41/0.96/0.43

Thickening and stratification of
elastic layer of interlobular artery 0/1 1108/37 96.77/3.23

Vacuolar degeneration of arteriole
smooth muscle cells 0/1 1085/60 94.76/5.24

Ur_C3-urine C3; Ur_NAG-urine NAG enzyme; Ur_RBP-urine RBP.

Table 3. Categorical dependent variable.

Variable Possible Values Numeric Value Number of Records Percentage (%)

ESRD
yes 1 567 49.52
no 0 578 50.48

2.2. Feature Selection

We evaluated the importance and relevance of predictors with ESRD by the chi-square test for
the purpose of identifying significant predictors of ESRD to be applied as inputs for the data mining
methods. Feature analysis, as illustrated in Table 4, displays that the importance and relevance of all
the predictors with ESRD. The p-value is called Pierce the correlation coefficient. A p-value of less than
0.05 means that there is significant difference. The score stands for the Chi-square statistics, which can
be calculated according to Equation (1).

χ2 =
∑

(A− T)2/T (1)

where A represents the actual value and T represents the theoretical value.

Table 4. Chi-square analysis results of predictors.

Variable Score p-Value

Scr 827.885 0
FSGS 716.552 0

Crescent ratio 658.534 0
ALB 621.352 0
UA 461.223 0

Spherically sclerotic 321.243 0
CHOL 279.544 0

Ur_NAG 119.224 0
eGFR 163.170 0

TG 56.108 0
E 27.470 0
T 23.479 0
C 18.653 0
M 18.451 0

IgM 16.973 0
C3 13.189 0

Gender 0.203 0.652
Ur_C3 0.024 0.878
α2-m 7.233 0.007

Ur_RBP 5.823 0.016
Complement C3 0.003 0.953

S 5.760 0.016
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Table 4. Cont.

Variable Score p-Value

IgA 0.025 0.875
IgG 0.816 0.366
C4 0.001 0.973

C1q 3.444 0.063
Hypertension 11.592 0.001

ACEI_ARB 0.211 0.646
Immunosuppressive therapy 0.232 0.630

Lipid lowering 9.725 0.002
Tonsillectomy 0.488 0.485
Loop necrosis 0.024 0.877

Arterial hyaline degeneration 0.012 0.911
Medullary interstitial fibrosis 5.655 0.017

Thickening and stratification of elastic layer of interlobular artery 6.373 0.012
Vacuolar degeneration of arteriole smooth muscle cells 0.490 0.484

The higher the score, the more important the attribute. Sixteen features, which are shown in the
first 16 rows of Table 4, were selected based on p-value that is equal to 0 and score greater than 10 for
data dimension reduction in this paper.

2.3. Model

In this section, XGBoost has been introduced as the best performing algorithm. For processing
high-dimensional data, dimensionality reduction, feature extraction, etc., it has a higher accuracy than
traditional algorithms. XGBoost is an improved gradient boosting algorithm [26]. The innovation of
XGBoost lies in the optimization of the objective function with the second-order Taylor expansion.
It merges multiple weak classifiers in order to evolve into a strong classifier, and the base classifier is a
classification and regression tree (CART).

The objective function of XGBoost consists of a loss function and a regularization term, which are
defined, as follows:

Obj =
n∑

i=1

l(yi, ŷi) +
K∑

k=1

Ω( fk) (2)

where fk is the function expression of the k-th tree model and yi and ŷi are the true label and predicted
value of the i-th sample xi, respectively. XGBoost is an additive model, so the predicted value is the

sum of the predicted values of each tree, i.e., ŷi =
K∑

k=1
fk(xi), fk ∈ F.

The sum of the complexity of K trees is used as a regularization term for preventing the model
from over-fitting. Assuming that the tree model that is trained on the t-th iteration is ft, then:

ŷ(t)i =
t∑

k=1

fk(xi) = ŷ(t−1)
i + ft(xi) (3)

Substitute Equation (3) into Equation (2) to obtain Equation (4).

Obj(t) =
t∑

i=1

l(yi, ŷ(t)i ) +
t∑

i=1

Ω( fi) =
t∑

i=1

l(yi, ŷ(t−1)
i + ft(xi)) + Ω( ft) (4)
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Expand the loss function
t∑

i=1
l(yi, ŷ(t)i ) to second-order Taylor

Obj(t) �
t∑

i=1

[
l(yi, ŷ(t−1)

i + ft(xi))
]
=

t∑
i=1

[
l(yi, ŷ(t−1)

i + gi ft(xi) +
1
2 hi f 2

t (xi))
]
+ Ω( ft)

(5)

where gi and hi are the first-order partial derivative and second-order partial derivative of the loss

function l with regard to ŷ(t−1)
i , respectively, and Ω( ft) = γT + 1

2λ
T∑

j=1
ω j

2.

Define the leaf node I j =
{
i
∣∣∣q(xi) = j

}
, and the objective function is finally reduced to

Obj(t) =
T∑
j


∑

i∈I j

gi

ω j +
1
2

∑
i∈I j

hi

ω j
2

+ γT (6)

During the training process of the XGBoost model, when the t-th tree is established, the greedy
strategy is adopted in order to split the tree nodes. Every time the tree node splits into two left and
right leaf nodes, it will bring gain to the loss function, which is defined, as follows:

Gain = ObjL+R − (ObjL + ObjR) =

1
2


 ∑

i∈IL
gi

2

 ∑
i∈IL

hi

+λ
+

 ∑
i∈IR

gi

2

 ∑
i∈IR

hi

+λ
−

(∑
i∈I

gi

)2

(∑
i∈I

hi

)
+λ

− λ
(7)

If Gain > 0, then the result of this split is added to the model construction.
XGBoost provides three calculation methods for feature importance. The first way is gain, which refers

to the average gain of the feature when it is used in trees. The second way is weight, which is the number
of times that a feature is used to split the data across all trees. The last way is cover, which relates to
the average coverage of the feature when it is used in trees. In this study, the gain method was mainly
used for calculating feature importance.

2.4. Performance Evaluation

ROC curve and area under curve (AUC) were used in order to evaluate the pros and cons of a
binary classifier (binary classifier) in our paper. The abscissa of the curve is the false positive rate (FPR)
and the ordinate is the true positive rate (TPR).

TPR =
TP

TP + FN
(8)

FPR =
FP

FP + TN
(9)

where TP stands for True Positive, TN represents True Negative, FP symbolizes False Positive, and FN
means False Negative.

Different (FPR, TPR) points can be obtained by adjusting the threshold value that is predicted by
the model, and these points can be connected into a curve, which is the ROC curve. After the curve is
drawn, qualitatively analyze the model that if you want, you need to calculate the AUC area.

AUC refers to the area under the ROC curve [27]. Calculating the AUC value only needs to
integrate FPR on the horizontal axis of ROC. In a real scene, the ROC curve is generally above the line
y = x, so the value of AUC is generally between 0.5 and 1. The larger the value of AUC, the better the
performance of the model.
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In addition, compare the recall rate and f1 score of all the classifiers.

recall = TPR =
TP

TP + FN
(10)

f1 =
2TP

2TP + FP + FN
(11)

The training set and test set were randomly selected with a ratio of 3 to 1, during model training.
Training and testing applied the 10-fold cross validation method to separate the dataset into several
partitions or fold, calculated the average of accuracy from all folds. In addition, the above-mentioned
performances, such as ROC, AUC, recall, and f1 scores were used to evaluate all techniques.

3. System Implementation

XGBoost, which showed the best classification performance, was used in order to implement an
online decision-making system. The core framework of the system is the Django framework, which was
used to apply the machine learning models and build the web tool, and it made use of two programming
languages, including Python (version 3.7.0) and HTML (version HTML 5). Django is an open source
python web framework. Programmers can easily and quickly create high-quality, easy-to-maintain,
database-driven applications with the framework. In addition, in the Django framework, it also
contains many powerful third-party plug-ins, which makes Django highly extensible.

In the current implementation of the system, an HTML communicates with the Python service
and formats the information that is shown to the user. The training model of the system that is shown
in Figure 1 can be used for a single prediction. Additionally, Figure 1 shows a screenshot of the initial
web page. When users enter this page, fill in the data of the initial web page according to the feature
description in Section 2.1. The system backend predicts whether the patient will reach ESRD or not in
five years based on the data that were submitted by the initial web page. Moreover, the web-based
decision-making assistance system will obtain the probability of a patient reaching and not reaching
ESRD within five years, which may help doctors to alert to some borderline patients. Figure 2 shows
the prediction outcome of the decision-making system (DMS) that is based on XGBoost.Future Internet 2020, 12, x FOR PEER REVIEW 8 of 11 
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Figure 2. Outcome of the eXtreme Gradient Boosting (XGBoost)-based DMS.

4. Results

The best performing model was selected in order to predict whether children suffering from
IgAN would reach the end-stage renal disease after five years among six kinds of machine learning
algorithms of XGBoost, RF, CatBoost, KNN, SVM, and ELM.

Table 5 shows the accuracy, precision, recall, f1-score, and AUC values of XGBoost, RF, CatBoost,
KNN, SVM, and ELM models. It can be concluded from the table that all of the performance indicators
of XGBoost are the best, AUC, that accuracy, precision, recall, and f1-score are 85.11%, 78.60%, 75.96%,
76.70%, and 76.33%, respectively. Table 6 illustrates the importance scores of XGBoost on 16 variables
that were selected from Table 4. The AUC indicators of RF and XGBoost are almost equal, but the
accuracy, precision, recall, and f1-score of the RF model are all smaller than those of the XGBoost model.

Table 5. Results for Immunoglobulin A nephropathy (IgAN) prediction.

Algorithm Accuracy Precision Recall F1_Score AUC

XGBoost 0.7860 0.7596 0.7670 0.7633 0.8511
RF 0.7642 0.7426 0.7282 0.7353 0.8507

CatBoost 0.7642 0.7379 0.7379 0.7379 0.8454
KNN 0.7555 0.7327 0.7184 0.7255 0.8090
SVM 0.7642 0.7333 0.7476 0.7404 0.8272
ELM 0.7598 0.7264 0.7476 0.7368 0.8174

Table 6. The corresponding variable importance score using XGBoost.

Variables Importance Score

Ur_NAG 0.191591
ALB 0.175141

CHOL 0.104368
Crescent ratio 0.085010

FSGS 0.067488
Scr 0.062304
TG 0.050906

Spherically sclerotic 0.034839
UA 0.034522
M 0.033158

IgM 0.032431
T 0.031299

C3 0.025893
C 0.025279

eGFR 0.024145
E 0.021627

Figure 3 depicts the ROC curve of six machine learning models. From the figure, it can be seen
that the ROC curves of the XGBoost and RF models are close at the top; the ROC curve of the KNN
model is at the bottom, which means that the XGBoost and RF models have the best performance
and the KNN model has the worst performance according to the ROC curve. The ROC curves of the
CatBoost, SVM, and ELM models are between that of the XGBoost and KNN models.
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5. Discussion

In the paper, the use of machine learning algorithms for predicting IgAN in children was researched.
At first, 16 features (serum creatinine, focal segmental glomerular sclerosis, crescent ratio, albumin,
uric acid, glomerulosclerosis, cholesterol, urine NAG enzyme, eGFR, triglycerides, E, T, C, M, IgM,
and C3) were chosen as the input of the classifiers by the chi-square test for dimension reduction.
Subsequently, the XGBoost, RF, CatBoost, KNN, SVM, and ELM models were applied to predict IgAN
in children. Finally, a decision-making system was build based on the best performing model and
Django framework. The results that are shown in Table 5 and Figure 3 indicate that the XGBoost model
can provide better performance when compared to other models for the medical application that was
considered in this study. The AUC value, accuracy, precision, recall, and f1-score of XGBoost were
85.11%, 78.60%, 75.96%, 76.70%, and 76.33%, respectively. While the AUC value, accuracy, precision,
recall and f1-score of RF (76.42%, 74.26%, 72.82%, 73.53%, 85.07%), CatBoost (76.42%, 73.79%, 73.79%,
73.79%, 84.54%), KNN (75.55%, 73.27%, 71.84%, 72.55%, 80.90%), SVM (76.42%, 73.33%, 74.76%, 74.04%,
82.72%), and ELM (75.98%, 72.64%, 74.76%, 73.68%, 81.74%) models are all lower than those of XGBoost.
Here, we can highlight an advantage of XGBoost, because we not only need interpretable models to
assist clinical decision-making, but also help clinicians to discover hidden factors that affect the disease.
The XGBoost algorithm has a regularization term to prevent overfitting. Moreover, XGBoost can
specify the default direction of the branch for missing values or specified values, which can greatly
improve the efficiency of the algorithm. More importantly, the XGBoost model has high generalization
performance and it can clearly output the important scores of each attribute, namely it is interpretable,
which is required by clinical medicine.

Despite the potential of this research, there are several limitations. First, the collected dataset is
relatively small, and it cannot fully cover kidney cases in children, which leads to inaccurate predictions
of special kidney disease cases in children. Therefore, the dataset needs to be increased and feature
processing needs to be more refined by applying data mining techniques for predicting IgAN in
children. Second, the prediction system is suitable for children with IgAN in the age range of 0–18 years
old, but not for adults with IgAN.

In the future, we will devote to improve the accuracy of the model, perfect the system, add database
to the system, expand the training dataset, and complement the system with an error correction function.
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