
future internet

Article

A Bayesian Approach Based on Bayes Minimum Risk
Decision for Reliability Assessment of Web
Service Composition

Yang Song, Yawen Wang * and Dahai Jin

State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China; song_yang@bupt.edu.cn (Y.S.); jindh@bupt.edu.cn (D.J.)
* Correspondence: wangyawen@bupt.edu.cn

Received: 9 November 2020; Accepted: 3 December 2020; Published: 4 December 2020
����������
�������

Abstract: Web service composition is the process of combining and reusing existing web services to
create new business processes to satisfy specific user requirements. Reliability plays an important role
in ensuring the quality of web service composition. However, owing to the flexibility and complexity
of such architecture, sufficient estimation of reliability is difficult. In this paper, the authors propose a
method to estimate the reliability of web service compositions based on Bayes reliability assessment
by considering it to be a decision-making problem. This improves the testing efficiency and accuracy
of such methods. To this end, the authors focus on fully utilizing prior information of web services to
increase the accuracy of prior distributions, and construct a Markov model in terms of the reliabilities
of the web composition and each web service to integrate the limited test data. The authors further
propose a method of minimum risk (MMR) to calculate the initial values of hyperparameters satisfying
the constraint of minimal risk of the wrong decision. Experiments demonstrate that the proposed
method is capable of efficiently utilizing prior module-level failure information, comparing with
the Bayesian Monte Carlo method (BMCM) and expert scoring method (ESM), when the number
of failures increased from 0 to 5, reducing the required number of test cases from 19.8% to 28.9%
and 6.1% to 14.1% separately, improving the reliability assessment of web service compositions,
and reducing the expenses incurred by system-level reliability testing and demonstration.

Keywords: web service composition; hyperparameter; minimum risk; reliability assessment;
bayes reliability assessment

1. Introduction

Web services are service-oriented architecture technologies that are executed using standard web
protocols to ensure their operation varying platforms. With the continuous maturity of service-oriented
technology and the promotion of service-oriented architecture (SOA) [1], multiple atomic web services
have been implemented to achieve more powerful service compositions while satisfying relevant rules
and addressing the demands of businesses. To maintain the quality of web service composition and
utilize testing resources reasonably, assessment methods for web service compositions are required to
exhibit high error detection capabilities, low cost consumption, and broad applicability [2].

In software reliability testing, the purpose of reliability growth testing is to identify and incorporate
corrective actions that improve the reliability of the system. Following the completion of growth
testing, a reliability demonstration is performed to verify a specific reliability requirement. Both broad
and deep studies have been conducted on software reliability assessment to expose software defects
and improve software reliability at early stages. When the number of test cases is very high or the
test data are limited, software input is selected using statistical methods to promote rapid reliability
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growth of the software to ensure high reliability software demonstration testing [3]. In this context,
Bayes reliability inference has been extensively applied to reliability estimation, and a wealth of experts
and prior knowledge about system/subsystem performances are associated with it [1]. The Bayesian
approach has been adopted because it combines subjective judgment or prior experience with data
obtained from test samples. In other words, it uses a combination of existing experience and new
test data to assess reliability metrics. In this approach, a posterior distribution is derived based on a
prior distribution and a likelihood function, and reliability testing is conducted based on this derived
distribution. Following the addition of new sample data, this posterior distribution is employed
as a prior distribution during the process of constructing a new posterior distribution. Under the
Bayesian framework, historical data are usually used for the analysis of prior distributions with certain
parameters [4]. However, the origin of the required prior distributions remains a major concern in
Bayesian reliability analysis [5]. The appropriate choice of priors is critical to capture useful information
present in historical data. The fundamental advantage of adopting the Bayesian approach is that it
augments the quality of data, thereby reducing the uncertainty involved in decision making.

Thus, in this case, the prior information is derived from historic data or experts’ suggestions.
The two types of information regarding unknown parameters can be expressed in the form of statistical
distributions, from which further statistical inferences can be made. Then, the posterior distribution
is evaluated by integrating the prior distribution and the likelihood function constructed based
on the sampling distribution of the data. Bayesian estimation with prior distribution has been
extensively studied in the literature, for the reliability assessment, some studies are shown in Table 1.
The integration of multiple prior conditions, especially when these prior conditions are derived from
various unique information sources, is challenging in Bayesian inference. The challenge is to integrate
these distributions in a reasonable and effective manner and obtain a single probability distribution by
combining all prior information and knowledge. Anderson-Cook [6] highlights the problem that “If
the authors have multiple small data sets that are each individually insufficient to answer the question
of interest, then combining them and incorporating engineering or scientific understanding of the
process should allow us to extract more from that collection of data.” However, the models need to be
carefully considered and evaluated to ensure that they accurately reflect the data and the underlying
physical processes. The models have to be simple enough that they can be distinguished by the data,
but at the same time complex enough to capture the physical processes. Jacobs et al. [7] studied an
averaging method that combines the opinions of different experts. However, it does not adequately
explain the deviations of different opinions and require a more complex model such as Bayesian model.
In [8], the Bayesian approach is introduced to reliability using several examples, but not suitable for
the web service composition. Considering both system and subsystem level data, other methods were
proposed, such as the average multiple priors [9], pooling method [10], and integrating the derived
prior through the system structure [11]. In [12] an integration-based method is proposed to estimate
and pool the weighted priors; it utilizes Bayes’ theorem to integrate heterogeneous priors. In addition,
in the service composition concept, where the nodes are traversed in a given order to provide a service,
some related techniques have been applied to solve the raised reliability issues, (e.g., Markov chain [13],
Stochastic Reward Networks [14], Game theory [15], and Universal Generating Functions [16]). In the
case of a complex system comprising a large number of subsystems and components in the field
of reliability engineering, prior knowledge of system reliability can provide information about the
subsystem and system levels. In the case of web service composition, system-level module reliability is
dependent on subsystem module reliability performance. Therefore, utilizing the full range of existing
reliability prior information and testing data at subsystem levels and integrating such multilevel prior
information during testing is a challenging task.

The calculation of hyperparameters in priors is another aspect that needs to be addressed.
If there are no reasonable grounds to specify the hyperparameters of the priors, the advantage of
Bayesian analysis can be compromised due to the introduction of additional uncertainty. Unfortunately,
the assumption of arbitrary values for the hyperparameters of Bayesian priors is not uncommon [17].
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Other existing studies on hyperparameters, such as the invariance principle [18], maximum entropy [19],
and Jeffrey principle [20], concern pure heuristic methods, which require large amounts of data and
are difficult to confirm, thereby making them unsuitable for practical application [21]. The evaluation
should be based on the complete range of prior information, and ignoring this issue may result in
costly and inaccurate reliability testing.

Table 1. Different methods on the reliability assessment.

Authors Year Approaches

Anderson-Cook [6] 2009
By considering the totality of data simultaneously, instead of
performing analyses on each data type separately, for decision-making;
however, it does not apply the service composition.

Csenki, A [7] 2009

The authors studied an averaging method that combines the opinions of
different experts. However, it does not adequately explain the
deviations of different opinions and require a more complex model such
as the Bayesian model

Moala F A, Rodrigues J, Tomazella V L D [8] 2009 The authors compare the posterior densities of the reliability function
by using several examples.

M. Burgman, M. McBride, R. Ashton [9] 2011
The study proposed a method of multiple prior information integration
is to average all multiple priors. However, the deviations of the different
opinions are not properly quantified in the averaging approach.

A. OHgan, C. Buck, A. Daneshkhah [10] 2006
Linear and geometric pooling methods allow unequal weights for prior
information and focus on multiple priors; however, it over depends the
experts’ judgement.

K. McConway [11] 1978 The study considered system configuration and structure; the system
prior can be derived from subsystem priors.

Li Z S, Guo J, Xiao N C, et al. [12] 2017
The study proposed an integration-based method to estimate and pool
the weighted priors; it utilizes Bayes’ theorem to integrate
heterogeneous priors.

Pham, N. H. Tran, S. Ren, W. Saad and
C. S. Hong [13] 2020

A sampling-based Markov approximation (MA) approach is proposed
to solve the combinatorial NP-hard problem, to overcome this issue of
requires a long convergence time.

Di Mauro, M. Longo, F. Postiglione, and
M. Tambasco [14] 2017

For a chain of network nodes in Service Function Chains, a double-layer
model is adopted, where Reliability Block Diagram describes the
high-level dependencies among the architecture components,
availability analysis is carried out to characterize the minimal
configuration of the overall system.

Bian, X. Huang, Z. Shao, X. Gao and Y. Yang [15] 2015

The authors proposed the DISCCA algorithm that guides the service
nodes towards the Nash Equilibrium with short latency and low
congestion, through decision making by individual users with local
information to improve the reliability of system.

M. Di Mauro, M. Longo, and F. Postiglione [16] 2018
For Service Function Chaining, propose a Universal Generating
Function (UGF) approach, which minimizes deployment cost while
respecting a given availability requirement.

In this paper, the authors propose a reliability assessment method for web service compositions
based on Bayes theory by fully utilizing prior information of web services. The authors propose the
method considering two stages of web service compositions—reliability growth stage and reliability
demonstration stage—building the reliability test frame for web service composition. Based on the
reliabilities of various web services, the authors constructed a Markov model to calculate the reliability
of the target web service composition.

The model both reflects the different in reliability growth and shows the feature of web service
composition. To improve the efficiency of the estimation, depending on the failure information of web
services to estimate the prior distribution of web service composition, the authors focused on solving
the prior distribution and propose a method of minimum risk (MMR) to calculate hyperparameters
and reduce the sample size adequately to meet a product’s reliability specifications. Experiments
demonstrate that the proposed method is capable of completely utilizing prior failure information
during web service testing, decreasing the number of test cases, and improving testing efficiency.

The remainder of this paper is organized as follows. The reliability assessment model for web service
compositions based on the Bayes method is presented in Section 2.1. The assessment method for web
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service compositions and the hyperparameter solving method based on MMR are discussed in Section 2.2.
The experiments and their results are discussed in Section 3. Finally, the paper is concluded in Section 4.

2. Materials and Methods

2.1. Web Service Composition Reliability Model

Web service composition is the process of combining different services into a single service to
perform more complex functions. Owing to the lack of prior system-level information and experimental
data for web service compositions, the system reliability is required to be assessed based solely on
subsystem-level information. In this section, an assessment method based on a system structure
with subsystem-level priors and data is introduced. The authors utilized the existing reliability prior
information and testing data at sub-web services level, and integrated them to evaluate the web service
composition. The authors defined an abstract web service to be a set of web services equipped with
the same function, and specific web services were selected from the abstract web service to integrate
the composition. Figure 1 illustrates that the web service composition includes abstract web service
candidates, Wi, where Wi = {w11, w12, . . . , w1n} and each w denotes a specific web service, and that
optimal web services are selected from a set of functionally equivalent web service candidates.
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The web service composition integrates specific web services following a certain logic. Assuming
that all alternative web service candidates are available, the communication links for user-invoked web
services depend on quality of service (QoS) properties including response-time, location, and latency,
and using this, the invoked web service sets: {w11, w22, w32, w43}, illustrated in Figure 2, can be obtained.

To record the invocation of web services, the authors constructed a real-time data processing
system, as depicted in Figure 3. The system includes Apache Kafka, Spark Streaming and database
(DB), and web services deployed on Nginx. The invocation information of the web services was
monitored and collected to calculate the associated transition probabilities. Among the constituent
systems, Apache Spark exhibited high performance for both batch and streaming data, and Spark
Streaming is an extension of the core Spark API that enables scalable, high-throughput, fault-tolerant
stream processing of live data streams. The purpose of Kafka is to accumulate and, subsequently,
re-compute the data. The authors utilized Spark Streaming to obtain data from the log of web services,
which were then transmitted to the computation engine. Spark streaming was used as the computation
engine, which directly programs based on SQL, to count the number of invocations and the number of
errors corresponding to each web service. Considering the high dimensionality of queries, the results
were stored on the OLAP database.

The authors used the aforementioned real-time data processing system to record the telemetry
data regarding the number of invocations and the number of errors corresponding to each web
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service. In this paper, the authors considered the overtime of response as web service failure and used
the proportion of invocation failures to calculate the reliability of web services. Let us assume that
corresponding to a duration t = tn − tk, the numbers of invocations and failures of the web service
w is Cn and n, respectively, at time tn, and Ck, and k, respectively, at time tk. Therefore, the probability
of failure of the web service w corresponding to the duration t is F(w) = n−k

Cn−Ck
, and its reliability is

r(w) = 1− F(w).
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In service-oriented architecture (SOA), to estimate the characteristics of dynamic and
self-adaptability of web service composition, the authors used a Markov model to construct the
evaluation model based on the state of software and state transition to describe the activity of software.
Web service composition can be considered to be a task flow from an initial state to a final state.
Corresponding to each task node, the specific web service is selected to be its state. If the currently
selected web service corresponding to the task node is successfully invoked, the process continues to
the next one, or it selects another task node, until it is successfully invoked. In this paper, the selection
of a web service denotes the active state, and the currently selected web service depends on the current
state and not on previous behavior. This successfully reflects the Markov behavior—the user invokes
each subsequent web service based on the corresponding transition probability.

Figure 4 depicts the Markov model of the web service composition illustrated in Figure 2.
Assuming the failure state to be F in which case each web service probably fails, the web service
with failure will enter in state F. In addition, S denotes the final state and the specific web service wi j
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denotes a basic logical unit. Therefore, a series of web service flows can be established according to
the composition.
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Based on the information recorded by the data processing system, the transition probability pi j
of the transition from the web service i to the web service j can be calculated, which is expressed by
the values over the arcs in Figure 4. The collection of pi j ∈ [0, 1] describes the state transition relations
between web services. The transition probability is given by

pi j =
s∑

k=1

psk × [

∣∣∣∣interact
(
ci, c j

)∣∣∣∣∣∣∣∣interact
(
ci, c j

)∣∣∣∣
i=1,2,...,N

]ci,c j∈Sk

where S denotes the number of web service composition flows, pSk denotes the transition probability
of the web service flow Sk in the web service composition, N denotes the number of web services,
and interact

(
ci, c j

)
denotes the number of interactions of web service i with web service j in the web

service composition flow, Sk.
Therefore, in the case of a web service competition with n web services, the transition matrix of

web service can be expressed as follows.

p =


p11 · · · p1n

...
. . .

...
pm1 · · · pmn

 (1)

Let us assume that the web service composition includes n web services and that web service i
denotes the initial state. During successful operation of the web service composition, the web service
i is transformed into its final state S with probability piS. The transition probability is given by the
following equation:

pis +
∑n

j=1
pi j = 1 (2)

Equation (2) is derived from the web service composition in the absence of any failures. However,
in practice, failure of web service compositions is common. Let ri denote the reliability of the web
service. Thus, when the web service i is invoked, its probability of failure is 1 − ri. In the Markov
model of web service composition with n + 2 states, the transition matrix in the existence of failures is
given by 

qi j = ri ∗ pi j, i = 1, 2, . . . , n; j = 1, 2, . . . , n
qiF = 1− ri, i = 1, 2, . . . , n
qSS = qFF = 1
qi j = 0, others

(3)

The transition matrix of a web service composition with n web services can be expressed as follows.
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Q =

[
P̂ C
0 I

]
(n+2)×(n+2)

(4)

where P̂ is an n× n matrix,
[
qi j

]
n×n

, denoting the single-step control transition probability between n web
services, and C is an n× 2 matrix denoting the control transition probability between the absorption states,
S and F. In the web service composition depicted in Figure 4, the control transition matrix is given by

Q =



0 p12r1 p13r1 0 p1sr1 1− r1

0 0 0 r2 0 1− r2

0 0 0 r3 0 1− r3

p41r4 p42r4 p43r4 p44r4 0 1− r4

0 0 0 0 1 0
0 0 0 0 0 1



1
2
3
4
S
F

1 2 3 4 S F

(5)

This yields the following equation expressing the relationship between the reliability, Rs, of the
web service composition and the reliability, pis, of each web service.

Rs =
∑n

i=1

(
In − Q̂

)−1

1i
ripis (6)

where In denotes the identity matrix of order n, and Q̂ denotes the no-absorption transition probability
matrix of order n. Using this equation, the reliability information of component levels can be fully
utilized to calculate the reliability of the entire web service composition.

2.2. Reliability Assessment Method Based on Bayes Minimum Risk Decision

2.2.1. Reliability Assessment Scenario

In this paper, the authors performed reliability assessment based on Bayesian reliability
assessment [22], by focusing on the problem of accurately and objectively verifying software reliability
requirements. Bayesian reliability assessment is a statistical theory based on the Bayesian interpretation
of probability. The probability of an event represents the degree of belief that it will occur, and prior
information is used to predict the posterior distribution of reliability. Consider the parameter, θ,
to be a random variable. The existing information was used to obtain prior distribution, the sample
X = (x1, x2, . . . xn), the prior information and current information was integrated to calculate the
posterior distribution and statistically infer the value of θ. The mathematical model can be expressed by
f (x

∣∣∣θ) ∝ L(θ
∣∣∣x)π(θ) , where π(θ) denotes the prior probability density function of θ, f (x

∣∣∣θ) denotes
the posterior probability density function, and L(θ

∣∣∣x) denotes the likelihood function.
The authors proposed a two-stage reliability assessment of web service compositions—reliability

growth stage and reliability demonstration stage. Assuming the reliability requirement to be (p0, c),
the probability of x failures in n test cases follows the binomial distribution—i.e., the probability of failure
of the web service composition is ps, which follows Beta(a, b). Next, based on the aforementioned
information obtained via reliability growth assessment, the distribution of the software failure
probability, p, during reliability demonstration assessment was given by binary experiment—acceptable
or rejected—the binomial sampling model with its conjugate beta distribution was widely used.
The choice of the beta distribution as a prior is useful for several reasons: it is flexible enough to
describe a variety of prior beliefs, it ensures that reliability is between (0, 1), and it is the conjugate prior
for the binomial distribution [23,24]. The prior probability density of ps can be expressed as follows:

π(ps) =
pa−1(1− p)b−1

B(a, b)
(7)
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where, B(a, b) =
∫ 1

0 xa−1(1− x)b−1dx.
During the reliability growth stage, the prior probability density ps is confirmed and p̂s (the

estimate of ps) is compared with the reliability requirement p0—if p̂s ≤ p0, reliability demonstration
testing is conducted in the next step, if p̂s > p0, need to repair, reliability growth testing is conducted
again. Assuming that there are x failures in n test cases, the posterior probability density of ps of the
web service composition is given by:

f (p
∣∣∣x, n, a, b) = Be(a + x, b + N − x)

=
pa+x−1(1−p)b+n−x−1

B(a+x,b+n−x)

(8)

The expectation of the posterior probability density, ps, is:

p̂′s = E(ps
∣∣∣x, n, a0, b0)

∫ 1
0 psB(a0 + x, b0 + n− x)dps

= a0+x
b0+n−x

(9)

The posterior expected value of ps is known to be the minimum secondary loss estimate of the
software failure reliability. It is used as the estimated value of the current probability of the web service
composition. If p̂′s < p0, the current reliability of the web service composition satisfies the reliability
requirement, and the reliability growth test is deemed to be complete.

During the reliability demonstration stage, the posterior distribution ps of the probability of failure
during the growth test can be utilized, which integrates the information with the reliabilities of the
web services and the web service composition. Thus, the distribution of failure probabilities can be
obtained based on the prior information in the demonstration stage. The number of test cases that
satisfy the reliability requirement, (p0, c), is taken to be the minimum value of n in Equation (10):

P(ps ≤ p0) =
∫ p0

0 f (p
∣∣∣x, n, a, b)dp

=
∫ p0

0
pa+x−1(1−p)b+n−x−1

B(a+x,b+n−x) dp

≥ c

(10)

Furthermore, by (10), after n test cases during which no failure is observed in reliability
demonstration assessment, the reliability of web service composition satisfies the reliability requirement
and can be accepted.

2.2.2. Bayes Decision

Reliability assessment was used to verify whether the software reliability satisfies the pre-defined
reliability requirement, and the test result was assumed to be binary—acceptable or rejected. This transforms
it into a decision-making problem (hypothesis testing) [23]. Let H0 and H1 denote the two decision states.
H0 denotes the test result meets reliability requirement, H1 denotes the test result does not meet the
reliability requirement. The result of the software reliability assessment can be described by

H0 : θ ≤ θ0, H1 : θ > θ0,

where θ denotes the actual failure rate, θ0 denotes the failure rate of the reliability requirement, and the
test significance level is taken to be c (0 < c < 1). In this decision-making problem, the authors utilized
the Bayesian decision function to describe the satisfaction of the reliability requirement by the assessed
software in the presence of a certain number of failures. The decision function is given by

δ(x) = P(H0
∣∣∣X = x)

where x denotes the number of failures during reliability assessment based on Bayes’ concept of
assessment. The actual failure rate, θ, of the web service composition is taken to be a random variable,
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in this paper, assuming the prior distribution of parameter θ to be G(θ); therefore, the Bayesian
decision function is given by

δG(x) =
{

1, θ ≤ θ0

0, θ > θ0

according to (8), assuming the hyperparameter a and b are known, after computing. When the
number of failures allowed by reliability requirement are 0, 1, and 2, N0, N1, and N2 denote the upper limit
number of test cases that need to be running, respectively. δG(x) can be transformed into the following (11):

δG(x) =
{

1, x = 0 and n < N0, x = 1 and n < N1, x = 2 and n < N2 . . .
0, θ > θ0

(11)

The authors considered the result of reliability testing as Bayes decision problem; once the test
result is wrong, which is bias from truth, it will cause the loss. In this paper, the authors utilized the
Bayes decision idea in reliability testing of web service composition. In order to reduce the loss and
improve accuracy of reliability testing, and control the bias of prior distribution G(θ) of parameter θ,
in the next chapter, the authors propose the method of minimum risk (MMR) to produce the result
with the lowest risk of decision.

2.2.3. Bayes Prior Hyperparameter Solving Method Based on MMR

In Bayesian reliability assessment, prior information is used to capture existing knowledge about
unknown parameters. The efficiency and accuracy of the assessment is determined in terms of the prior
probability distribution. An accurate prior distribution dramatically improves the required number of
test cases [24]. The parameters of the prior distribution are referred to as hyperparameters, such as
by a and b in (7). The values of the hyperparameters determine the accuracy of the prior probability
distribution, which is an important factor in Bayesian decision-making [25]. A fundamental shortcoming
of reliability assessment methods of web service compositions is that due to the accumulation of a
large number of failures at each web service testing phase and a small number of failures in the web
service composition testing phase, the lack of prior information makes the hyperparameters inaccurate
and increases the risk of wrong decisions. In this section, the authors present a method for calculating
a priori parameters based on an MMR, to minimize the risk of wrong Bayes decisions during reliability
testing. The proposed method utilizes module-level prior information alongside the failure data of the
constituent web services.

In Section 2.2, the authors consider the reliability assessment of web services as a decision-making
problem; if wrong testing happened, incorrect assessments induce the loss of accuracy. The authors
used the loss function to describe the risk (12), which represents the loss induced by wrong assessment.
To measure the loss accurately, the authors used the risk function to express the expected value of the
loss. Consequently, the decision-making problem can be converted into that of identifying a method
that minimizes the risk during testing. The loss function can be indicated in following:

L0 = (θ, d0) = a(θ− θ0)I(θ > θ0)

L1(θ, d1) = a(θ− θ0)I(θ ≤ θ0)
(12)

where a denotes a positive constant and d = {d0, d1} indicates the test results, so according to result of
reliability testing, the decision rule is: d0 denotes that accepted H0, d1 denotes that rejected H0. I(θ > θ0)

represents the actual failure probability of the web service composition being larger than the reliability
requirement. On the other hand, I(θ < θ0) represents the actual failure probability of web service
composition being smaller than the reliability requirement. L0 = (θ, d0) denotes the custom risk
corresponding to cases in which the software is accepted despite the failure probability being larger than
the reliability requirement and L1 = (θ, d1) denotes the producer risk corresponding to cases in which
the software is rejected despite the failure probability being smaller than the reliability requirement.
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If the sample set is denoted by Ω = {x|x〉0}, the parameter set is denoted by
Θ =

{
θ > 0

∣∣∣∫
Ω f (x|θ)dx = 1

}
, then, corresponding to the prior distribution G(θ), the risk function of

the decision function, δ(x), is given by

R(δ(x), G(θ)) = E(x,θ)[L(θ, δ(x))]
=

∫
Θ

[∫
Ω L(θ, δ) f (x|θ)dx

]
dG(θ)

(13)

substituting (12) into (13) yields

R(δ(x), G(θ)) =
∫

Θ

∫
Ω[L0(θ, d0) f (x|θ)δ(x) + L1(θ, d1) f (x|θ)(1− δ(x))]dxdG(θ)

=
∫

Θ

∫
Ω[a(θ− θ0)(1− I(θ < θ0))δ(x) + L1(θ, d1)(1− δ(x))] f (x|θ)dxdG(θ)

=
∫

Θ

∫
Ω[a(θ− θ0)δ(x) + L1(θ, d1)] f (x|θ)dxdG(θ)

(14)

and further substituting (11) and
∫

Ω f (x
∣∣∣θ)dx = 1 into (14) yields

R(δ(x), G(θ)) = a
∫

x∈{x|θ≤θ0}

β(x)dx + CG (15)

where
β(x) =

∫ θ0

Ω (θ− θ0) f (x|θ)π(θ)dθ
CG =

∫
Θ L1(θ, d1)π(θ)dθ

= a
∫ θ0

0 (θ0 − θ)π(θ)dθ

Therefore, during reliability assessment of web services, substituting the distribution function,
f (x

∣∣∣θ) , of the number of failures and the prior probability density function, π(θ), of failure probabilities
into (15), the risk function of the decision function, δ(x), can be obtained as the following.

R = a
∫ e

0

∫ p0

0 (p− p0)Cx
Npx(1− p)N−x pa−1(1−p)b−1

B(a,b) dpdx

+a
∫ p0

0 (p− p0)
pa−1(1−p)b−1

B(a,b) dp
(16)

where e denotes the maximum number of permissible failures during the assessment of the web
service composition. After obtaining the estimated values, p̂1, p̂2, . . . , p̂n, of the failure probabilities
corresponding to all web services, the authors can utilize (6) to calculate the estimated value, ps, of the
failure probability of the web service composition as follows.

p̂s = F(p̂1, p̂2, . . . , p̂n) (17)

The prior probability distribution of the failure probability, ps, follows Beta(a, b). Therefore,
the expected value of the failure probability, ps, of the web service composition is given by

ps = E(π) =
∫ 1

0
psBe(a, b)dps =

a
a + b

(18)

The expected value of ps is taken to be the estimated value of the failure probability of the web
service composition, yielding

a
a + b

= F(p̂1, p̂2, . . . , p̂n) (19)

Therefore, the problem of calculating prior hyperparameters, a and b, can be transformed into the
problem of identifying the optimal solutions of (20) while satisfying the MMR.
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Min{R} = Min
{
a
∫ e

0

∫ P0

0 (p− p0)Cx
Npx(1− p)N−x pa−1(1−p)b−1

B(a,b) dpdx

+a
∫ P0

0 (p− p0)
pa−1(1−p)b−1

B(a,b) dp
}

a
a+b = F(p̂1, p̂2, . . . , p̂n)a > 0, b > 0

(20)

where x denotes the permissible number of failures and N denotes the total number of test cases.
Finally, based on the values of the hyperparameters, a and b, the failure probability distribution can be
obtained, and the number of test cases, n, in (10) satisfies the reliability requirement of the web service
composition assessment.

3. Results and Discussion

The authors constructed a controlled environment comprising a set of web services and deployed four
web services in the Amazon web service (AWS). Each service was executed on an Amazon machine image
equipped with CentOS 8 (x86_64), ASP.NET Core [26]. The architecture of the web service composition in
this paper is illustrated in Figure 5. It includes four web services, and the arrows in the figure denote their
invocations. The authors utilized the tool, SoapUI, to generate the soap requests according to web service
description language (WSDL) [27] to simulate the process of user-invoked web services.
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3.1. Reliability Assessment of Web Service Composition

In this paper, the authors primarily considered the errors induced by web service responses. To this
end, the authors utilized a very useful Linux utility called traffic control (tc) to assign a threshold of 10 s for
the response time to adequately simulate and control the network latency. If a response is so slow that its
delay is noticeable by a customer (i.e., 20% or more), then the service is deemed to have effectively failed.

The reliability requirement of the web service composition set by the developer is p = 0.004.
Reliability assessment of the web services revealed the corresponding failure probabilities, as presented
in Table 2—p̂1 = 0.081, p̂2 = 0.024, p̂3 = 0.096 and p̂4 = 0.038. By (6), the failure probability, ps, of the
web service composition can, therefore, be calculated as follows.

p̂s = F(p̂1, p̂2, . . . , p̂4) = 0.0081 (21)

Table 2. Failure probabilities of web services.

Web Service Failure Probability

w1 0.081
w2 0.024
w3 0.096
w4 0.038

Substituting (21) into (19) yields

a
a + b

= 0.0081 (22)
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Using (20), the values of the hyperparameters were calculated to be a = 1 and b = 122.5 following
MMR. Then, reliability assessment was initiated with reliability growth assessment. By (21), the reliability,
p̂s, of the web service composition was calculated to be 0.0081 and, as 0.0081 > 0.004, the reliability of web
service composition was deemed to not satisfy the pre-defined reliability requirement, after repairing.
Thus, reliability growth assessment was continued. When performing the 250th test case, the failure
occurred, then correcting it. By (8), the failure probability can be calculated as follows.

p̂′s =
a0 + x

a0 + b0 + n
=

1 + 1
1 + 122.5 + 250

= 0.0054 > 0.004

Evidently, the current reliability of web service composition still did not satisfy the reliability
requirement. Thus, testing was continued until the 1529th test case, when the 6th failure was observed.
The corresponding failure probability was calculated as follows.

p̂′s =
a0 + x

a0 + b0 + n
=

1 + 6
1 + 122.5 + 1829

= 0.0036 < 0.004

At this point, the reliability of the web service composition finally satisfied the reliability
requirement, and therefore, the software reliability growth assessment was deemed to be complete.
Meanwhile, the values of the hyperparameters of the posterior distribution of the failure probability p
were calculated to be a0 = 7, and b0 = 1760.1.

f (ps) = Beta(7, 1760.1) =
p6

s (1− ps)
1759.1

B(7, 1760.1)

To verify whether the reliability of the web service composition satisfied the reliability requirement,
the following equation was used, following (20), to calculate the maximum number of test cases
required for the reliability demonstration test.∫ p0

0

pa0+ j−1(1− p)b0+N j+1− j−1

B
(
a0 + j, b + N j+1 − j

) dp ≥ c

Finally, the authors compared the required numbers of test cases using MMR, Bayesian Monte
Carlo method (BMCM) [28], and expert scoring method (ESM) [29] to obtain a reliability demonstration
requirement of (p0, c) = (0.005, 0.9). With an increasing number of failures, the maximum number of test
cases corresponding to different methods was required to satisfy the requirements presented in Table 3.

Table 3. Number of reliability demonstration test cases with different methods.

Number of Failures
Number of Test Cases

BMCM ESM MMR

0 4602 3932 3692
1 7635 5478 4573
2 9402 7123 6432
3 10,041 8232 8923
4 11,900 10,345 10,401
5 16,104 13,335 11,452

In the case of BMCM, the unavailability of prior information during the first execution of the
web service composition induced a uniform distribution of the hyperparameters over the domain.
In this case, Beta(2, 2) was adopted to represent the lack of prior knowledge, which assigned the prior
reliability centers around 0.5, with equal probabilities of failure and success. Then, the Bayes formula
based on the prior distribution was used to calculate the n test cases. In a beta-binomial conjugation
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framework, it is useful to think that the hyperparameters of the prior distribution (beta distribution) of
system failure probability correspond to a certain number of pseudo observations with the properties
specified by these hyperparameters [30,31].

In the case of ESM, let us assume that there are n experts who assign judgment intervals of [θL,θH]

corresponding to the failure probability, θk, associated to the kth stage of growth assessment, and that
θL and θH denote the means of θL and θH, respectively, over all experts. Then, the expectation, E,
and the variance, V, can be calculated using the following equations.

E = θL+θH
2

V =
(θH−θL)

2

12

The hyperparameters, a and b, can be evaluated using the following equations.

a =
E·(V−nE)

D

b =
(n−E)(V−nE)

D

where D = (n− 1)E2 + n(E−V).
The judgment interval, [θL,θH], of each expert reflects their judgement as elicited via interviews.

Following the completion of the three steps of reliability growth assessment presented in Table 4,
the posterior distribution was obtained to be Beta (61.27,324.92).

Table 4. Information of experts.

Stage in Growth
Testing Expert 1 Expert 2 Expert 3 Expert 4

Beta Distribution Hyperparameter

Expected Variance a b

1 (0.003,
0.0072)

(0.0035,
0.0075)

(0.0040,
0.0074)

(0.0038,
0.0072) 0.0054 1.17 × 10−6 17.58 140.41

2 (0.0080,
0.0088)

(0.0060,
0.0086)

(0.0065,
0.0090)

(0.0063,
0.0085) 0.0077 3.42 × 10−6 21.22 270.78

3 (0.0075,
0.0095)

(0.0077,
0.0093)

(0.0076,
0.0092)

(0.0078,
0.95) 0.0085 2.48 × 10−6 33.27 311.92

The numbers of required test cases corresponding to different methods are presented in Table 3.
The required number of test cases in the case of BMCM is n = 4602, which implies that if no failure is
observed in 4602 successive test cases, the reliability of web service composition is deemed to satisfy the
reliability requirement, (p0, c) = (0.005, 0.9), and the software can be accepted. However, if a failure is
noticed in, say, the 3021st test case, the assessment must be continued for 4614 (7635 − 3021 = 4614)
further test cases. If no failure is observed during these iterations, the web service composition is
deemed to satisfy the reliability demonstration requirement. However, if an additional failure was
noticed during this stage as well at, say, the 5500th test case, the assessment is to be continued for
another additional 3902 (9402 − 5500 = 3902) test cases. The satisfaction of the reliability demonstration
requirement is then adjudged once again. The process continues in an analogous fashion.

The experimental data indicated that the number of test cases required by MMR was significantly
lower than that required by BMCM and ESM. Corresponding to 0 failures, the numbers of test cases
required by BMCM and ESM were 4602 and 3932, respectively, whereas that required by MMR was merely
3692. This represents reductions of 910 and 670, respectively, corresponding to reduction rates of 19.8%
and 14.6%, respectively. Furthermore, in the case of MMR, the required number of test cases exhibited the
smallest increment when the number of failures was increased from 0 to 1—for BMCM, ESM, and MMR,
the required numbers of test cases increased by 65.9%, 39.3%, and 23.9%, respectively, in this case. Similarly,
when the number of failures was increased from 4 to 5, the increase in the numbers of test cases required
by BMCM, ESM, and MMR were observed to be 35.3%, 28.9%, and 10.1%, respectively.
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Thus, the experiments demonstrated that in the case of identical prior information, MMR was the
most accurate method to calculate the prior distribution, and it significantly reduced the number of
test cases required during reliability demonstration assessment. In the case of ESM, the opinions of
experts made the value of hyperparameters more subjective, which wielded a greater influence on
the postdistribution. In the case of BMCM, the lack of prior information induced a uniform initial
distribution of the hyperparameter over the domain. Subsequently, the distributions were repeatedly
sampled to obtain the expected values of the hyperparameters. This procedure usually involves
complex numerical calculations and is difficult to implement.

3.2. Goodness-of-Fit of the Distribution

In this subsection, the authors analyze the goodness-of-fit of the distribution to the truth data;
maximum likelihood estimation (MLE) was used to evaluate the accuracies of the corresponding
distributions obtained using hyperparameters estimated using BMCM, ESM, and MMR. MLE is a
method to evaluate models using specific data—given different prior to distributions; it determines the
corresponding likelihoods of the actual sample to determine the confidences of the prior distributions.
The likelihood is termed the confidence factor; and it is proportional to the proximity of the prior
distribution to the ground truth. Obviously, the distribution that is closest to the ground truth is
deemed to be the best.

MLE was conducted using the following procedure. Let us assume that the failure probability
distribution of the web service composition, X =

{
p1, p2 . . . pn

}
, is given by f (X

∣∣∣θ) , where θ denotes the
hyperparameters, a and b, and the density function of the prior distribution of θ is π(θ). After obtaining
X, the density function π(θ

∣∣∣X) of the posterior distribution can be expressed as

π(θ|X) =
f (X

∣∣∣θ)π(θ)∫
θ

f (X
∣∣∣θ)π(θ)dθ (23)

where f (X
∣∣∣θ) reflects the knowledge of θ based on the observed X. If there are two parameters, θ1

and θ2, the authors obtain
f (X

∣∣∣θ1) > f (X
∣∣∣θ2) (24)

From the perspective of statistics, the probability of observed X with the parameter θ1 is higher
than X with θ2. Thus, (24) can be interpreted as the likelihood of θ = θ1 being larger than that of
θ = θ2. Thus, when X is constant, f (X

∣∣∣θ) is independent of the prior distribution of θ as the function
with θ; instead, it merely reflects the characteristics of the sample.

The denominator of (23) is given by

m(X) =

∫
θ

f (X|θ)π(θ)dθ (25)

This is the marginal distribution of X that depends on f (X
∣∣∣θ) . f (X

∣∣∣θ) is the conditional
distribution density and, for a given θ, the marginal distribution describes the action of the sample X
under the prior distribution, π(θ), and the sample follows this distribution. If π(θ) follows a certain
distribution, the parameter of π(θ) is obtained from the maximum value of m(X)—i.e., the MLE.

If there are m prior distributions that follow f (X
∣∣∣θ) , the failure probability samples are p1, p2 . . . pn.

Let πi(θ) be the ith prior distribution based on the sample. If the ground truth prior distribution is
denoted by π(θ), the m prior distributions can be integrated into the ground truth prior distribution
using the following equation.

π(θ) =
∑m

i=1
εiπi(θ) (26)

where εi denotes the weight of ith prior distribution, πi(θ), and
∑m

i=1 εi = 1.
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The marginal distribution of the prior distribution, πi(θ), is given by

m(x|πi) =

∫
θ

f (X|θ)πi(θ)dθ (27)

The marginal distribution of the ground truth prior distribution, π(θ), is given by

m(x|π) =
∫
θ

f (X
∣∣∣∣∣θ)π(θ)dθ (28)

The failure data, p1, p2 . . . pn, generated by the marginal distribution, m(x|πi), can be used to obtain
the following likelihood function.

L(X|πi) =
n∏

i=1

m(xi|πi ) (29)

By MLE, L(X|πi) is bigger to represent the closer proximity to the ground truth, the weight of
πi(θ) is bigger, high probability to choose this prior distribution. The confidence factor can be obtained
as follows.

εk =
L(X|πi)∑i

i=1 L(X|πi)
(30)

The confidence factor represents the probability of a prior distribution being close to the truth
distribution. Thus, if the confidence factor of a distribution is high, it is highly feasible to choose it as a
prior distribution.

Next, the authors compared the accuracies of the distribution constructed using the
hyperparameters estimated using BMCM, ESM, and MMR. The failure probability follows Beta(a, b),
where a and b are hyperparameters.

First, certain defects were introduced into the web services, following the discussion presented
in [32]. The web service composition considered in this section is depicted in Figure 4. The actual
failure probability following the introduction of the defects was regarded as the ground truth, the failure
probabilities obtained via various method were regarded as evaluation values, X denotes the ground truth
data, and MLE was used to determine the distribution that is closest to the truth. The failure probabilities
of each web service obtained via module-level testing are presented in Table 5—p̂1 = 0.011, p̂2 = 0.034,
p̂3 = 0.096 and p̂4 = 0.018. Based on injected defects, the ground truth of the failure probability of the
web service composition was calculated to be X = (0.184, 0.299, 0.156), which follows Beta(3.0, 6.0).

Table 5. Failure probabilities of web services.

Web Services Failure Probability

w1 0.011
w2 0.034
w3 0.096
w4 0.018

Then, the authors calculated the failure probabilities using the predictions obtained from BMCM,
ESM, and MMR as evaluation values. In the case of BMCM, the initial non-informative prior distribution
was assumed to be Beta(2, 2). In the case of ESM, after assessment over 10 h, the prior distribution of
the web service composition was estimated to by expert interview and the initial prior distribution
was Beta(3, 6.3). In the case of MMR, by (20) and (22), the initial prior distribution was Beta(2.5, 3.9).

After three steps of growth assessment, the probability distributions corresponding to the
three methods were observed to be π1 = Beta(3.1, 5.9), π2 = Beta(2.7, 6.6), and π3 = Beta(3.5, 7)
(π1 denotes MMR, π2 denotes BMCM, and π3 denotes ESM).
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By (27), the marginal distribution functions are given by

m(x|π1) =
Γ(a+b)

Γ(a)Γ(b)xa−1(1− x)b−1 =
Γ(9)

Γ(3.1)Γ(5.9)x2.1(1− x)4.9

m(x|π2) =
Γ(a+b)

Γ(a)Γ(b)xa−1(1− x)b−1 =
Γ(9.3)

Γ(2.7)Γ(6.6)x1.7(1− x)5.6

m(x|π3) =
Γ(a+b)

Γ(a)Γ(b)xa−1(1− x)b−1 =
Γ(10.5)

Γ(3.5)Γ(7)x2.5(1− x)6

Then, by (29), the likelihood functions are given by

L(X|π1) = 8.3003e− 005
L(X|π2) = 4.0761e− 005
L(X|π3) = 1.2588e− 005

By (30), the respective confidences are given by

ε1 = 0.6707
ε2 = 0.3294
ε3 = 0.1321

As to ε1 > ε2 > ε3, the prior distribution corresponding to MMR is closest to the ground truth and
is, therefore, the best candidate for the prior distribution.

The curves of Beta corresponding to the three different methods are illustrated in Figure 6.
Line 0 corresponds to the ground truth, Line 1 corresponds to the prior distribution, π1 = Beta(3.1, 5.9),
Line 2 corresponds to the prior distribution, π2 = Beta(2.7, 6.6), and Line 3 corresponds to the prior
distribution, π3 = Beta(3.5, 7). Line 1, corresponding to MMR, is evidently a significantly better fit
compared to the other curves. Therefore, calculating the hyperparameters using MMR is the most
reasonable approach in this case.
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The accuracy of reliability estimation depends on the prior distribution. Based on the aforementioned
discussion, the prior distribution constructed using hyperparameters calculated using MMR is the
closest to the ground truth distribution. Thus, MMR can be used efficiently utilize the prior information
of web services, and its results exhibit the lowest decision risk and are more objective and consistent
with the actual situation.

4. Conclusions

In this paper, a reliability assessment method was proposed for web service compositions. To this
end, the authors used transfer probabilities to represent the inter-relationships between the constituent
web services, and used a Markov model to transfer the probability matrix and calculate the reliability
of web service composition. The proposed method makes full use of failures data of the web services,
thereby adequately resolving the problem of a lack of prior information in web service compositions.

The authors divided the reliability assessment procedure into two stages—the reliability growth
stage and the reliability demonstration stage. The primary problems faced during the reliability
growth testing are inaccurate prior distributions and the requirement of large numbers of test cases,
which increases the test duration. The authors used Bayes reliability assessment for reliability testing,
thereby fully utilizing prior information of the web services, and proposed reliability demonstration
assessment based on prior information. The authors assumed the number of failures, x, to follow a
binomial distribution, Beta(a, b). The authors compared the estimated failure probabilities, ps, to p0

and formulated a completion condition for the reliability growth assessment. During the reliability
demonstration stage, the authors considered the reliability assessment result as essentially a Bayesian
decision-making (hypothesis test) problem. During reliability assessment, prior hyperparameters affect
the accuracy of the prior probability distribution and play an important role in the Bayesian decision.
The authors discussed the importance of hyperparameters in the Bayesian decision, and proposed
the MMR method to calculate prior hyperparameters. Experiments were conducted to demonstrate
that the proposed method exhibited a smaller number of required test cases compared to two other
methods. This increases the efficiency of reliability demonstration assessment and avoids the adoption
of rash inferences about the reliability of web service compositions.

In future research, the authors intend to consider web service architectures of more complicated
designs that require significantly more calculations, considering different reliability growth models;
the efficiency of the proposed method should also be improved. In addition, reliability assessment
based on MMR should be repeated to further improve the proposed method. The final aim is to
efficiently utilize available resources during reliability assessment of web service compositions.
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MMR Method of minimum risk;
BMCM Bayesian Monte Carlo method;
ESM Expert scoring method;
SOA Service-oriented architecture;
QoS Quality of service;
AWS Amazon web service;
WSDL Web service description language;
Tc Traffic control;
BMCM Bayesian Monte Carlo method;
ESM Expert scoring method;
Wi Abstract web service candidates;
w A specific web service;
t Duration;
Cn The numbers of invocations of the web service;
n Failures of the web service;
F(w) The probability of failure of the web service w;
r(w) Reliability of the web service w;
pi j The state transition relations between web services;
N The number of web services;
interact

(
ci, c j

)
The number of interactions of web service i with web service j;

Sk Service composition flow;
P̂ n× n matrix;
In The identity matrix of order n;
Q̂ The no-absorption transition probability matrix of order n;
Rs Reliability of web service composition;
θ Parameter of distribution;
π(θ) The prior probability density function;
f (x

∣∣∣θ) The posterior probability density function;
L(θ

∣∣∣x) The likelihood function
(p0, c) Reliability requirement;
ps The probability of failure of the web service composition;
H0 The test result meets reliability requirement;
H1 Test result does not meet the reliability requirement;
G(θ) Prior distribution of parameter;
d0 Accepted H0;
d1 Rejected H0;

I(θ < θ0)
The actual failure probability of web service composition being smaller than the
reliability requirement;

I(θ > θ0)
The actual failure probability of the web service composition being larger than the
reliability requirement;

L0
The custom risk corresponding to cases in which the software is accepted despite the
failure probability being larger than the reliability requirement;

L1
The producer risk corresponding to cases in which the software is rejected despite the
failure probability being smaller than the reliability requirement;

δ(x) The risk function of the decision function;
π(θ) Prior probability density function;
N The total number of test cases;
a, b Hyperparameters;
E Expectation of ESM;
V Variance of ESM;
m(x|πi) Marginal distribution of the prior distribution πi(θ);
εk Confidence factor.
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