
future internet

Article

Malware Classification Based on Shallow
Neural Network

Pin Yang, Huiyu Zhou, Yue Zhu, Liang Liu and Lei Zhang *

College of Cybersecurity, Sichuan University, Chengdu 610065, China; yangpin@scu.edu.cn (P.Y.);
hanmeimeizhy@gmail.com (H.Z.); zhuyue2020@foxmail.com (Y.Z.); liangzhai118@scu.edu.cn (L.L.)
* Correspondence: zhanglei2018@scu.edu.cn

Received: 10 November 2020; Accepted: 23 November 2020; Published: 2 December 2020 ����������
�������

Abstract: The emergence of a large number of new malicious code poses a serious threat to network
security, and most of them are derivative versions of existing malicious code. The classification of
malicious code is helpful to analyze the evolutionary trend of malicious code families and trace the
source of cybercrime. The existing methods of malware classification emphasize the depth of the
neural network, which has the problems of a long training time and large computational cost. In this
work, we propose the shallow neural network-based malware classifier (SNNMAC), a malware
classification model based on shallow neural networks and static analysis. Our approach bridges
the gap between precise but slow methods and fast but less precise methods in existing works.
For each sample, we first generate n-grams from their opcode sequences of the binary file with a
decompiler. An improved n-gram algorithm based on control transfer instructions is designed to
reduce the n-gram dataset. Then, the SNNMAC exploits a shallow neural network, replacing the full
connection layer and softmax with the average pooling layer and hierarchical softmax, to learn from
the dataset and perform classification. We perform experiments on the Microsoft malware dataset.
The evaluation result shows that the SNNMAC outperforms most of the related works with 99.21%
classification precision and reduces the training time by more than half when compared with the
methods using DNN (Deep Neural Networks).

Keywords: malware; neural network; n-gram; classification; static analysis

1. Introduction

Malware has always been one of the main threats to cybersecurity, and the detection and analysis
of malicious code has always attracted much attention. The number of new malicious code is growing
at an alarming rate. According to AV-TEST, more than 4.62 million new instances of malicious code
were detected from June 2019 to July 2019 [1]. However, few of the new malware have absolutely no
connection to the early ones. A survey from Symantec pointed out that more than 98% of new malware
is derived from existing malicious code [2]. Therefore, most of the new malware share similarities in
their technologies or styles with some previously discovered malware [3], and such similar malware
can be classified into the same family. For example, WannaCry, which broke out in May 2017, belongs to
the same family as the Wcry malware that appeared in March of the same year. The variants of the
former spread everywhere [4]. The classification of malware is helpful to study the evolution of the
malware family and trace cybercrime, so it is important for preventing malware.

Malware analysis can be divided into two main categories: dynamic analysis and static analysis [5].
Dynamic analysis extracts features by executing malware in a controllable environment [6–9], which can
observe the behavior of malicious code straightly. However, lots of manual effort is needed to perform
dynamic analysis, and it is difficult to trigger all malicious behaviors [10]. In contrast, static analysis has
higher analysis efficiency, but it relies on decompilation tools like IDA Pro [11–13]. Much information

Future Internet 2020, 12, 219; doi:10.3390/fi12120219 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
http://dx.doi.org/10.3390/fi12120219
http://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/1999-5903/12/12/219?type=check_update&version=2

Future Internet 2020, 12, 219 2 of 17

in the source code gets lost in the decompiling process. At the same time, encryption and obfuscation
techniques also bring limitations to static analysis. In view of the characteristics of dynamic analysis
and static analysis, static analysis is more suitable for the application scenario of our model, so the
model proposed in this paper is based on static characteristics.

Several methods and techniques have been proposed to analyze malware with machine learning.
In such methods, it is important to select the appropriate features and algorithms. Aiming at improving
performance on unknown and evasive malware, Rong et al. [14] used pattern mining to obtain API
(Application Programming Interface) sequences, and then the malicious API call sequences were used as
abnormal behavior features to detect malware. Pajouh et al. [15] extracted the header information from
the executable file on macOS, then analyzed the frequency of the base address offset, load instructions,
the frequency feature of imported libraries and so on. Additionally, they used a support vector machine
for malware detection. Nikola et al. started with the application permission information and executable
file disassembly code [16], then built a feature model based on the bag-of-words model, which achieved a
high detection accuracy on the Android platform. Aiming at the drawbacks of commonly used malware
feature representation, such as variable length, high dimensional representation and high storage
usage, Euh et al. [17] proposed low dimensional feature representation using WEM (Warning Electronic
Module), API and API-DLL as an alternative scheme to ensure high generalization performance.
However, machine learning-based methods require a great deal of expertise to perform artificial feature
design, and these well-designed features may not be suitable for new malicious code, resulting in
malware analysis becoming repetitive and time-consuming feature engineering work.

As an important branch of machine learning, a neural network can change the internal structure
during training, and its adaptability helps to greatly reduce the labor cost in the design of feature
expression. The neural network has attained remarkable achievements in the fields of machine vision
and image recognition. In recent years, researchers have begun to introduce it into the field of malicious
code analysis [18–20]. However, the existing work emphasizes the depth of the neural network.
Although it has achieved good classification results, it also brings a whole host of problems, including
parameters that are difficult to adjust, high calculation and storage cost and low analysis efficiency,
which makes it difficult to apply to a scene with a huge amount of malicious code.

The existing work emphasizes the depth of the neural network, which brings some problems,
such as parameters that are difficult to adjust, high calculation and storage costs and low analysis
efficiency. This makes it difficult to apply to a scene with a huge amount of malicious code. The shallow
neural networks usually tend to increase the width of the hidden layer (i.e., the number of neurons
per hidden layer) to compensate for the reduced depth (i.e., the number of hidden layers). In turn,
the shallow architecture has more parameters than the corresponding deep and narrow architecture
for the same problem. G. E. Dahl [21] emphasized that using more hidden layers could not improve
the accuracy. For example, a one-layer neural network performed better than two- and three-layer
neural networks. The simplicity of a shallow neural network (SNN) allows for faster training, easier
fine tuning and easier interpretation, and its effect can meet the application requirements. Thus, there
is no need to consider deeper architectures.

In this paper, we present the shallow neural network-based malware classifier (SNNMAC),
a model based on static features and shallow neural networks to classify a Windows malware sample
to a known family. The classification of malicious code is helpful to analyze the evolutionary trend of
malicious code families and trace the source of cybercrime. The SNNMAC extracts opcode sequences
with the decompilation tool IDA and generates n-grams from the sequences. Then, a shallow network
that consists of an embedding layer, a global average pooling layer and a hierarchical softmax layer
will learn from the n-grams data set. Since malware always contains very long opcode sequences
that generate a large number of n-grams, the SNNMAC uses an improved n-gram algorithm to leave
fewer n-grams.

Future Internet 2020, 12, 219 3 of 17

In summary, the main contributions of this paper are as follows:

1. We propose a model based on shallow neural networks which can automatically learn from the
raw data of malware samples, reducing a lot of manual feature engineering work;

2. To avoid overfull parameters and huge calculation costs, we use the global average pooling layer
and hierarchical softmax layer to take the place of the full connection layer and the softmax layer.
This reduces computational complexity and avoids overfitting;

3. We design an improved n-gram algorithm based on control transfer instructions. Compared with
ordinary n-gram counts, our new algorithm generates fewer n-grams and reserves part of the
original data’s structural information. It also reduces the training, detection time and storage
space cost;

4. We implement the SNNMAC and make a series of evaluation experiments for it. The results show
that, when taking an n-gram count of 3-g, the SNNMAC achieves a classification precision and
recall above 99%. At the same time, compared with other dense neural networks, the classification
efficiency is higher, and the processing speed reaches 53 samples per second.

The rest of this paper is organized as follows. Section 2 describes the malicious code classification
model based on shallow neural networks. Section 3 then discusses the experiments and evaluations,
which include comparisons with other works. We conclude in Section 4 by doing a simple conclusion
and identifying future work.

2. Related Work

Many previous works have proposed experiments that extract byte n-grams as features and
have achieved high accuracies, which show that this is a reasonable and effective method [22,23].
J. Z. Kolter et al. [22] proposed a method using byte n-grams as a feature, combined with a
gradient-boosting decision tree to perform malicious code classification tasks, and finally achieved
a high true positive classification rate. Although it is an effective method to use a neural network
on the basis of n-grams, it also inherits the disadvantages of byte n-grams, including the partial
loss of character sequence information and the computational cost when n exceeds a certain value.
Ö. A. Aslan and R. Samet [24] presented a detailed review on malware detection approaches and recent
detection methods which use these approaches. Although the n-gram model has been widely used in
malware detection, classification and clustering are more challenging for later processes because each
continuous static and dynamic attribute is not related to each other. Therefore, in this work, we use the
n-gram extraction algorithm based on control transfer instructions to reduce the size of the n-gram set
while reserving part of the original data’s structural information.

In recent years, malicious code analysis methods based on machine learning and deep learning
have been proposed. However, compared with the traditional machine learning algorithm, when the
input data is large, a deep learning model can summarize the features by itself, thus reducing the
incompleteness of artificial feature extraction. Haddadpajouh et al. [18] input opcode sequences
as features to four kinds of LSTM-based deep networks for training and testing and compared the
detection effect of LSTM under different parameters. Yan et al. converted malware binary files into
grayscale images [19], combined with opcode sequences, and used CNN (Convolutional Neural
Networks) and LSTM networks to learn the two features respectively before finally integrating the
two outputs to get the final detection results. Liu et al. [20] proposed using GCN and CNN to
process the API call graph and calculate the similarity between samples for malicious code family
clustering. Raff et al. [25] proposed that a portable executable (PE) file could be regarded as a huge
byte sequence, and it could be used as an input so that the deep learning model could learn its internal
relations and features by itself. Vasan et al. [26] developed and tested a new image-based malware
classification using CNN architecture integration, and their experiments proved that, compared with
the traditional ML (machine learning)-based solution, it had great accuracy and avoided the manual
feature engineering stage.

Future Internet 2020, 12, 219 4 of 17

What we are interested in is that a neural network can learn feature representation from the
original data, because this method not only improves the accuracy, but also reduces the domain
knowledge. However, although the existing work has achieved good classification results, its emphasis
on the depth of the neural network has caused a series of problems, such as high computational cost
and low analysis efficiency. Therefore, we try to use the advantages of the shallow neural network
model, such as faster training, easier fine tuning and easier interpretation, and apply it to a scene with
a huge amount of malicious code. As far as we know, no other work has yet considered the use of
shallow neural networks to classify malware.

3. Classification Methodology

Although it is an effective method to extract byte n-gram features, the standard n-gram algorithm
treats all elements in the sequence equally, though not every assembly instruction is equally important
to the program. Therefore, we needed an n-gram feature extraction method that considered the
characteristics of a program’s structure.

Our second goal was a shallow neural network classification model with a high classification
accuracy and processing speed. At present, more than 98% of new malware is derived from existing
malicious code, and the number of malicious code is huge. Therefore, the classification of malicious
code in the current environment requires both high accuracy and fast processing speed. We used the
global average pooling layer and hierarchical softmax layer to take the places of the full connection
layer and the softmax layer, which reduced the computational complexity and solved the problem
of overfull parameters. Our strategy to achieve these goals can be divided into four steps. We will
describe it in detail below.

3.1. Overview of Classification Model

The SNNMAC, the malware classification model we proposed in this paper, is for portable
executable (PE) files, the binary executable file format on Windows. First, the SNNMAC disassembles
malware sample files and extracts opcode sequences from the .asm file. Then, it applies the control
transfer instruction-based n-gram on the sequences to obtain an n-gram dataset. Low-frequency word
deletion and the hash trick are also performed in this step. Later, the embedding layer transfers every
n-gram into a fixed-length vector, and the hidden layer produces a file feature for the output layer to
decide the final label.

Concretely, the classification process of the SNNMAC can be divided into two stages. As shown
in Figure 1, the first stage is to process the malware sample file. It generates n-gram data as the input of
the next stage. The second stage takes a shallow neural network to learn from the n-grams and outputs
the final classification result.

Future Internet 2020, 12, 219 5 of 17

Future Internet 2020, 12, x FOR PEER REVIEW 5 of 16

Figure 1. The working process of the shallow neural network-based malware classifier (SNNMAC).

3.2. Opcode Sequences Process

The opcode sequence is a fine-grained feature that reflects the program logic and features. We
used an IDAPython script to disassemble the PE samples in batches to get disassembled files in .asm
format. Then, we traversed each line of the text section to fetch instructions.

The opcode sequences were very long. Taking the fonsiw malware family as an example, the
average size of the binary files is 94 kb, but the average length of the extracted opcode sequence has
reached 49,524. Such a large sequence is difficult to learn. We found that there were lots of assembler
directives in the extracted instruction sequences, such as db, dd, area and align. Assembler directives
only help the assembler to perform tasks during the assembly process, but do not generate any object
code or affect program execution. Therefore, when extracting the sequence, these assembler
directives can be filtered out to reduce the length of the opcode sequence. Staying with the fonsiw
family example, after removing those instructions, the average length of the sequences is reduced to
23,719.

The opcode sequence extraction algorithm, described in pseudocode, is shown in Algorithm 1.

Algorithm 1. Opcode sequence extraction algorithm

Input：binary executive file
Output：Opcode sequence
1. asm_file = covert_to_asm(file)
2. sequence = []
3. for line in asm_file:
4. opcode = line. split()
5. if (opcode match regex) and (opcode not pseudo_instruction):
6. sequence.append(opcode)
7. end if
8. end for
return sequence

3.3. An Improved N-gram Algorithm Based on Control Transfer Instructions

train
data

test
data

preprocess opcode
sequence

improved n-gram
algorithm

 n-gram set

output layer

family label

paremeter
updating

hidden layer

file feature vector

input layer

embedding vectors

Figure 1. The working process of the shallow neural network-based malware classifier (SNNMAC).

3.2. Opcode Sequences Process

The opcode sequence is a fine-grained feature that reflects the program logic and features. We used
an IDAPython script to disassemble the PE samples in batches to get disassembled files in .asm format.
Then, we traversed each line of the text section to fetch instructions.

The opcode sequences were very long. Taking the fonsiw malware family as an example,
the average size of the binary files is 94 kb, but the average length of the extracted opcode sequence has
reached 49,524. Such a large sequence is difficult to learn. We found that there were lots of assembler
directives in the extracted instruction sequences, such as db, dd, area and align. Assembler directives
only help the assembler to perform tasks during the assembly process, but do not generate any object
code or affect program execution. Therefore, when extracting the sequence, these assembler directives
can be filtered out to reduce the length of the opcode sequence. Staying with the fonsiw family example,
after removing those instructions, the average length of the sequences is reduced to 23,719.

The opcode sequence extraction algorithm, described in pseudocode, is shown in Algorithm 1.

Algorithm 1. Opcode sequence extraction algorithm

Input: binary executive file
Output: Opcode sequence
1. asm_file = covert_to_asm(file)
2. sequence = []
3. for line in asm_file:
4. opcode = line. split()
5. if (opcode match regex) and (opcode not pseudo_instruction):
6. sequence.append(opcode)
7. end if
8. end for
return sequence

Future Internet 2020, 12, 219 6 of 17

3.3. An Improved n-gram Algorithm Based on Control Transfer Instructions

The standard n-gram algorithm treats all elements in the sequence equally, but for the program,
not every assembly instruction is equally important. The program execution flow is divided into many
blocks by select statements, in which a sequence of statements is executed sequentially. Accordingly,
the assembly code is divided into a number of basic blocks (BBLs) by the control transfer instructions.
The basic block is the smallest unit of assembly codes, and many analysis processes translate the
decomposing program into basic blocks as the first step [27]. A BBL is a single-entry, single-outlet
instruction sequence. Considering the structural characteristics of programs, we propose a control
transfer instruction-based n-gram (CTIB-n-gram) algorithm. Inspired by the concept of stop words in
NLP (Natural Language Processing), we regarded the control transfer instructions in the sequences
as delimiters. Only the n-gram starting with such instructions was reserved for representing the
corresponding basic block, while all the other n-grams were dropped.

Each assembly instruction n-gram should be converted to a unique vector representation and
added to subsequent training. However, as the number of samples and the size of n increases,
the number of n-grams increases dramatically, and it is unrealistic to retain all n-grams. At the same
time, the distribution of assembly instructions of n-grams is highly sparse, and some n-grams appear
very infrequently, providing little information. The CTIB-n-gram algorithm filters the n-gram frequency
below the set threshold and performs feature hashing on the n-gram set. Previous research [28–30] has
shown that using feature hashing in multi-classification tasks, such as malicious code classification,
helps to speed up training and avoid overfitting without causing a significant loss of precision.

The proposed CTIB-n-gram algorithm uses n-grams, starting with control transfer instructions,
to express the corresponding basic blocks, then filters out the n-grams whose frequencies are lower
than the threshold. Finally, the feature hash method is used to compress the set size. The n-gram set
generated by the CTIB-n-gram algorithm is significantly smaller than the set obtained by the standard
n-gram, which is helpful for accelerating the training and detection process. The pseudocode of the
CTIB-n-gram algorithm is shown in Algorithm 2.

Algorithm 2. The proposed CTIB-n-gram algorithm

Input: opcode sequence, frequency threshold, number of hash buckets v
Output: n-gram set V
1. temp_set = []
2. forn-gram in sequence:
3. if n-gram starts with [JMP, JNZ, LOOP, ...]
4. temp_set.append(n-gram)
5. end if
6. end for
7. for n-gram in temp_set:
8. if n-gram.frequency() < threshold:
9. drop n-gram
10. end if
11. end for
12. hash temp_set to v buckets
13. V← buckets
return V

3.4. The Shallow Neutral Network

The shallow neural network used in this work was based on the classic continuous bag of words
(CBOW) model, which consisted of an input layer, a hidden layer and an output layer, as shown in
Figure 2.

Future Internet 2020, 12, 219 7 of 17Future Internet 2020, 12, x FOR PEER REVIEW 7 of 16

Figure 2. The construction of the shallow neutral network.

3.4.1. Input Layer

After obtaining the n-gram set described above, one-hot encoding was performed first. One-hot
encoding uses n-dimensional binary vectors to express n categories, and every vector has only a
single 1 bit while all the other bits are 0. The one-hot encoding matrix is high-dimensional and sparse,
requiring a lot of storage, and hence it is not convenient for direct calculation. Feature embedding,
also called the decentralized representation of features, is a neural network-based feature
representation method that maps high-dimensional vectors to low-dimensional spaces, thereby
avoiding the curse of dimensionality and making it easier to learn from large inputs. Therefore, to
map the one-hot encoding n-gram feature to the embedding feature vector, the model first performs
feature embedding in the embedding layer, as shown in Figure 3.

Figure 3. The feature embedding process.

The formula of the embedding layer is as follows:

H X W= ⋅ (1)

m VX R ×∈ is the one-hot encoding matrix representation of the malware sample, where m is
the number of n-grams extracted from the sample file and V is the dimension of the one-hot

Family
Label

...

Input

Hidden

Output

X1 XmX2 Xm−1Xm−2

(call,mov,push),(call,le
a,mov),(call,mov,mov),
(jz,mov,test),(jz,mov,
mov),(jnz,mov,test),
(call,mov,xor),
......
(jz,and,mov),(jmp,retn
,mov)

3-GRAM
(call,mov,push)
(call,lea,mov)

(call,mov,mov)
(jz,mov,test)

(jnz,mov,test)
(call,mov,xor)

......
(jz,and,mov)

(jmp,retn,mov)

Number
2
7
5
4
3
1

......
v

v−1

0,1,0,0,0,0,0,...,0,0
0,0,0,0,0,0,1,...,0,0
0,0,0,0,1,0,0,...,0,0
0,0,0,1,0,0,0,...,0,0
0,0,1,0,0,0,0,...,0,0
1,0,0,0,0,0,0,...,0,0

......
0,0,0,0,0,0,0,...,0,1
0,0,0,0,0,0,0,...,1,0

n-grams of sample number

m×V one-hot matrix

0.15,0.23,−0.09,...,0.09
0.22,0.31,0.39,...,−0.09
0.24,0.12,−0.10,...,0.14

−0.30,0.18,−0.24,...,0.08
−0.14,0.11,−0.52,...,−0.22
−0.19,−0.71,0.20,...,−0.10

......
0.43,−0.17,0.04,...,0.09

0.18,0.19,−0.20,...,−0.23

m×N embedding matrix

Figure 2. The construction of the shallow neutral network.

3.4.1. Input Layer

After obtaining the n-gram set described above, one-hot encoding was performed first. One-hot
encoding uses n-dimensional binary vectors to express n categories, and every vector has only a
single 1 bit while all the other bits are 0. The one-hot encoding matrix is high-dimensional and sparse,
requiring a lot of storage, and hence it is not convenient for direct calculation. Feature embedding,
also called the decentralized representation of features, is a neural network-based feature representation
method that maps high-dimensional vectors to low-dimensional spaces, thereby avoiding the curse of
dimensionality and making it easier to learn from large inputs. Therefore, to map the one-hot encoding
n-gram feature to the embedding feature vector, the model first performs feature embedding in the
embedding layer, as shown in Figure 3.

Future Internet 2020, 12, x FOR PEER REVIEW 7 of 16

Figure 2. The construction of the shallow neutral network.

3.4.1. Input Layer

After obtaining the n-gram set described above, one-hot encoding was performed first. One-hot
encoding uses n-dimensional binary vectors to express n categories, and every vector has only a
single 1 bit while all the other bits are 0. The one-hot encoding matrix is high-dimensional and sparse,
requiring a lot of storage, and hence it is not convenient for direct calculation. Feature embedding,
also called the decentralized representation of features, is a neural network-based feature
representation method that maps high-dimensional vectors to low-dimensional spaces, thereby
avoiding the curse of dimensionality and making it easier to learn from large inputs. Therefore, to
map the one-hot encoding n-gram feature to the embedding feature vector, the model first performs
feature embedding in the embedding layer, as shown in Figure 3.

Figure 3. The feature embedding process.

The formula of the embedding layer is as follows:

H X W= ⋅ (1)

m VX R ×∈ is the one-hot encoding matrix representation of the malware sample, where m is
the number of n-grams extracted from the sample file and V is the dimension of the one-hot

Family
Label

...

Input

Hidden

Output

X1 XmX2 Xm−1Xm−2

(call,mov,push),(call,le
a,mov),(call,mov,mov),
(jz,mov,test),(jz,mov,
mov),(jnz,mov,test),
(call,mov,xor),
......
(jz,and,mov),(jmp,retn
,mov)

3-GRAM
(call,mov,push)
(call,lea,mov)

(call,mov,mov)
(jz,mov,test)

(jnz,mov,test)
(call,mov,xor)

......
(jz,and,mov)

(jmp,retn,mov)

Number
2
7
5
4
3
1

......
v

v−1

0,1,0,0,0,0,0,...,0,0
0,0,0,0,0,0,1,...,0,0
0,0,0,0,1,0,0,...,0,0
0,0,0,1,0,0,0,...,0,0
0,0,1,0,0,0,0,...,0,0
1,0,0,0,0,0,0,...,0,0

......
0,0,0,0,0,0,0,...,0,1
0,0,0,0,0,0,0,...,1,0

n-grams of sample number

m×V one-hot matrix

0.15,0.23,−0.09,...,0.09
0.22,0.31,0.39,...,−0.09
0.24,0.12,−0.10,...,0.14

−0.30,0.18,−0.24,...,0.08
−0.14,0.11,−0.52,...,−0.22
−0.19,−0.71,0.20,...,−0.10

......
0.43,−0.17,0.04,...,0.09

0.18,0.19,−0.20,...,−0.23

m×N embedding matrix

Figure 3. The feature embedding process.

Future Internet 2020, 12, 219 8 of 17

The formula of the embedding layer is as follows:

H = X ·W (1)

X ∈ Rm×V is the one-hot encoding matrix representation of the malware sample, where m is the
number of n-grams extracted from the sample file and V is the dimension of the one-hot encoding vector
of each n-gram, which is also the number of hash buckets in the CTIB-n-gram algorithm described in
the previous section. W ∈ RV×N is the weight matrix maintained by the embedding layer, where N is
the specified feature vector dimension. At initialization time, the feature weight matrix W is randomly
generated and will be updated continuously during the training process. The output of this layer H is
an m×N matrix composed of the embedded vectors of all n-grams in the sample file and will enter the
hidden layer.

3.4.2. Hidden Layer

The hidden layer of the model is a global average pooling (GAP) layer, which provides a fixed-size
file feature vector for the output layer. The concept of the global average pooling layer was proposed
in 2014 [31]. The GAP layer has no parameters, so it does not need to rely on special methods such as
dropout to avoid overfitting. Compared with the fully connected layer, the GAP layer is more robust,
faster and has no requirement for the size of the input matrix. As shown in Figure 4, the hidden layer
projects each m×N matrix representing the sample file into a 1×N vector.

Future Internet 2020, 12, x FOR PEER REVIEW 8 of 16

encoding vector of each n-gram, which is also the number of hash buckets in the CTIB-n-gram
algorithm described in the previous section. V NW R ×∈ is the weight matrix maintained by the
embedding layer, where N is the specified feature vector dimension. At initialization time, the
feature weight matrix W is randomly generated and will be updated continuously during the
training process. The output of this layer H is an m N× matrix composed of the embedded
vectors of all n-grams in the sample file and will enter the hidden layer.

3.4.2. Hidden Layer

The hidden layer of the model is a global average pooling (GAP) layer, which provides a fixed-
size file feature vector for the output layer. The concept of the global average pooling layer was
proposed in 2014 [31]. The GAP layer has no parameters, so it does not need to rely on special
methods such as dropout to avoid overfitting. Compared with the fully connected layer, the GAP
layer is more robust, faster and has no requirement for the size of the input matrix. As shown in
Figure 4, the hidden layer projects each m N× matrix representing the sample file into a 1 N×
vector.

Figure 4. The hidden layer projects each m × N matrix into a 1 × N vector.

The calculations performed at the hidden layer are as follows:

1

1 m

i
i

h h
m =

=  (1)

Each row of matrix H , denoted by N
ih R∈ , is an embedded vector of an n-gram in the sample.

The GAP layer does not consider the order relationship between the n-grams extracted from the
sample file; it directly calculates the sum of all the embedded feature vectors, and then averaging is
performed to obtain the output h , which is the feature vector of the sample file.

3.4.3. Output Layer

Our model uses a hierarchical softmax layer to complete the final step in the family classification.
Softmax is the most commonly used output function in multi-classification tasks. In a standard
softmax regression, for each input, the probability of belonging to each class is calculated separately,
and then the class with the highest probability is chosen as the output class label. As a result, when
there are many class labels or the hidden layer output vector dimension is large, the calculation will
be massive. Hierarchical softmax, based on the Huffman tree, transforms the multi-classification
problem into multiple bi-classification problems. In the case where the family class number is k and
the hidden layer output file feature vector dimension is d, the hierarchical softmax can reduce the
computational complexity from ()kdΟ when using the standard softmax to 2(log)d kΟ [32].

As shown in Figure 5, in the Huffman tree constructed by the output layer, the leaf nodes denote
malware family labels, and the other nodes are called hidden nodes. When constructing a tree, the
weight of each leaf node is the number of family samples in the training set, and the weight of the
non-leaf node is the sum of the weights of all its child nodes. There is only one path from the root

0.24,0.12,−0.10,...,0.14
0.22,0.31,0.39,...,−0.09
0.24,0.12,−0.10,...,0.14

−0.30,−0.18,−0.24,...,0.08
−0.14,0.11,−0.52,...,−0.22

......
0.43,−0.17,0.04,...,0.09

0.18,0.19,−0.20,...,−0.23

0.24,0.12,−0.10,...,0.14
0.22,0.31,0.39,...,−0.09
0.24,0.12,−0.10,...,0.14

−0.30,−0.18,−0.24,...,0.08
−0.14,0.11,−0.52,...,−0.22
−0.19,−0.17,0.20,...,−0.10

......
0.43,−0.17,0.04,...,0.09

0.18,0.19,−0.20,...,−0.23

0.40,−0.18,−0.31,...,0.15

Figure 4. The hidden layer projects each m × N matrix into a 1 × N vector.

The calculations performed at the hidden layer are as follows:

h =
1
m

m∑
i=1

hi (2)

Each row of matrix H, denoted by hi ∈ RN, is an embedded vector of an n-gram in the sample.
The GAP layer does not consider the order relationship between the n-grams extracted from the sample
file; it directly calculates the sum of all the embedded feature vectors, and then averaging is performed
to obtain the output h, which is the feature vector of the sample file.

3.4.3. Output Layer

Our model uses a hierarchical softmax layer to complete the final step in the family classification.
Softmax is the most commonly used output function in multi-classification tasks. In a standard softmax
regression, for each input, the probability of belonging to each class is calculated separately, and then
the class with the highest probability is chosen as the output class label. As a result, when there are
many class labels or the hidden layer output vector dimension is large, the calculation will be massive.
Hierarchical softmax, based on the Huffman tree, transforms the multi-classification problem into
multiple bi-classification problems. In the case where the family class number is k and the hidden

Future Internet 2020, 12, 219 9 of 17

layer output file feature vector dimension is d, the hierarchical softmax can reduce the computational
complexity from O(kd) when using the standard softmax to O(d log2 k) [32].

As shown in Figure 5, in the Huffman tree constructed by the output layer, the leaf nodes denote
malware family labels, and the other nodes are called hidden nodes. When constructing a tree,
the weight of each leaf node is the number of family samples in the training set, and the weight of the
non-leaf node is the sum of the weights of all its child nodes. There is only one path from the root node
to each leaf node that denotes a malware family. The output layer calculates the probability that a
sample belongs to a certain family, according to this unique path. The probability of going to the right
or left on every passing node will be multiplied. The formulas are shown below.

Future Internet 2020, 12, x FOR PEER REVIEW 9 of 16

node to each leaf node that denotes a malware family. The output layer calculates the probability that
a sample belongs to a certain family, according to this unique path. The probability of going to the
right or left on every passing node will be multiplied. The formulas are shown below.

Figure 5. Hierarchical tree structure of the output layer.

The probability of going left at node n, (,)P n left , is calculated as Equation (3) shows:

(,) ()T
nP n left hσ θ= ⋅ (3)

According to the nature of the activation function sigmoid, we can get the probability of going
right at node n as in Equation (4):

(,) 1 () ()T T
n nP n right h hσ θ σ θ= − ⋅ = − ⋅ (2)

Then, if we want to calculate the probability that the sample file expressed by the feature vector
h belongs to the malware family 1c in Figure 3, the calculation is as follows:

1 1 1(|) (,) ((,1),) ((, 2),)P c h P root left P n c left P n c right= ⋅ ⋅

1 1(,1) (,2)() () ()T T T
root n c n ch h hσ θ σ θ σ θ= ⋅ ⋅ ⋅ ⋅ − ⋅

(3)

Extending to the general case, the probability of a malware sample expressed by vector h
belonging to family c is calculated by Equation (6):

() 1

(,)
1

(|) ((,))
L c

T
n c j

j
P c h sign c j hσ θ

−

=
= ∏ ⋅ (4)

where ()L c is the unique path length from the root node to the leaf node of the class c , (,)n c jθ is

the coefficient vector of the hidden node, whose transpose is (,)
T

n c jθ and σ is the activation

function sigmoid.
Each hidden node vector is randomly initialized and updated with training feedback. Since the

probability of the child node must be less than its parent node, when classifying a sample, we
searched down along the branches having higher probabilities until the leaf node was reached, and
then the corresponding label was obtained.

4. Experiments and Evaluations

4.1. System Implementation and Dataset

Figure 5. Hierarchical tree structure of the output layer.

The probability of going left at node n, P(n, le f t), is calculated as Equation (3) shows:

P(n, le f t) = σ(θT
n · h) (3)

According to the nature of the activation function sigmoid, we can get the probability of going
right at node n as in Equation (4):

P(n, right) = 1− σ(θT
n · h) = σ(−θ

T
n · h) (4)

Then, if we want to calculate the probability that the sample file expressed by the feature vector h
belongs to the malware family c1 in Figure 3, the calculation is as follows:

P(c1
∣∣∣h) = P(root, le f t) · P(n(c1, 1), le f t) · P(n(c1, 2), right)

= σ(θroot
T
· h) · σ(θn(c1,1)

T
· h) · σ(−θn(c1,2)

T
· h) (5)

Extending to the general case, the probability of a malware sample expressed by vector h belonging
to family c is calculated by Equation (6):

P(c|h) =
L(c)−1∏

j=1

σ(sign(c, j) · θn(c, j)
Th) (6)

where L(c) is the unique path length from the root node to the leaf node of the class c, θn(c, j) is the

coefficient vector of the hidden node, whose transpose is θn(c, j)
T and σ is the activation function sigmoid.

Each hidden node vector is randomly initialized and updated with training feedback. Since the
probability of the child node must be less than its parent node, when classifying a sample, we searched

Future Internet 2020, 12, 219 10 of 17

down along the branches having higher probabilities until the leaf node was reached, and then the
corresponding label was obtained.

4. Experiments and Evaluations

4.1. System Implementation and Dataset

All experiments in this work were performed on a Mac mini PC. Table 1 summarizes the major
hardware and software platforms of the environment for the SNNMAC algorithm.

Table 1. The platforms of the environment.

Platforms Content

Hardware Dependencies
2.8 GHz Intel Core i5

8 GB 1600 MHz DDR3
Intel Iris 1536 MB

Software Dependencies

macOS Mojave 10.14.4
Python 3.7.4
Keras 2.0.9

Numpy 1.16.2
Pandas 0.24.2

Scikit-learn 0.21.2
Tensorflow 1.13.1

Due to the sensitivity of malicious code, the data sets used in most related works were not open to
the public, and it is difficult to collect a large number of malware samples independently. Additionally,
for the sake of the objectivity of the experiment, we used two data sets. The first data set was provided
by the Microsoft Malware Classification Challenge (BIG 2015) [33], which contains 10,868 unique
malware samples of 9 malware families on the Windows system. Each sample consisted of two files.
One was a binary file without the PE header, and the other was the corresponding disassembly file
generated by IDA Pro. The contents of the malware family samples are shown in Table 2. The second
data set was obtained through the VirusShare website, including 8 families, 10,055 training samples
and 1074 test samples. We used the open source tool AvClass to label the family names of malicious
code and used an IDAPython script to disassemble the samples in batches and get disassembled files
in .asm format. Then, we traversed each line of the .text, CODE and .code sections to fetch instructions.
The contents of the malware family samples are shown in Table 3.

Table 2. The malware sample dataset (1).

Number Malware Family Name Sample Size

1 Ramnit 1541
2 Lolipop 2478
3 Kelihos_ver3 2942
4 Vundo 475
5 Simda 42
6 Tracur 751
7 Kelihos_ver1 398
8 Obfuscator.ACY 1228
9 Gatak 1013

Future Internet 2020, 12, 219 11 of 17

Table 3. The malware sample dataset (2).

Number Malware Family Name Sample Size

1 Autoit 723
2 Delf 1847
3 Hotbar 1937
4 Onlinegames 2543
5 Sytro 1288
6 Fosniw 411
7 Renos 593
8 Installcore 713

We measured the following performance metrics in evaluation experiments: precision, recall and
micro-f1. Micro-f1 is a generalization of the standard f1 value on the multi-classification tasks, and it
treats multiple classifications as multiple bi-classifications. The metrics are defined as follows:

precision =
TP

TP + FP
(7)

recall =
TP

TP + FN
(8)

micro− f 1 = 2×
precisionsum × recallsum

precisionsum + recallsum
(9)

4.2. Experimental Results and Analysis

4.2.1. Model Performance

Tables 4 and 5 respectively show the classification performance of the proposed SNNMAC model
for two datasets when the n of the n-gram was three. In this experiment, we randomly selected
3000 samples as the training set and 6000 samples as the testing set. In the second data set, one tenth
of the data set was randomly selected from each family as the testing set, and the n value of three
was also selected for the experiment. For each family, there were only two results: belonging or not
belonging to this family. The standard f1 value was used here.

Table 4. The performance of the proposed model with 3-g.

Family Name Precision Recall F1 Value

Ramnit 0.9677 0.9901 0.9788

Lollipop 0.9992 0.9976 0.9984

Kelihos_ver3 1 1 1

Vundo 1 1 1

Simda 1 0.9091 0.9524

Tracur 0.9863 0.9796 0.9829

Kelihos_ver1 0.9974 0.9871 0.9922

Obfuscator.ACY 0.9825 0.9615 0.9719

Gatak 0.9951 0.9980 0.9965

weighted average 0.9921 0.9918 0.9920

Future Internet 2020, 12, 219 12 of 17

Table 5. The performance of the proposed model with 3-g.

Family Name Precision Recall F1 Value

Autoit 0.9924 1 0.9962

Delf 0.9343 0.9925 0.9625

Hotbar 1 1 1

Onlinegames 0.9961 0.9454 0.9701

Sytro 1 0.9956 0.9978

Fosniw 0.9841 1 0.9920

Renos 0.9905 0.9830 0.9867

Installcore 0.9969 0.9969 0.9969

weighted average 0.9844 0.9836 0.9837

Figures 6 and 7 show visual representations of the classification result confusion matrix of two
datasets. The confusion matrix is a special matrix used to show the result of multi-classification
tasks, with each column representing the prediction class and each row representing the actual class.
The matrix is normalized due to the big difference in the number of family samples.

Future Internet 2020, 12, x FOR PEER REVIEW 12 of 16

Figures 6 and 7 show visual representations of the classification result confusion matrix of two
datasets. The confusion matrix is a special matrix used to show the result of multi-classification tasks,
with each column representing the prediction class and each row representing the actual class. The
matrix is normalized due to the big difference in the number of family samples.

Figure 6. The normalized confusion matrix of the classification result (1).

Figure 7. The normalized confusion matrix of the classification result (2).

The experimental results show that the SNNMAC algorithm obtained a good classification effect
for most malware families. It achieved 100% classification precision on five families. For the first
dataset, except for the Simba family with a small number of samples, it achieved an f1 value of 0.95

Figure 6. The normalized confusion matrix of the classification result (1).

Future Internet 2020, 12, 219 13 of 17

Future Internet 2020, 12, x FOR PEER REVIEW 12 of 16

Figures 6 and 7 show visual representations of the classification result confusion matrix of two
datasets. The confusion matrix is a special matrix used to show the result of multi-classification tasks,
with each column representing the prediction class and each row representing the actual class. The
matrix is normalized due to the big difference in the number of family samples.

Figure 6. The normalized confusion matrix of the classification result (1).

Figure 7. The normalized confusion matrix of the classification result (2).

The experimental results show that the SNNMAC algorithm obtained a good classification effect
for most malware families. It achieved 100% classification precision on five families. For the first
dataset, except for the Simba family with a small number of samples, it achieved an f1 value of 0.95

Figure 7. The normalized confusion matrix of the classification result (2).

The experimental results show that the SNNMAC algorithm obtained a good classification effect
for most malware families. It achieved 100% classification precision on five families. For the first
dataset, except for the Simba family with a small number of samples, it achieved an f1 value of 0.95 due
to the low recall rate. All other malware families obtained an f1 value greater than 0.97, a classification
precision above 96.7% and a recall rate more than 96.1%. For the second dataset, except for the Delf
family attaining a precision value of 0.93 and the Onlinegames family attaining a recall value of 0.95,
all other malware families obtained f1 values greater than 0.97, classification precisions above 98.4%
and recall rates of more than 98.3%.

4.2.2. The CTIB-n-gram Algorithm

To verify the effectiveness of the proposed n-gram generation algorithm CTIB-n-gram,
we conducted a malware family classification experiment with a series of n values from 1 to 6.
For each n value, the standard n-gram method and CTIB-n-gram algorithm were used in the model
to generate an n-gram dataset. Then, the dataset was input into our network, and the results were
compared. In addition, the value of n would also have a great impact on the results. The experiments
in this section also compared the classification effects of the models with different n values. Figure 8a–c
show the comparison of the precision, recall and micro-f1 values.

Future Internet 2020, 12, 219 14 of 17

Future Internet 2020, 12, x FOR PEER REVIEW 13 of 16

due to the low recall rate. All other malware families obtained an f1 value greater than 0.97, a
classification precision above 96.7% and a recall rate more than 96.1%. For the second dataset, except
for the Delf family attaining a precision value of 0.93 and the Onlinegames family attaining a recall
value of 0.95, all other malware families obtained f1 values greater than 0.97, classification precisions
above 98.4% and recall rates of more than 98.3%.

4.2.2. The CTIB-n-gram Algorithm

To verify the effectiveness of the proposed n-gram generation algorithm CTIB-n-gram, we
conducted a malware family classification experiment with a series of n values from 1 to 6. For each
n value, the standard n-gram method and CTIB-n-gram algorithm were used in the model to generate
an n-gram dataset. Then, the dataset was input into our network, and the results were compared. In
addition, the value of n would also have a great impact on the results. The experiments in this section
also compared the classification effects of the models with different n values. Figure 8a–c show the
comparison of the precision, recall and micro-f1 values.

(a) (b) (c)

Figure 8. Comparing results obtained by the model using the standard n-gram method and the CTIB-
n-gram algorithm, respectively. (a) Precision; (b) recall; and (c) micro-f1.

Experiments were performed on n values from 1 to 6. When n = 1, it is equivalent to no n-gram
model. Since the CTIB-n-gram algorithm only retained the control transfer instruction and discarded
a large number of other instructions, the classification model using the CTIB-n-gram algorithm was
worse than one with the standard n-gram. At n = 2, the precision of the two methods was close, and
the one with the CTIB-n-gram algorithm had a higher recall rate. At n > 2, the model using the CTIB-
n-gram algorithm exceeded the model using standard n-grams in all three indicators, and the gap
increased with the growth of n. It was noted that as the n value grew, the indicators did not always
grow or remain stable. In the model using the standard n-gram, the performance began to decline
when n > 4. When using the CTIB-n-gram model, the recall rate also began to decrease at n = 6, but
the decline was not significant. As the value of n increases, the more instructions an n-gram contains,
the less it discards. This is because the CTIB-n-gram model retained the control transfer instructions,
which divide the assembly code into many basic blocks. The basic block, the smallest unit of assembly
code analysis, is a single-entry, single-outlet instruction sequence. Therefore, the model based on the
CTIB-n-gram algorithm had a higher accuracy than the standard n-gram model.

In terms of efficiency, when the n value was 2, the 2-g dataset file generated by the standard n-
gram method exceeded 2 GB. However, the model using the CTIB-n-gram algorithm took only about
140 MB for the 2-g dataset file and about 440 MB when n was 6, far less than the storage the standard
n-gram method needs. Naturally, the smaller the data file, the shorter the whole time will be when
the subsequent processing is the same. For the sake of time and storage cost, the classification model
using n-gram generally adopts bigram or trigram, so the CTIB-n-gram method can effectively
improve the effectiveness and efficiency of malware classification in practice.

4.2.3. Comparison with Other Works

Figure 8. Comparing results obtained by the model using the standard n-gram method and the
CTIB-n-gram algorithm, respectively. (a) Precision; (b) recall; and (c) micro-f1.

Experiments were performed on n values from 1 to 6. When n = 1, it is equivalent to no n-gram
model. Since the CTIB-n-gram algorithm only retained the control transfer instruction and discarded
a large number of other instructions, the classification model using the CTIB-n-gram algorithm was
worse than one with the standard n-gram. At n = 2, the precision of the two methods was close,
and the one with the CTIB-n-gram algorithm had a higher recall rate. At n > 2, the model using the
CTIB-n-gram algorithm exceeded the model using standard n-grams in all three indicators, and the
gap increased with the growth of n. It was noted that as the n value grew, the indicators did not always
grow or remain stable. In the model using the standard n-gram, the performance began to decline
when n > 4. When using the CTIB-n-gram model, the recall rate also began to decrease at n = 6, but the
decline was not significant. As the value of n increases, the more instructions an n-gram contains,
the less it discards. This is because the CTIB-n-gram model retained the control transfer instructions,
which divide the assembly code into many basic blocks. The basic block, the smallest unit of assembly
code analysis, is a single-entry, single-outlet instruction sequence. Therefore, the model based on the
CTIB-n-gram algorithm had a higher accuracy than the standard n-gram model.

In terms of efficiency, when the n value was 2, the 2-g dataset file generated by the standard
n-gram method exceeded 2 GB. However, the model using the CTIB-n-gram algorithm took only about
140 MB for the 2-g dataset file and about 440 MB when n was 6, far less than the storage the standard
n-gram method needs. Naturally, the smaller the data file, the shorter the whole time will be when the
subsequent processing is the same. For the sake of time and storage cost, the classification model using
n-gram generally adopts bigram or trigram, so the CTIB-n-gram method can effectively improve the
effectiveness and efficiency of malware classification in practice.

4.2.3. Comparison with Other Works

This section describes several comparative experiments we carried out. The comparative
experiment consisted of two groups. One group used the common classifier of machine learning to
perform classification, including Naive Bayes (NB), logistic regression (LR), support vector machine
(SVM), random forest (RF) and Xgboost. The other group used the algorithms in the following three
relevant works: the method used by the team who won the first place in the Kaggle malware classification
competition [34], which takes a grayscale image generated from the .asm file, header information
and the opcode n-gram as features with random forest as the classifier; the MalNet deep learning
model [19] proposed by Yan et al., which combines CNN and LSTM networks to deal with the static
features of malicious code; and the method proposed by Hanqi Zhang et al. [35], which feeds feature
vectors composed of the TF-IDF(term frequency–inverse document frequency) values of the n-gram to
five machine learning classifiers.

The results are shown in Table 6.

Future Internet 2020, 12, 219 15 of 17

Table 6. The results of the comparative experiments.

Group Method Precision (%) Recall (%) Time (min) F1 Value

Common
Machine
Learning
Classifier

NB 70.21 70.06 16 0.9838

LR 71.42 67.38 17 0.6934

SVM 54.84 28.75 18 0.3772

RF 84.46 82.34 16 0.8338

XGB 85.13 72.02 22 0.7803

Methods in
Related Works

Kaggle Winner 99.63 99.07 269 0.9920

MalNet 99.14 97.96 164 0.9865

Hanqi Zhang 92.13 90.64 24 0.9138

SNNMAC SNNMAC 99.21 99.18 27 0.9886

The same training set and test set samples were used for each experiment. The metrics compared
included classification precision, recall rate and time consumed, where the time referred to the test time
and did not include the time spent in the decompilation process. The experimental results show that
the SNNMAC model is superior to the common machine learning classifier in precision and recall rate.
Compared with the related methods, the classification precisions and f1 values from the SNNMAC
model were only slightly lower than the method of the Kaggle winner, but the training time was
reduced greatly, which makes the SNNMAC model more suitable for a real antivirus scenario with a
massive amount of malware.

5. Conclusions and Future Work

In this paper, we proposed a malware classification method called SNNMAC, which uses a shallow
neural network to learn from the assembly instruction n-gram dataset, which was generated by an
improved n-gram algorithm based on control transfer instructions. We used the SNNMAC algorithm
to complete a malware classification experiment for 10,868 samples from 9 malware families, and it
achieved 99.21% precision and a recall rate of 99.18%. We also made a malware family classification
experiment for comparison with other related works, and the SNNMAC model outperformed most of
the other works with 99.21% precision and reduced training time greatly, compared with the related
work. In order to reflect the objectivity of the experiment, two datasets were used in the experiment.
It is shown that our approach bridges the gap between precise but slow methods and fast but less
precise methods in existing work. In addition, it is more suitable for scenes with huge amounts of
malicious code.

The model proposed in this paper uses a single feature and does not perform well in an extremely
unbalanced class. At the same time, this model relies on the assembly instructions obtained by
disassembly, and it cannot effectively detect executable files processed by technologies such as packing.

In future work, multidimensional features will be selected to express code features more
comprehensively and further improve the classification effect of malicious code. Additionally,
we plan to evaluate the SNNMAC model against other, larger datasets.

Author Contributions: Conceptualization, P.Y., Y.Z. and L.L.; methodology, P.Y. and L.Z.; software, L.Z., and Y.Z.;
validation, H.Z., L.Z. and L.L.; formal analysis, P.Y., L.Z. and L.L.; investigation, P.Y., H.Z. and Y.Z.; resources,
H.Z., L.Z. and L.L.; data curation, H.Z.; writing–original draft preparation, P.Y.; writing—review and editing,
P.Y., L.Z. and L.L.; visualization, Y.Z. and H.Z.; supervision, P.Y. and L.Z.; project administration, P.Y. and L.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Future Internet 2020, 12, 219 16 of 17

References

1. New Malware. Available online: https://www.av-test.org/en/statistics/malware (accessed on 10 November 2019).
2. The Future of Mobile Malware. Available online: http://www.symantec.com/connect/blogs/future-mobile-

malware (accessed on 10 November 2019).
3. Rafique, M.Z.; Chen, P.; Huygens, C.; Joosen, W. Evolutionary algorithms for classification of malware

families through different network behaviors. In Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation, Vancouver, BC, Canada, 12–16 July 2014.

4. Avast Reports on WanaCrypt0r 2.0 Ransomware That Infected NHS and Telefonica. Available online:
https://blog.avast.com/ransomware-that-infected-telefonica-and-nhs-hospitals-isspreading-aggressively-
withover-50000-attacks-so-far-today (accessed on 10 November 2019).

5. Damodaran, A.; Di Troia, F.; Visaggio, C.A.; Austin, T.H.; Stamp, M. A comparison of static, dynamic,
and hybrid analysis for malware detection. J. Comput. Virol. Hacking Tech. 2017, 13, 1–12. [CrossRef]

6. Fattori, A.; Lanzi, A.; Balzarotti, D.; Kirda, E. Hypervisor-based malware protection with Access Miner.
Comput. Secur. 2015, 52, 33–50. [CrossRef]

7. Mohaisen, A.; Alrawi, O.; Mohaisen, M. AMAL: High-fidelity, behavior-based automated malware analysis
and classification. Comput. Secur. 2015, 52, 251–266. [CrossRef]

8. Altaher, A. An improved Android malware detection scheme based on an evolving hybrid neuro-fuzzy
classifier (EHNFC) and permission-based features. Neural Comput. Appl. 2016, 28, 4147–4157. [CrossRef]

9. Hashemi, H.; Azmoodeh, A.; Hamzeh, A.; Hashemi, S. Graph embedding as a new approach for unknown
malware detection. J. Comput. Virol. Hacking Tech. 2016, 13, 153–166. [CrossRef]

10. Pektaş, A.; Acarman, T. Classification of malware families based on runtime behaviors. J. Inf. Secur. Appl.
2017, 37, 91–100. [CrossRef]

11. Fan, C.-I.; Hsiao, H.-W.; Chou, C.-H.; Tseng, Y.-F. Malware Detection Systems Based on API Log Data Mining.
In Proceedings of the 2015 IEEE 39th Annual Computer Software and Applications Conference, Taichung,
Taiwan, 1–5 July 2015; Volume 3, pp. 255–260.

12. Bat-Erdene, M.; Park, H.; Li, H.; Lee, H.; Choi, M.-S. Entropy analysis to classify unknown packing algorithms
for malware detection. Int. J. Inf. Secur. 2016, 16, 227–248. [CrossRef]

13. Santos, I.; Brezo, F.; Ugarte-Pedrero, X.; Garcia-Verdugo, J.M. Opcode sequences as representation of
executables for data-mining-based unknown malware detection. Inf. Sci. 2013, 231, 64–82. [CrossRef]

14. Rong, F.; Fang, Y.; Zuo, Z. Macspmd: Malware Detection Based on API Call Pattern. Comput. Sci. 2018, 131–138.
Available online: http://www.jsjkx.com/CN/article/openArticlePDF.jsp?id=133 (accessed on 10 November 2019).

15. Pajouh, H.H.; Dehghantanha, A.; Khayami, R.; Choo, K.-K.R. Intelligent OS X malware threat detection with
code inspection. J. Comput. Virol. Hacking Tech. 2017, 14, 213–223. [CrossRef]

16. Milosevic, N.; Ali, D.; Choo, K.-K.R. Machine learning aided Android malware classification. Comput. Electr.
Eng. 2017, 61, 266–274. [CrossRef]

17. Euh, S.; Lee, H.; Kim, D.; Hwang, D. Comparative Analysis of Low-Dimensional Features and Tree-Based
Ensembles for Malware Detection Systems. IEEE Access 2020, 8, 76796–76808. [CrossRef]

18. HaddadPajouh, H.; Dehghantanha, A.; Khayami, R.; Choo, K.-K.R. A deep Recurrent Neural Network
based approach for Internet of Things malware threat hunting. Futur. Gener. Comput. Syst. 2018, 85, 88–96.
[CrossRef]

19. Yan, J.; Qi, Y.; Rao, Q. Detecting Malware with an Ensemble Method Based on Deep Neural Network.
Secur. Commun. Netw. 2018, 2018, 1–16. [CrossRef]

20. Liu, K.; Fang, Y.; Lei, Z.; Zheng, Z.; Liang, L. Malicious Code Clustering Based on Graph Convolution
Network. J. Sichuan Univ. 2019, 56, 654–660.

21. Dahl, G.E.; Stokes, J.W.; Deng, L.; Yu, D. Large-scale malware classification using random projections and
neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 3422–3426.

22. Reimann, J.; Vachtsevanos, G. UAVs in Urban Operations: Target Interception and Containment. J. Intell.
Robot. Syst. 2006, 47, 383–396. [CrossRef]

23. Raff, E.; Sylvester, J.; Nicholas, C. Learning the PE Header, Malware Detection with Minimal Domain
Knowledge. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, Dallas Texas
USA, 3 November 2017; ACM: New York, NY, USA, 2017; pp. 121–132.

https://www.av-test.org/en/statistics/malware
http://www.symantec.com/connect/blogs/future-mobile-malware
http://www.symantec.com/connect/blogs/future-mobile-malware
https://blog.avast.com/ransomware-that-infected-telefonica-and-nhs-hospitals-isspreading-aggressively-withover-50000-attacks-so-far-today
https://blog.avast.com/ransomware-that-infected-telefonica-and-nhs-hospitals-isspreading-aggressively-withover-50000-attacks-so-far-today
http://dx.doi.org/10.1007/s11416-015-0261-z
http://dx.doi.org/10.1016/j.cose.2015.03.007
http://dx.doi.org/10.1016/j.cose.2015.04.001
http://dx.doi.org/10.1007/s00521-016-2708-7
http://dx.doi.org/10.1007/s11416-016-0278-y
http://dx.doi.org/10.1016/j.jisa.2017.10.005
http://dx.doi.org/10.1007/s10207-016-0330-4
http://dx.doi.org/10.1016/j.ins.2011.08.020
http://www.jsjkx.com/CN/article/openArticlePDF.jsp?id=133
http://dx.doi.org/10.1007/s11416-017-0307-5
http://dx.doi.org/10.1016/j.compeleceng.2017.02.013
http://dx.doi.org/10.1109/ACCESS.2020.2986014
http://dx.doi.org/10.1016/j.future.2018.03.007
http://dx.doi.org/10.1155/2018/7247095
http://dx.doi.org/10.1007/s10846-006-9089-6

Future Internet 2020, 12, 219 17 of 17

24. Aslan, O.; Samet, R. A Comprehensive Review on Malware Detection Approaches. IEEE Access 2020, 8,
6249–6271. [CrossRef]

25. Raff, E.; Barker, J.; Sylvester, J.; Brandon, R.; Catanzaro, B.; Nicholas, C. Malware detection by eating a whole
exe. Malware detection by eating a whole exe. arXiv 2017, arXiv:1710.09435.

26. Vasan, D.; Alazab, M.; Wassan, S.; Safaei, B.; Zheng, Q. Image-Based malware classification using ensemble
of CNN architectures (IMCEC). Comput. Secur. 2020, 92, 101748. [CrossRef]

27. Wang, J.; Baoxin, X.U.; Liu, D.; Li, F.; Zhang, X. Detection Method for Linux Platform Malware. U.S. Patent
No. 15/645767, 22 March 2018.

28. Xin, H. MutantX-S: Scalable Malware Clustering Based on Static Features. In Proceedings of the 2013 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 13), San Jose, CA, USA, 26–28 June 2013; pp. 187–198.

29. Sebastiani, F. Machine learning in automated text categorization. ACM Comput. Surv. 2002, 34, 1–47.
[CrossRef]

30. Weinberger, K.; Dasgupta, A.; Langford, J.; Smola, A.; Attenberg, J. Feature hashing for large scale multitask
learning. In Proceedings of the International Conference of Machine Learning (ICML), Montreal, QC, Canada,
14–18 June 2009; ACM: New York, NY, USA, 2009; Volume 7, pp. 1113–1120.

31. Lin, M.; Chen, Q.; Yan, S. Network in Network. arXiv 2013, arXiv:1312.4400.
32. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space.

arXiv 2013, arXiv:1301.3781.
33. Ronen, R.; Radu, M.; Feuerstein, C.; Yom-Tov, E. Microsoft Malware Classification Challenge. arXiv 2018,

arXiv:1802.10135. [CrossRef]
34. Microsoft Malware Classification Challenge (BIG 2015) First Place Team: Say No to Overfitting.

Available online: http://blog.kaggle.com/2015/05/26/microsoft-malware-winners-interview-1st-place-no-to-
overfitting (accessed on 10 November 2019).

35. Zhang, H.; Xiao, X.; Mercaldo, F.; Ni, S.; Martinelli, F.; Sangaiah, A.K. Classification of ransomware families
with machine learning based on N-gram of opcodes. Futur. Gener. Comput. Syst. 2019, 90, 211–221. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2019.2963724
http://dx.doi.org/10.1016/j.cose.2020.101748
http://dx.doi.org/10.1145/505282.505283
http://dx.doi.org/10.13140/RG.2.2.34695.91045
http://blog.kaggle.com/2015/05/26/microsoft-malware-winners-interview-1st-place-no-to-overfitting
http://blog.kaggle.com/2015/05/26/microsoft-malware-winners-interview-1st-place-no-to-overfitting
http://dx.doi.org/10.1016/j.future.2018.07.052
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Classification Methodology
	Overview of Classification Model
	Opcode Sequences Process
	An Improved n-gram Algorithm Based on Control Transfer Instructions
	The Shallow Neutral Network
	Input Layer
	Hidden Layer
	Output Layer

	Experiments and Evaluations
	System Implementation and Dataset
	Experimental Results and Analysis
	Model Performance
	The CTIB-n-gram Algorithm
	Comparison with Other Works

	Conclusions and Future Work
	References

