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Abstract: Recently, the pretraining of models has been successfully applied to unsupervised and
semi-supervised neural machine translation. A cross-lingual language model uses a pretrained masked
language model to initialize the encoder and decoder of the translation model, which greatly improves
the translation quality. However, because of a mismatch in the number of layers, the pretrained model
can only initialize part of the decoder’s parameters. In this paper, we use a layer-wise coordination
transformer and a consistent pretraining translation transformer instead of a vanilla transformer as the
translation model. The former has only an encoder, and the latter has an encoder and a decoder, but the
encoder and decoder have exactly the same parameters. Both models can guarantee that all parameters
in the translation model can be initialized by the pretrained model. Experiments on the Chinese–English
and English–German datasets show that compared with the vanilla transformer baseline, our models
achieve better performance with fewer parameters when the parallel corpus is small.

Keywords: low-resource neural machine translation; monolingual data; pretraining; transformer

1. Introduction

Neural machine translation (NMT), which is trained in an end-to-end fashion [1–4], has become the
mainstream of machine translation methods, and has even reached the human level in some fields [5–7].
However, almost all of these achievements rely on large-scale parallel corpora. When the parallel corpus is
small, neural machine translation may have poor performance [8,9]. Therefore, how to achieve high-quality
translation through abundant monolingual data with small-scale parallel corpus or even zero parallel
corpus has attracted the attention of more and more researchers [10–13]. An NMT model generally contains
an encoder and a decoder [1]. The encoder encodes source tokens into intermediate representations,
and then the decoder generates the target tokens by the intermediate representations and previous target
tokens. Language models [14] trained on monolingual data can give the probability of the next word by
the previous words. Because of the similarity between language models and NMT models, many research
studies use language models to improve low-resource NMT. Back translation [15] is another method which
can improve low-resource NMT through generating additional synthetic parallel data.
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In recent years, pretraining language models such as BERT [16] and GPT [17] have shown great
superiority in natural language understanding tasks, especially when there are little supervised data
available. Masked language modeling [16], in which a transformer encoder is trained by predicting the
masked tokens in a sentence, can learn rich semantic information in sentences and has been proved to
be an excellent pretraining model [16,18]. Cross-lingual language modeling (XLM) [18] is the first to
apply pretraining models to low-resource and zero-resource neural machine translation. For low-resource
semi-supervised neural machine translation, XLM first trains a transformer encoder on both source and
target language monolingual data through masked language modeling, and then a pretrained model
is used to initialize the encoder and decoder of transformer. The knowledge in abundant monolingual
data is transferred to NMT model. Therefore, the initialized transformer only needs a small amount of
parallel corpus data to fine tune and will achieve satisfactory performance after fine-tuning. However,
there is a small flaw that the decoder of transformer has more parameters than the encoder because the
decoder has additional layers, so not all parameters in the decoder can be initialized by the pretrained
model. The mismatch between the pretraining model and NMT model will lead to the degradation of
the influence of the pretrained model. MASS [19] proposed a new pretraining task to replace the masked
language modeling. This new pretraining task is based on the whole transformer, so it achieved better
performance. In this paper, we still use the mask language modeling as the pretraining task, but we use two
transformer variants instead of the vanilla transformer as the translation model. One of these translation
models is layer-wise coordination transformer [20] and the other is called consistent pretraining translation
transformer. Both models are able to ensure that all parameters can be initialized by the pretrained model.

We evaluate our models on Chinese–English and English–German translation tasks. Experimental
results show that: after being initialized by the same pretrained model, our models perform better when
the parallel corpus is small (less than 1 million). Precisely, our contributions are as follows:

1. In order to keep models consistent between pretraining and translation, we propose to use the
layer-wise coordination transformer to replace the vanilla transformer as the translation model.

2. Based on the vanilla transformer and the layer-wise coordination transformer, we propose a
consistent pretraining translation transformer, which obtains better performance in the pretraining
fine-tuning mode.

3. Experimental results show that our models can get better performance wtih fewer parameters under
low-resource conditions.

4. Which is more important, the source language monolingual data or the target language monolingual
data? is cross-language pretraining necessary? We use ablation experiments to further study
these problems.

Section 2 shows the related works; Section 3 introduces the background knowledge about the
pretraining fine-tuning mode in translation tasks; Section 4 presents the details of the layer-wise
coordination transformer and consistent pretraining translation transformer; Section 5 describes the
details of our experiments; finally, the conclusion is drawn in Section 6.

2. Related Works

As part of statistical machine translation (SMT) [21], language models can make use of target language
monolingual corpora to assist the generation of target language in the process of translation, so it is
naturally applied to NMT. Gulcehre et al. [22] integrate a language model into RNN-based NMT model
through shallow and deep fusion. Similarly, Skorokhodov et al. [23] use gated fusion to combine a
language model and a transformer-based NMT model [4]. Xia et al. [24] use two dual translation models
as an autoencoder language model in which a translation model is the encoder and the other reverse
translation model is the decoder to exploit monolingual corpus. A large number of research studies [22–26]
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show that the language models have a great positive impact on neural machine translation. However,
most of them need to modify the architecture of NMT to combine the translation models and the language
models. As a result, the whole neural machine translation system becomes very complex, which is
inconsistent with the original intention of neural machine translation, an end-to-end system.

Back translation [17], a data augmentation method in the field of machine translation, using a reverse
translation model and target language monolingual corpus to produce synthetic parallel corpus, has proven
to be an effective method [15,27]. Most semi-supervised methods in NMT, especially back translation,
only exploit target-side monolingual data. Zhang et al. [28] use a self-learning algorithm and a multi-task
learning framework to exploit source-side monolingual data. Both Cheng et al. [11] and Xia et al. [24]
exploit both sides of monolingual data through dual learning and back translation. However, these models
are too complex to train. Back translation is a simple but effective method. However, it also has some
limitations. Although some studies have shown that the quality of synthetic parallel corpora has little
influence on the translation results, it is difficult to generate acceptable synthetic parallel corpora when the
number of parallel corpora is too small, and a high proportion of synthetic data tends to bring too much
noise [29,30].

3. Background

For semi-supervised neural machine translation, XLM [18] first trains a transformer encoder through
masked language modeling, then initializes the encoder and decoder of the transformer with the pretrained
model respectively. The initialized transformer can be trained on parallel corpus to learn the translation
knowledge. The architecture of pretraining model and transformer are shown in Figure 1. We can learn
that the architecture of pretraining model is same as the transformer encoder (left of Figure 1b), but the
decoder (right of Figure 1b) has an additional layer, the encoder-decoder attention layer. The details of the
masked language modeling and transformer-based NMT are shown in the following sections.
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Figure 1. The architecture of models: (a) Pretraining model (b) Transformer model.

3.1. Masked Language Modeling (MLM)

The masked language modeling in XLM is similar to that in BERT [16]. Both of them take a noisy
sentence as input and predict the original word in the corresponding position. The operations of adding
noise are as follows: randomly extracting 15% of the tokens in the sentence; replacing them with [MASK]
80% of the time, replacing them with random tokens 10% of the time, keeping them unchanged 10% of the
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time. The parameters of pretraining models are learned by predicting the masked tokens. XLM trains a
transformer encoder on both the source language monolingual data and target language monolingual data
to obtain a cross-lingual masked language model. In order to distinguish the sentence from the source
language or the target language, XLM adds an extra language embedding layer to the input of the model.

3.2. Transformer-Based NMT

Transformer [4] has an encoder and a decoder. The input of encoder is the source sentences, the output
of encoder is the context matrix of the source language. The decoder takes the target tokens and the
context matrix of the source language as input, and gives the probability of next word in target language.
Both encoder and decoder are composed of multiple identical layers. For the encoder, every layer has
a self-attention sublayer and a position-wise feed-forward sublayer. For the decoder, every layer has a
self-attention sublayer, an encoder-decoder attention sublayer, and a position-wise feed-forward sublayer.
The self-attention sublayer and encoder-decoder attention sublayer have the same attention mechanism.
The formula of the attention mechanism is as follows:

Attention (Q, K, V) = so f tmax
(

QKT
√

dmodel

)
V (1)

where dmodel is the dimension of hidden representations. The difference between the self-attention sublayer
and encoder-decoder attention sublayer is that the parameters for calculating attention mechanism are
different. In the self-attention sublayer of the encoder, Q = K = V = [x1; . . . ; xn], x is a token vector
in the source sentence, n is the length of source sentence. In the self-attention sublayer of the decoder,
Q = [y1; . . . ; ym], y is a token vector in the target sentence, m is the length of target sentence. For the
j-th token in the target sentence, K = V = [y1; . . . ; yj]. In the encoder-decoder attention sublayer of the
decoder, Q = [y1; . . . ; ym], K = V = [x1; . . . ; xn], where x is the token vector by the last layer output of the
encoder. Please refer to Vaswani et al. [4] for more details.

The optimization object of transformer-based NMT is as follows:

arg max
θ

m

∑
t=1

logP (yt = k|x, y<t, θ) (2)

where θ is the parameter of the transformer, k is the t-th token in the target sentence.

4. Our Models

Following XLM [18], we use the masked language modeling as the pretraining object. From Figure 1,
we can see that the encoder of transformer can be perfectly initialized by the pretrained model,
but the pretrained model can only initialize the first and third sublayers of decoder in transformer.
The encoder-decoder attention sublayer in the transformer decoder can not be initialized by the pretrained
model. So, in our works, we consider layer-wise coordination transformer and consistent pretraining
translation transformer as the NMT model. The layer-wise coordination transformer only has an encoder.
Its architecture is exactly the same as the pretrained model. The consistent pretraining translation
transformer has both encoder and decoder, and the encoder and decoder have the same network
architecture. Therefore, both our NMT models can be fully initialized by the pretrained model. The overall
architecture of theses two models is shown in Figure 2.
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Figure 2. The architecture of our models: (a) layer-wise coordination Transformer (b) consistent pretraining
translation Transformer.

4.1. Layer-Wise Coordination Transformer

He et al. [20] proposed a transformer variant called layer-wise coordination transformer (LWCT)
to exploit the information from low level to high level. In their model, the decoder is removed, so the
encoder is not only responsible for the expression of the source language, but also for the generation of
the target language. For the source language, there is no difference between this model and transformer
model, both of which have the same attention mechanism. For the target language, this model uses
mixed-attention to replace the self-attention and encoder-decoder attention. The mixed attention means
that the target tokens can see not only previous target language tokens, but also the whole source language
tokens, and it is also formulated as (1). The difference is that where Q = [y1; . . . ; ym], for the j-th token
in the target sentence, K = V = [x1; . . . ; xn; y1; . . . ; yj]. An illustration is shown in Figure 3. In this paper,
blue represents the source language and green represents the target language. It should be noted that
the decoder in transformer uses the last layer output of the encoder to generate the next token in target
language, but the layer-wise coordination transformer uses every layer output of source language to obtain
the next token in the target language.

Figure 3. One layer in layer-wise coordination Transformer. Encoder and decoder share the same
parameters. Source tokens use self-attention mechanism while target tokens use mixed-attention mechanism.
The mixed-attention mechanism of each layer uses the whole source language tokens of the same layer and
the previous target tokens to generate the target language outputs.

Although LWCT and the encoder of the transformer have different attention mechanisms, they still
have the same number and type of parameters. In addition, pretraining only requires the encoder of
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the transformer. Therefore, LWCT can be used as the translation model to keep the architecture of the
pre-training model and the translation model completely consistent.

4.2. Consistent Pretraining Translation Transformer

The number of parameters in the neural machine translation model has a great influence on the
translation results. As we can see from Figure 2, when initialized by the same pretrained model,
the number of parameters of layer-wise coordination transformer is only half less than that of transformer,
because layer-wise coordination transformer has only encoder and no decoder. A small number of
parameters may result in poor translation performance. Besides, the layer-wise coordination transformer
actually shares parameters between encoder and decoder, but for non-similar languages, such as English
and Chinese, sharing parameters may have some negative effects. In order to solve these problems,
we propose a new transformer variant based on the vanilla transformer and layer-wise coordination
transformer, which is called consistent pretraining translation transformer (CPTT).

The consistent pretraining translation transformer has an encoder-decoder architecture. The encoder
in consistent pretraining translation transformer is the same as that in transformer. The decoder also uses
mixed-attention to generate target language as it does in layer-wise coordination transformer. One layer
in consistent pretraining translation transformer decoder is shown in Figure 4. The differences between
consistent pretraining translation transformer and layer-wise coordination transformer are consistent
pretraining translation transformer does not share parameters between encoder and decoder, and uses the
last layer output of the encoder to generate the target language.

Figure 4. One layer in consistent pretraining translation Transformer decoder. The mixed-attention
mechanism of all layers uses the source language outputs of the encoder last layer and previous target
tokens to obtain the target language outputs.

4.3. Other Model Details

Pretraining model in XLM has a language embedding layer to distinguish source language and
target language. So, in order to maintain consistency between pretraining models and translation models,
all NMT models in this paper have a language embedding layer. The pretrained model shares token
embedding between source language and target language, but the NMT model transformer in XLM
does not share token embedding between encoder and decoder. Our consistent pretraining translation
transformer maintains this setting. It means that the tokens shared by the source language and the target
language may have different vector representations in the encoder and decoder.
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5. Experiments

5.1. Datasets and Preprocessing

We evaluate our models on WMT17 Chinese–English and English–German datasets. English–German
and Chinese–English translation tasks are high-resource cases. The parallel corpus of Chinese–English
and English–German on WMT17 is shown in Table 1. To simulate the low-resource situation, we only use
the News Commentary v12 parallel corpus as our training set in the translation stage. The specific data
details are as follows:

Table 1. The parallel corpus of Chinese–English and English–German on WMT17.

Chinese–English English–German

Parallel data

News Commentary v12 News Commentary v12
CWMT Corpus Common Crawl corpus
UN Parallel Corpus V1.0 Europarl v7

Rapid corpus of EU press releases

English–German We extract the monolingual data from WMT17 monolingual corpus News Vrawl
2016, and use the first 4.5 million English and German parts of the datasets as the training data in the
pretraining stage. At the same time, the News Commentary v12 English–German dataset is used as the
parallel corpus, which contains 270,769 parallel sentence pairs. We use newstest2016 and newstest2017 as
validation and test sets.

Chinese–English We use the Chinese part of all parallel corpus in CWMT corpus as the Chinese
monolingual corpus, which contains 9 million sentences in total. The whole monolingual corpus News
Crawl 2016 is used as the English monolingual corpus, which contains 20.6 million sentences. We only use
News Commentary v12 Chinese–English dataset as the parallel corpus for Chinese–English translation,
which contains 227,330 parallel sentence pairs. We use newsdev2017 and newstest2017 as validation and
test sets.

All training data used in our experiments are shown in Table 2. We use Moses script
(https://github.com/moses-smt/mosesdecoder) to process English and German data, and use Jieba word
segmentation tool (https://github.com/fxsjy/jieba) for Chinese word segmentation. We use BPE [31] with
60,000 merge operations in the same way as XLM [18].

Table 2. All training data in our experiments.

Chinese–English

Parallel data Chinese monolingual data English monolingual data
size 227 K 9 M 20.6 M
from News Commentary v12 CWMT corpus News Crawl 2016

English–German

Parallel data English monolingual data German monolingual data
size 270 K 4.5 M 4.5 M
from News Commentary v12 News Crawl 2016 News Crawl 2016

5.2. Model Configurations

We use XLM to obtain the transformer baseline, and implement layer-wise coordination transformer
and consistent pretraining translation transformer based on the codebase of XLM (https://github.com/

https://github.com/moses-smt/mosesdecoder
https://github.com/fxsjy/jieba
https://github.com/facebookresearch/XLM
https://github.com/facebookresearch/XLM
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facebookresearch/XLM). For simplicity, we use LWCT to represent layer-wise coordination transformer
and CPTT to represent consistent pretraining translation transformer in the rest of this paper.

We set embedding size to 512 and feed-forward hidden size to 2048 for all models. For transformer
model and CPTT model, we use 6 layers for both encoder and decoder. For LWCT model, we tried two
configurations, one using 6 layers encoder to ensure that the same pretrained model is used as other
models, and the other using 12 layers encoder to guarantee the similar number of parameters in NMT
model. During inference, we use beam search with a beam size of 4 and a length penalty of 0.6 for all
NMT models.

We use Adam [32] optimizer with learning rate 10−4 for both pretraining and translation stage,
and train all models on 2 V100 GPUs. For pretraining models, the batch size is set to 192 and a sequence in
a batch contains 256 tokens. For NMT models, a batch contains about 20,000 tokens. Dropout [33] is set to
0.1 for all tasks. we follow XLM to set other settings.

5.3. Results and Analysis

As with most machine translation studies, we use BLEU [34] scores as the indicator of translation
results. The translation results of different NMT models initialized by the pretrained models are shown in
Table 3. According to the first three lines in Table 3, We can see that after being initialized by the same
pretrained model, our CPTT performs better than XLM baseline on both zh-en and en-de translation tasks,
and the LWCT with 6 layers obtains the performance close to transformer with half of the parameters.
The LWCT with 12 layers even outperforms the XLM baseline by 1.46 BLEU points on en-de translation
task. However, the LWCT with 12 layers requires a bigger pretrained model. We can also see clearly that
our models has less parameters than transformer. Compared with the 12 layers of LWCT models, all
encoder-decoder NMT models have more parameters in total, because we do not share token embedding
between encoder and decoder. To compare each NMT model in detail, Figure 5 shows the results of the
first 10,000 steps of the validation set on the zh-en translation task for all NMT models.

Table 3. BLEU scores of different NMT models initialized by the pretrained model in the test set.

Pretraining Model NMT Model Encoder Param Decoder Param zh-en en-de

Transformer encoder(6-layer)
Transformer(XLM) 58.9M 66.8M 13.68 21.59
LWCT(6-layer) 58.9M - 13.57 21.26
CPTT 58.9M 58.9M 14.15 22.21

Transformer encoder(12-layer) LWCT(12-layer) 77.8M - 13.65 23.05

An easily overlooked problem is that the improvements may come from changes to the better model,
rather than relying on keeping models consistent between pretraining and translation. So, we set up
a comparison experiment in which all the NMT models were not initialized by the pretrained models.
The results are shown in Table 4.

We can learn that transformer performs better than all other NMT models according to Table 4.
Therefore, combined with the previous experimental results, we conclude that it is necessary to keep the
model consistent between the pretraining and translation stages.

https://github.com/facebookresearch/XLM
https://github.com/facebookresearch/XLM
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Figure 5. Validation results of differences NMT models on zh-en translation task.

Table 4. BLEU scores of different NMT models in the test set.

NMT Model zh-en en-de

Transformer(XLM) 10.35 16.84
LWCT(6-layer) 9.16 15.60
CPTT 10.34 16.45
LWCT(12-layer) 10.02 16.78

5.4. Ablation Study

In this section, we investigate the influence of pretrained models on encoder and decoder in NMT
model, and whether cross language training is necessary in the pretraining stage. For comparison, we use a
cross-lingual pretrained model to initialize only the encoder or decoder of the NMT model, only pretrained
model based on source monolingual data to initialize the encoder, and pretrained model based on target
monolingual data to initialize the decoder. We also tried some other initialization strategies, such as no
initialization. The results of encoder-decoder NMT models are shown in Table 5, and the results of 6 layers
LWCT model are shown in Table 6.

For encoder-decoder NMT models, we can obtain the following results from Table 5. Only the
initializing decoder has little effect on the results of translation, but our CPTT can obtain more
improvements than the transformer model. As we can see, initializing encoder is more important than
initializing decoder, which means source language is more important than the target language. However,
the cross-lingual model can performance better in most cases, especially using it to initialize both encoder
and decoder. This situation is more obvious on en-de translation task. We think that this is because
using the same pretrained model to initialize both the encoder and decoder will help NMT models
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learn alignment information on parallel corpus more easily. Table 6 shows that for 6 layers of LWCT,
both the pretrained model of the source language and the target language can significantly improve the
translation results, the result of pretrained model based on source language is better, and the cross-lingual
pretrained model has the best performance. Most of the results of LWCT are consistent with the results
of encoder-decoder NMT models. So, we can conclude that in pretraining fine-tuning mode, encoder is
more important than decoder; in other words, source language is more important than target language,
but cross-lingual pretraining is necessary, because it can obtain a better performance.

Table 5. BLEU scores for encoder-decoder NMT models with different pretrained models in validation
dataset. mlm_src&tgt is cross-lingual masked language model, mlm_src and mlm_tgt are monolingual
masked language models.

Encoder Decoder
zh-en en-de

Transformer CPTT Transformer CPTT

- - 10.74 10.74 20.88 20.25
- mlm_tgt 10.82 11.73 20.90 20.33
- mlm_src&tgt 11.00 11.65 21.08 21.26

mlm_src - 13.26 13.34 24.58 24.46
mlm_src&tgt - 13.82 13.53 24.86 24.46

mlm_src mlm_tgt 13.47 13.80 24.78 22.94
mlm_src&tgt mlm_src&tgt 13.84 14.41 26.16 26.47

Table 6. BLEU scores for 6 layers LWCT model with different pretrained models in validation dataset.

Pretrained Model zh-en en-de

- 9.72 19.03
mlm_src 12.82 24.92
mlm_tgt 11.77 24.40
mlm_src&tgt 13.79 25.87

5.5. The Influence of Parallel Corpus Size

The method based on pretraining and fine-tuning is mainly aimed at improving the quality of
low-resource neural machine translation. However, how many parallel corpora are low resource cases?
When the scale of the parallel corpus becomes larger, does the model CPTT still work? In this section,
we study these problems in the English-to-German translation task by changing the scale of parallel corpus.
We collected all the parallel corpus data of WMT17 en-de, and then extracted different numbers of parallel
corpus from them for experiments. The results are shown in Figure 6.

As we can see, all models initialized by the pretrained model achieved significant improvements,
but with the increase of the scale of the parallel corpus, these improvements become smaller and smaller.
When the number of parallel corpus is small, especially less than 1 million, our CPTT model can obtain
more improvements than the transformer. When the scale of parallel corpus is between 1 million and
3 million, the performance of CCPT and transformer are similar. When the scale of parallel corpus reaches
4.5 million, transformer can obtain more improvements than CCPT. We think that this is because when
the scale of parallel corpus becomes larger and larger, the influence of pretraining model will become
smaller and smaller. Therefore, when the scale of parallel corpus is large, the transformer will obtain better
performance, otherwise CCPT may be a better choice.
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Figure 6. Results of different models on parallel corpus of different sizes.

6. Conclusions

To keep models consistent between pretraining and translation stages in pretraining fine-tuning mode,
we propose using layer-wise coordination transformer and consistent pretraining translation transformer
to replace the vanilla transformer as the NMT model. Both models can ensure that all parameters in
the NMT model are initialized by the pretrained model. Experimental results on Chinese-to-English
and English-to-German translation tasks show our models can obtain better performances with fewer
parameters when the number of parallel corpus is small. Through ablation experiments, we found that
the source language has a greater impact on the translation results in the pretraining, but cross-language
pretraining is more helpful to the translation models. In the future, we plan to explore more pretraining
models to utilize monolingual data more effectively for better performance in low resource neural
machine translation.
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