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Abstract: One of the developmental directions of Future Internet technologies is the implementation of
artificial intelligence systems for manipulating data and the surrounding world in a more complex way.
Rule-based systems, very accessible for people’s decision-making, play an important role in the family
of computational intelligence methods. The use of decision-making rules along with decision trees are
one of the simplest forms of presenting complex decision-making processes. Decision support systems,
according to the cross-industry standard process for data mining (CRISP-DM) framework, require final
embedding of the learned model in a given computer infrastructure, integrated circuits, etc. In this
work, we deal with the topic concerning placing the learned rule-based model of decision support in
the database environment-exactly in the SQL database tables. Our main goal is to place the previously
trained model in the database and apply it by means of single queries. In our work we assume that the
decision-making rules applied are mutually consistent and additionally the Minimal Description Length
(MDL) rule is introduced. We propose a universal solution for any IF THEN rule induction algorithm.

Keywords: decision systems; rule based systems; databases; rough sets

1. Introduction

The last, very important stage of the CRISP-DM (Cross-industry standard process for data mining)
framework [1] is the final implementation of the learned models at the disposal of end users. The ways
in which models are placed, their security, and quick access for many users is a significant problem for
computer system administrators and developers of decision-support devices. In this work, we have
developed a way of placing decision-making rules in database tables and a method of making decisions
that is based on individual database queries. This is a very simple and effective way to use decision
support systems based on IF THEN type rules. The users can send queries to the Database and get the
answer for their decision problem without local computations. It was possible to build a model under
the assumption that the rules are consistent and built on the Riisanen’s Minimal Description Length
(MDL) rule [2]. The MDL rule, among other things, refers to the exclusion of longer rules, which contain
previously accepted shorter rules generated by a specific method.

In the next section we define the goal set in the work.
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1.1. The Aim of the Work

The main objective of the research was to develop a method of classification using rules collected
in database tables (i.e., a previously learned rule-based model), which works through single queries to
database tables. This has been achieved by assuming that we use non-contradictory rules that belong
entirely to only one decision-making class and meet the condition set by the MDL rule; long rules cannot
contain the correct short rules. In the following subsections, we introduce our solution and finally show an
example of the method in Section 4.3.

In the next section we present a brief approach to the methods.

1.2. Brief Approach to the Methods

To achieve the goal, we needed to design a database system supported by a data mining module
assessing the usefulness of a rule-based model. To assess the usefulness, we proposed the Cross Validation
method, which allows us to estimate the quality of the rules generated in the model. This means that the
model, which has been trained and embedded in a database table, works with a specific, real efficiency.
This element can be seen in the diagram Figure 1.
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Figure 1. Basic scheme of the database system vs. rule-based knowledge based system.
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As the heart of the data mining model, we have chosen the most popular methods of generating
decision-making rules-exhaustive rules, sequentially covering and LEM2 rules usually applied in medical
diagnosis solutions. We presented these methods in examples (see Section 4.1) and we have given examples
of effectiveness in models based on these rules in Figure 2.

EM2 clafiifier E

Cieting classifier
heart_disease_0.6-tm
"covering set of rules"

Figure 2. Considering Train and Test with split ratio 0.4 for Statlog (Heart) Data Set (270 objects, 14
attributes) [3], the Training system has 162 objects, the test system 108. Exemplary classification result; in
case of knn we have total and balanced accuracy = 0.833, coverage = 1; in case of an exhaustive classifier
we have total and balanced accuracy = 0.824, coverage = 1, number_of_rules = 2588; in case of an LEM2
classifier we have total accuracy = 0.887, balanced accuracy = 0.871, coverage = 0.491, number_of _rules =
65; in case of a Covering classifier we have total accuracy = 0.554, balanced accuracy = 0.56, coverage =
0.852, number_of_rules = 188.

As a container containing learned models we used SQL database tables. We have worked out how to
put the rules in the proposed form in the database. The general scheme is in Figure 1. And the detailed
concept approach in Section 4.2.

In order to achieve the correct classification, which is described in Section 4.3, we have proposed a
specific form of rules, and a method for extracting the parameters that determine the classification, by
creating an appropriate query to the database. Our queries (consisting in passing the problem to the
database to be solved) to the database directly return the name of the decision class that is most likely
according to the available rules.

The rest of the paper is constructed as follows. In Section 2, we introduce basic information about
rule-based systems and we mention the existing similar solutions to the one presented in this work.
In Section 3 we present the basic assumptions about the database system. In Section 4 we provide an
introduction to the steps needed to build the system. In the following subsections we present the next steps
in detail with examples. In Section 4.1 we discuss selected techniques of rule generation, in Section 4.2
we introduce the way of communication with the database and the representation of rules, in Section 4.3
we have an introduction to the sample classifier used on rules downloaded from the database, and we
present an additional test showing the potential effectiveness of the system. In Section 5 we conduct a
critical analysis of the features of rule generation techniques. In Section 6 we benchmark our system,
verifying linear computational complexity. In Section 7 we summarize the results of the work and discuss
future plans.
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Let us move on to the matter of rule-based decision-making models.

2. Background

We are thinking about rule-based systems through the prism of the rough set theory-see Pawlak [4].
Where we start from the definition of the decision system as a triple (U, A,d), where U is a universe
of objects, A is a set of conditional attributes, d is a decision attribute fulfilling a condition (d ¢ A).
To clarify this definition, see Table 1 for a sample decision system. In our example, the universe of objects
U = {persony, persony, persons}, the set of conditional attributes A is {color, body_temperature} and the
decision attribute d € D = {Yes, No}.

Table 1. The exemplary decision system (U, A, d).

Color body_temperature d

persong red 40. Yes
persony  green 36.6 No
personz  blue 36.5 No

For the formal representation of decision rules, we need to introduce a descriptor notation (a; = value).
For example (a1 = 1) is a general reference to all objects of the decision system that have the value 1 on
the conditional attribute a;. Exemplary IF THEN rules can be defined as:

IF(a; = 1) THEN (d = YES)

IF(color = red) OR (temperature > 100) THEN (d = potenctial_danger)
IF(time = free) AND (attitude = good) THEN (d = go_to_the_park)

There are several basic types of rule generation algorithms, for instance an exhaustive set of rules [5]
is dedicated to problems, where the decision must be made with the greatest possible raw knowledge
available-this is a Brute Force technique. The sequential covering type [6] gives brief solutions to all
problems by using short rules, which fully cover the universe of objects. The last important family of
techniques worth mentioning is based on Modules of data (non conflicting data blocks), an example
method is the LEM2 algorithm [7], which allows to create long characteristic, most trusted patterns from
data. Such methods are used for medical data. Most other methods use elements of these basic three
approaches. If someone would like to use decision rules in uncertain conditions, the indiscernibility degree
of descriptors should be defined. It is not our goal to review all available variants of rule generation
algorithms, but to present system operation on a representative set of rules.

Let us move on to a discussion of selected work on the application of decision-making rules in
databases. The seemingly simple subject of using rule-based systems in databases is a specific niche,
in which there is not much research or many technical reports. We will mention the following examples
of work on this subject. In [8] authors use a database (ORACLE) to implement the functionality of an
expert system shell by a simple rule language which is automatically translated into SQL. In [9] we have a
presentation on how to maintain rule-based knowledge in temporal databases. In the paper [10] we have
implementation of a rule based system at MTBC, for applying billing compliance rules on medical claims.
In article [11] the author considers the problem of searching for rules in relational databases for potential
use in data mining. Then in the article [12] we can see discussion of generation of Apriori-Based Rules in
SQL. Finally, at work [13] authors apply an active database system in an academic information system,
to plan academic business rules.
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3. The Basic Assumptions for Our Distributed Decision Support System

In the Figure 1 represents the general view of our distributed decision system. The whole system can
be divided into 3 logical components:

1. Block of main distributed decision-making systems methods,
2. Block of rules which stores in database,
3. User’s requests and responses.

The first block has the following components: the knowledge base is a set of resolved problems in a
fixed context. The set of decision rules is the set of rules created by a selected algorithm. Estimation of
effectiveness by CV (Cross Validation) is the block in which we have the internal estimation of the decision
process effectiveness. The estimation is needed to show how the stored rules possibly work on new data.
It is just the quality of the decision-making product. Conversion to the format for DB it’s the converter,
which lets you put the rules into the Database. DB is simply Database. USER is the person who asks the
questions to the database and expects the solution for the decision problem. In the block USER (Question)
the user asks the question to DB. In the block USER (Answer from DB), the USER gets an answer from the
DB to his question.

Allow us to introduce the design of our system.

4. Stages in the Design of a Rule-Based Database System

STEP 1: We calculate (IF THEN) decision rules for the selected technique, (1st block of Figure 1)
STEP 2: We create a database table containing all conditional attributes, decision attribute, rule

support and rule length, where empty attribute values (not used in the rule) are marked as ’-’, (2nd

block of Figure 1)
e STEP 3: On the client’s side we load the problem to be solved. The decision is made by a single

database query. (3rd block of Figure 1)

4.1. STEP 1 in Detail-Discussion of Selected Rule Generation Technigues

Allow us to present some toy examples of selected rule generation techniques based on the system
from Table 2.

Table 2. The exemplary decision system-for rule induction [14].

Day Weather Temperature Humidity Wind Play_Tennis

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3  Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cold Normal Weak Yes
Deé Rain Cold Normal  Strong No
D7  Overcast Cold Normal  Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cold Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11  Sunny Mild Normal  Strong Yes
D12 Overcast Mild High Strong Yes
D13  Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

The implementation of the methods described below can be tested with the RSES (Rough Set
Exploration System) [5] tool. We will begin by presenting the exhaustive method.
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4.1.1. Exhaustive Set of Rules

Calculation of an exhaustive set of rules consists of browsing through combinations without repetition
of attributes, starting from the shortest, and checking their consistency against the decision. The MDL
(Minimal description length) concept is used in this method. MDL consists in not accepting longer rules,
which contain the correct shorter ones. This method is from the Brute Force family of techniques. Despite
the fact that it uses the greatest possible knowledge from decision systems, it is at risk of using rules
calculated from data noise. The method is quantitative, not necessarily giving the best possible results
for a specific subgroup of objects. The exponential computational complexity limits usability on large
data. It is worth knowing that a tool useful in calculating exhaustive rules is the relative indiscernibility
matrix-see [15].

Considering the decision system from Table 2, the exhaustive set of rules is as follows:

(Weather = Overcast) => (Play_Tennis = Yes[4])

(Humidity = Normal)&(Wind = Weak) => (Play_Tennis = Yes[4])

(Weather = Sunny)&(Humidity = High) => (Play_Tennis = No|[3])

(Weather = Rain)&(Wind = Weak) => (Play_Tennis = Yes[3])

(Weather = Sunny)&(Temperature = Hot) => (Play_Tennis = No|[2])

(Temperature = Cold)&(Wind = Weak) => (Play_Tennis = Yes|2])

(Weather = Rain)&(Wind = Strong) => (Play_Tennis = No|[2])

(Weather = Sunny)&(Humidity = Normal) => (Play_Tennis = Yes|2])

(Temperature = Mild)&(Humidity = Normal) => (Play_Tennis = Yes|2])

(Temperature = Hot)&(Wind = Strong) => (Play_Tennis = No[1])

(Weather = Sunny)&(Temperature = Mild)&(Wind = Weak) => (Play_Tennis = No[1])
(Weather = Sunny)&(Temperature = Cold) => (Play_Tennis = Yes[1])

(Weather = Sunny)&(Temperature = Mild)&(Wind = Strong) => (Play_Tennis = Yes[1])
(Temperature = Hot)&(Humidity = Normal) => (Play_Tennis = Yes[1])

Now allow us to present a toy example of a sequential covering type algorithm.

4.1.2. Sequential Covering Variant

The sequential type of methods comes from Mitchell [16] works. It consists of searching for the
shortest possible rules, superficially covering the decision system. Covered objects are removed from
consideration. An exemplar of implementation can be seen in the RSES tool [5]. This type of technique is
used when the data set is large and the solution is needed quickly.

(Weather = Overcast) => (Play_Tennis = Yes[4])

(Weather = Sunny)&(Temperature = Hot) => (Play_Tennis = No|[2])
(Weather = Rain)&(Wind = Weak) => (Play_Tennis = Yes[3])
(Weather = Rain)&(Wind = Strong) => (Play_Tennis = No[2])
(Weather = Sunny)&(Humidity = High) => (Play_Tennis = No|[3])
(Weather = Sunny)&(Temperature = Cold) => (Play_Tennis = Yes)

( )& (Humidity = Normal) => (Play_Tennis = Yes|2|)

Weather = Sunny

Now allow us to discuss a sample technique particularly designed for medical data.
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4.1.3. Minimal Sets of Rules: LEM2

The methods consist in searching for the smallest set of rules representing the most common
patterns in data. An illustrative technique is LEM2 (Learn from Examples by Modules 2) introduced by
Grzymala-Busse [7,17,18]. LEM2 is based on a general heuristic principle, cf, Michalski’s AQ [19], Clark’s
CN2 [20], or PRISM, Cendrowska [21], by which, rule descriptors are selected based on an established
criterion (e.g., frequency) and rule-covered objects removed from consideration. We only remember to
include them always in the rule support. The calculation is continued until the system is covered by rules,
or until there are completely contradictory combinations in the system.

The LEM2 set of rules from the Table 2 is as follows:

(Humidity = Normal)&(Wind = Weak) => (Play_Tennis = Yes[4])

(Weather = Ouvercast) => (Play_Tennis = Yes[4])

(Humidity = High)&(Weather = Sunny) => (Play_Tennis = No|[3])

(Weather = Rain)&(Wind = Strong) => (Play_Tennis = No|[2])

(Temperature = Mild)&(Weather = Rain)&(Humidity = High)&(Wind = Weak) =>
(Play_Tennis = Yes|[1])

In order to present the effectiveness of the techniques described in the section, we conducted a
demonstration experiment using the RSES system on selected data from UCI Repository [3]-see Figure 2.

Let us present samples of real rules and related statistics, generated from the heart disease system [3].
The meaning of the individual attribute names [3]: attr0 = age, attrl sex, attr2 = chest pain type,
attr3 = resting blood pressure, attrd = serum cholesterol in mg/dL, attr5 = fasting bloodsugar >
120 mg/dL, attr6 = resting electrocardiographic results, attr7 = maximum heart rate achieved, attr§ =
exercise induced angina, attr9 = oldpeak, ST depression induced by exercise relative to rest, attrl0 =
the slope of the peak exercise ST segment, attrll = number of major vessels (0-3) colored by flourosopy,
attrl2 = thal : 3 = normal; 6 = fixed defect; 7 = reversable defect.

Using the defined notation of attrl, ..., attr12 attributes of the rules, an example of the most supported
exhaustive rules is in Table 3-based on RSES tool [5]. A similar example for the LEM2 algorithm can be
seen in Table 4. And finally for the sequential covering technique in Table 5.

Table 3. Examples of real rules-exhaustive algorithm, Statlog (heart) Data Set [3], Rule statistics: 5352 rules,
Support of rules Minimal: 1, Maximal: 32, Mean: 1.7, Length of rule premises, Minimal: 1, Maximal: 6,
Mean: 2.6, Distribution of rules among decision classes, Decision class 1: 2732, Decision class 2: 2620.

(attr1=0)&(attr5=0)&(attr6=0)&(attr8=0)&(attr12=30)=>(attr13=1[32])
(attr1=0)&(attr2=30)&(attr12=30)=>(attr13=1[29])
(attr1=0)&(attr6=0)&(attr10=10)=>(attr13=1[26])
(attr2=40)&(attr6=20)&(attr10=20)&(attr12=70)=>(attr13=2[25])
(attr1=0)&(attr6=0)&(attr8=0)&(attr11=0)=>(attr13=1[25])
(attr1=0)&(attr2=30)&(attr11=0)=>(attr13=1[24])
(attr2=20)&(attr5=0)&(attr10=10)&(attr12=30)=>(attr13=1[22])
(attr1=0)&(attr5=0)&(attr8=0)&(attr10=20)&(attr12=30)=>(attr13=1[20])
(attr1=0)&(attr2=30)&(attr10=10)=>(attr13=1[20])
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Table 4. Examples of real rules-LEM2 algorithm, Statlog (heart) Data Set [3], Rule statistics: 99 rules,
Support of rules Minimal: 1, Maximal: 23, Mean: 3.1, Length of rule premises, Minimal: 4, Maximal: 10,
Mean: 7.2, Distribution of rules among decision classes, Decision class 1: 43, Decision class 2: 56.

(attr5=0)&(attr8=0)&(attr12=30)&(attr1=0)&(attr2=30)=>(attr13=1[23])
(attr5=0)&(attr8=0)&(attr12=30)&(attr11=0)&(attr1=0)&(attr6=0)=>(attr13=1[22])
(attr5=0)&(attr8=0)&(attr12=30)&(attr10=10)&(attr6=0)&(attr1=0)=>(attr13=1[21])
(attr5=0)&(attr1=10)&(attr2=40)&(attr12=70)&(attr8=10)&(attr10=20)& (attr6=20)=>(attr13=2[13])
(attr5=0)&(attr1=10)&(attr2=40)&(attr8=10)&(attr6=20)&(attr11=10)=>(attr13=2[12])
(attr8=0)&(attr1=10)&(attr11=0)&(attr5=10)=>(attr13=1[11])
(attr5=0)&(attr8=0)&(attr12=30)&(attr11=0)&(attr6=20)&(attr1=0)&(attr10=20)=>(attr13=1[9])

Table 5. Examples of real rules-Sequential covering algorithm, Statlog (heart) Data Set [3], Rule statistics:
199 rules, Support of rules Minimal: 1, Maximal: 7, Mean: 1.6, Length of rule premises, Minimal: 1, Maximal:
1, Mean: 1, Distribution of rules among decision classes, Decision class 1: 106, Decision class 93: 56.

(attr7=1720)=>(attr13=1[7])
(attr7=1780)=>(attr13=1[5])
(attr4=2040)=>(attr13=1[4])
(attr4=2110)=>(attr13=1[4])
(attrd=2260)=>(attr13=1[4])
(attr4=2820)=>(attr13=2[4])
(attr7=1510)=>(attr13=1[4])
(attr7=1790)=>(attr13=1[4])

4.2. STEP 2 in Detail-Rule Converter for Database

We need to write the rules in the form, which can be uploaded into the Database. The rules listed in
point 1 are inserted into the database table. Creating an array looks like this.

CREATE TABLE rules(Weather TEXT, Temperature TEXT, Humidity TEXT, Wind TEXT, Play_Tennis TEXT, length int, support int);

Considering the training decision system (U, A, d), |A| as the cardinality of set A. In general,
the common form or all SQL-queries can be represented with the following syntax:

INSERT INTO table(ay,a, a3, ..., a4),support, length)

VALUES(Z)l, 02,03, ..., U\AHZ);

attributes not used in the rule are initialized with a value -". A demonstration of the representation of the
true rule calculated from the system 2 is shown in Table 6.

Table 6. An example of how to upload rules into the database.

Original Rule SQL QUERY
(Weather = Overcast) INSERT INTO rules(Weather, Temperature, Humidity, Wind, Play_Tennis, length, support)
=> (Play_Tennis = Yes[4]) VALUES("Overcast’”,” —*," —," =", Yes’,4,1);
(Humidity = Normal)

INSERT INTO rules(Weather, Temperature, Humidity, Wind, Play_Tennis, length, support)

&(Wind = Weak) VALUES(" — ", — *,'Normal’, Weak’, Yes",4,2);

=> (Play_Tennis = Yes[4])
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4.3. STEP 3: Decision-Making Based on a Database Query

Allow us now to present a query to the trained database, which will return the decision to our test
object tst;.

Basically there are many ways to perform classification based on decision rules. One of the simplest
techniques is to find out which rules fit the test object one hundred percent and use their supports
and lengths to perform the competition between classes. The support is the number of training objects,
which fits the rule. Length is the number of conditional attributes of a rule. Considering the set of rules,
which fits to the exemplary object tst. Assuming that size(rule;) is the number of conditional attributes of

i-th rule and support(rule;) is the support of this rule. The scheme of classification inside the Database
system can be as follows.

Pammdassj(tst) = Z support(rule;) x length(rule;)
rules, which fits tst and belong to j—th class

Allow us to go to a sample database query. Let’s assume that our test object (problem to be solved) is
in Table 7.

Table 7. The demonstration problem to be solved.

Test Object

Is it worth playing tennis? when
Weather is Sunny
Temperature is Mild
Humidity is Normal
Wind is Weak

The database query that performs the classification process described above on the selected test object
is in Table 8.

Table 8. The demonstration of the query used to classify the test object.

Decision-Making by Single Query

SELECT Play_Tennis FROM rules
WHERE Weather in('Sunny’, —')
AND Temperature in('Mild', —')
AND Humidity in('Normal', —")
AND Wind in('Weak!,! —")
GROUP BY Play_Tennis
ORDER BY SUM(support * length) DESC
LIMIT 1;

In this way, we select only the rules that fit the test object one hundred percent and carry out the
classification based on them. The query returns the decision for the test object.
For noteworthy variants of classifiers based on rules we refer the reader to works [22,23].

5. Critical Analysis

Making decisions based on rules is a very natural process, but people are not able to use too complex
rules. In complex problems and large amounts of data, rule-based decision support systems come in handy.
Each of the techniques of rule generation has their own advantages and disadvantages. The exhaustive
method, for example, has exponential complexity and it is often difficult to count rules in a reasonable



Future Internet 2020, 12, 212 10 of 13

time. The LEM2 method gives very accurate rules, but often does not give decisions to objects. Sequential
covering techniques, on the other hand, give too general and short rules that have little classification
efficiency when there is little data. That is, the application of a set of rules in the database is associated
with the problems mentioned above.

6. Verification of System Speed by Benchmarking

The technical details concerning our method. As a computational environment we have used
phpMyAdmin a free software tool written in PHP, intended to handle the administration of MySQL over
the Web. We were making a series of automatically generated queries inside. In the experiments we used
automatically generated data, the samples of which we can see in Tables 9, 10 and 11.

Figures 3-5 show the speed of our technique in different variants. Examples of random queries
used in benchmarking can be found in Table 9 and 11. The code used to test the query speed can be
seen in Table 12. The presented verification of the speed of our classification method shows its linear
computational complexity.

4.0 (]
3.5 4 //
g 3.0 1 ’—.- ‘
2o /
§ 2.0 1 , J

=
(54}
1

/
1.0—0--0--0—/

2000 4000 6000 8000 10000
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Figure 3. The speed of loading rules into the database for batches of 1000, 2000, ..., 10,000 rules.

25

\
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Figure 4. Speed of classification of 1000 random test objects in databases containing from 1000 to 10,000 rules.
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number of test objects

Figure 5. The classification speed of 100 to 1000 test objects by 10,000 rules in the database table.

Table 9. Sample of random rules created by the generator for benchmarking purposes. In experiments we
use 1000, 2000, ...,10,000 randomly generated rules.

Rules in the Form of a Database Query

INSERT INTO rules(Weather, Temperature, Humidity, Wind,Play_Tennis, length,support)VALUES('Rain’,’-",-",’-"," Yes’ 4,5);
INSERT INTO rules(Weather, Temperature, Humidity,Wind,Play_Tennis, length,support)VALUES('Overcast’,’Mild’,’-’,’Strong’,'No’,1,4);
INSERT INTO rules(Weather, Temperature, Humidity, Wind,Play_Tennis,length,support)VALUES('Overcast’,’Cold’,' Normal’,'Strong’, Yes’,2,4);

Table 10. Creating tables to test the classification process, In experiments we upload to Tables
1000, 2000, . ..,10000 randomly generated rules.

Creating Database Tables

CREATE TABLE rules1000(Weather TEXT, Temperature TEXT, Humidity TEXT, Wind TEXT, Play_Tennis TEXT, length int, support int);
CREATE TABLE rules2000(Weather TEXT, Temperature TEXT, Humidity TEXT, Wind TEXT, Play_Tennis TEXT, length int, support int);
CREATE TABLE rules3000(Weather TEXT, Temperature TEXT, Humidity TEXT, Wind TEXT, Play_Tennis TEXT, length int, support int);

Table 11. Sample of random generated classification query.

Classification Based on Single Query

SELECT Play_Tennis FROM rules10000
WHERE Weather in('Sunny’,’-")
AND Temperature in("Mild’,’-")
AND Humidity in("Normal’,-")
AND Wind in("Weak’,”-")
GROUP BY Play_Tennis
ORDER BY SUM(supportxlength) DESCLIMIT 1;
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Table 12. The code for calculating the speed of execution of database operations.

SET @start_time = (TIMESTAMP(NOW()) * 1000000 + MICROSECOND(NOW(6)));
select @start_time;

SET OF DATABASE QUERIES
SET @end_time = (TIMESTAMP(NOW()) * 1000000 + MICROSECOND(NOW(6)));

select @end_time;
select (@end_time-@start_time)/1000;

7. Conclusions

This work is about rule-based decision support systems designed for a Database environment.
We present the project in a detailed way, step by step, starting from the generation of decision rules and
inserting them into the database with appropriate queries. The project is concluded with the presentation of
a query allowing an appropriate classification using the rules stored in the database. The presented scheme
allows us to build a real-time working (IF THEN) rule-based classifier. The use of our solution is limited
to methods generating IF THEN type rules, whose sets of rules do not contain contradictions or longer
rules containing correct shorter ones. Other limitations are mainly due to computational complexity of
individual methods-and the level of accuracy of covering the knowledge contained in the decision-making
systems by the rules generated.

Despite initial results that proved to be very promising a great amount of work is left to be done to
evaluate the final performance and determine the application of our new method.

This work calls for several perspectives. In future implementation of the presented system in selected
mobile devices is planned. We are also going to use the system in real-life data mining projects.
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