
future internet

Article

Policy-Engineering Optimization with Visual
Representation and Separation-of-Duty Constraints
in Attribute-Based Access Control

Wei Sun * , Hui Su and Huacheng Xie

Center of Network Information and Computing, Xinyang Normal University, Xinyang 464000, China;
suhuixy@xynu.edu.cn (H.S.); xiehc@xynu.edu.cn (H.X.)
* Correspondence: sunny810715@xynu.edu.cn

Received: 17 August 2020; Accepted: 24 September 2020; Published: 27 September 2020
����������
�������

Abstract: Recently, attribute-based access control (ABAC) has received increasingly more attention
and has emerged as the desired access control mechanism for many organizations because of its
flexibility and scalability for authorization management, as well as its security policies, such as
separation-of-duty constraints and mutually exclusive constraints. Policy-engineering technology is
an effective approach for the construction of ABAC systems. However, most conventional methods
lack interpretability, and their constructing processes are complex. Furthermore, they do not consider
the separation-of-duty constraints. To address these issues in ABAC, this paper proposes a novel
method called policy engineering optimization with visual representation and separation of duty
constraints (PEO_VR&SOD). First, to enhance interpretability while mining a minimal set of rules,
we use the visual technique with Hamming distance to reduce the policy mining scale and present a
policy mining algorithm. Second, to verify whether the separation of duty constraints can be satisfied
in a constructed policy engineering system, we use the method of SAT-based model counting to
reduce the constraints and construct mutually exclusive constraints to implicitly enforce the given
separation of duty constraints. The experiments demonstrate the efficiency and effectiveness of the
proposed method and show encouraging results.

Keywords: attribute-based access control; policy engineering; visual authorization representation;
separation-of-duty constraints

1. Introduction

With the rapid development and comprehensive application of network information technology,
there is a large amount of storage required and many exchanges in large-scale and complex
information-management systems [1]. Organizations adopt access control mechanisms to ensure the
system security, and the role-based access control (RBAC) mechanism has been the main standard
for most organizations over the last three decades. However, there is only one role attribute in RBAC
systems on which users and objects can depend. The RBAC mechanism is identity-dependent and lacks
flexibility, particularly in large-scale collaborative environments. As an alternative, attribute-based
access control (ABAC) has been developed recently. In ABAC, a request for accessing any resource is
permitted or denied based on the attributes assigned to the requesting user, the attributes assigned to the
requested object, the environment condition where the request is made, and an authorization policy [2].
An ABAC policy is a set of authorization rules that includes various combinations of attribute-value
pairs of users, objects, and environments, as well as operating privileges. If a user makes a request to
access an object, an authorization rule to satisfy the access request is sought. Its flexibility, scalability,
and identity-less properties overcome the limitations of RBAC, and make ABAC very attractive for

Future Internet 2020, 12, 164; doi:10.3390/fi12100164 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
https://orcid.org/0000-0003-4399-3762
http://www.mdpi.com/1999-5903/12/10/164?type=check_update&version=1
http://dx.doi.org/10.3390/fi12100164
http://www.mdpi.com/journal/futureinternet

Future Internet 2020, 12, 164 2 of 28

use in collaborative systems like cloud computing and the internet of things [3]. For the successful
implementations of ABAC mechanisms in commercial organizations, the identification of a suitable set
of authorization rules and the construction of a good ABAC system are critical tasks. This process,
known as policy engineering [4,5], is regarded as one of the most difficult and costliest components
for implementing the ABAC mechanism. Similar to role engineering in RBAC, there are also two
main approaches for constructing policy-engineering systems: top-down [6] and bottom-up [7–9].
For the former, rules are specified by precisely evaluating and splitting the business processes into
smaller independent units that are then associated with access permissions. However, this approach
can ignore the existing access modes in the organization and is also time-consuming, labor-intensive,
and error prone. For the latter, rules are derived from existing access permissions, and the architectural
structure of ABAC can be automatically constructed. The bottom-up approach, also called policy
mining, has gained much interest and considerable popularity in the last few years.

The policy-mining problem in ABAC involves discovering a suitable ABAC policy from a
traditional access control mode, such that the access authorizations covered by the policy are consistent
with the traditional access permissions. Xu and Stoller [10] first proposed a well-known bottom-up
mining approach (simply represented as Xu-Stoller) and derived an ABAC policy from access control
lists and the corresponding attribute data. Das et al. [11] considered that the policy-engineering
problem in ABAC and the role-engineering problem in RBAC are similar and equally important for
the construction of the corresponding access control models and presented a detailed survey of the
two techniques. Actually, to enhance the interpretability of policy mining, it is necessary to cluster
users, objects, or environments with the same attribute properties, similar to the clustering of users
or permissions in the role-mining problem. However, due to the diversity of the attribute properties
of entities and the variability of accesses, the mining scale is large and complex using conventional
policy-mining methods.

A key characteristic of ABAC is that it allows the specification and enforcement of various
types of constraints, such as the separation-of-duty (SOD) constraints, cardinality constraints,
binding-of-duty (BOD) constraints, and user-capability (UC) constraints, which are irrelevant to
the access control mechanism implemented in the system and can reflect the different security
requirements of organizations and ensure the security of ABAC systems [12]. As a significant security
policy discussed in this paper, the SOD constraint prevents an individual from performing all the steps
involved in an important task, as a single user is more likely to abuse his or her privileges, while multiple
users can supervise with each other while performing a task. Typically, a k-n SOD constraint requires
that at least k users complete a special task that requires n-many operating permissions [13] and has
been widely used in the banking industry and in military systems. However, none of the conventional
policy-engineering methods consider the SOD constraint. Moreover, although mutually exclusive
authorization rules (MEAR) constraints have been used to enforce a given separation of authorization
rules (SOAR) constraint in an existing ABAC system [13], a SOAR constraint takes the form of
authorization rules as its input, while an SOD constraint takes the form of access tuples. Therefore, it is
necessary to convert the access tuples into authorization rules to facilitate the enforcement of the SOD
constraints, which is also an interesting issue.

To address the above issues, this paper proposes a novel method called policy-engineering
optimization with visual representation and separation-of-duty constraints (PEO_VR&SOD).
In summary, the main contributions of this work are as follows:

(1) To reduce the mining scale and enhance the interpretability of policy mining, we use the visual
technique with Hamming distance to rearrange, portray, and partition an original authorization
matrix and discover a minimal set of authorization rules from rearranged submatrices. We present
a policy mining algorithm and compare its performance to the existing methods.

(2) To verify whether SOD constraints can be satisfied in a constructed policy engineering system,
we convert the SOD constraints into SOAR constraints using the method of SAT-based

Future Internet 2020, 12, 164 3 of 28

model counting. We construct MEAR constraints from the SOAR constraints to implicitly
enforce the given SOD constraints and evaluate the performance of the PEO_VR&SOD.

The rest of the paper is organized as follows. We discuss the related work in Section 2 and present
some preliminaries that are discussed in the following sections in Section 3. Section 4 proposes a
novel method for policy engineering optimization, which involves two aspects: (1) policy mining with
visual representation and (2) policy optimization with separation of duty constraints. We present
experimental evaluations and compare their performance with existing studies in Section 5. Section 6
concludes the paper and discusses future work.

2. Related Work

2.1. Research on Policy Engineering in ABAC

Various methods have been proposed for ABAC policy engineering. Depending on whether
minimizing the number of mining rules is considered an optimized objective, existing studies mainly
fall into the following two categories: general policy engineering and optimized policy engineering.

To avoid the potential risks of permitting unauthorized accesses, Krautsevich et al. [14] presented
a risk based ABAC policy engineering problem that assessed the potential risk for each possible access
while minimizing the total risk in the ABAC system. Biswas et al. [15] proposed a label based ABAC
model using the method of enumeration for the construction of ABAC policies, each of which included
only one user attribute and one object attribute. Narouei et al. [6] proposed a top-down ABAC policy
engineering framework using a deep recurrent neural network, which derived authorization rules
from unrestricted natural language documents. Iyer et al. [16] presented a novel method for ABAC
policy mining to construct positive and negative authorization rules. Das et al. [17] proposed a hybrid
approach for policy engineering in ABAC, which first used a top-down approach and then used a
bottom-up approach to construct authorization rules. Although existing approaches are capable of
constructing ABAC policies, the number of attribute-value pairs in any constructed rule is also critical.
The time needed for access decisions increases with an increasing number of attribute-value pairs
included in any rule. To improve the efficiency of the mining process, Gautam et al. [18] regarded
the number of attributes included in any rule as a weight and presented a constrained policy mining
algorithm in ABAC that constructed a set of authorization rules from an access control matrix, such that
the weight of each rule was less than a specified value, and the sum of the total weights of the rules
was minimized.

To discover an optimal set of ABAC rules from conventional access modes, Das et al. [19] presented
an ABAC policy mining algorithm that included environmental attributes that used the Gini impurity
to form an ABAC policy while minimizing the number of rules. Talukdar et al. [20] showed that
the policy-mining problem is equivalent to identifying a set of functional dependencies in relational
databases. The authors first proposed an ABAC policy mining algorithm called ABAC-FDM. Although
this algorithm identified all the potential rules, the complexity of the algorithm was exponential. As an
alternative, the authors next proposed another more efficient mining algorithm called ABAC-SRM,
which discovered a suitable and minimal set of rules from candidate rules. To obtain a minimal set
of ABAC rules in multi-cloud collaborations, John et al. [21] defined a cross-domain rule-mining
problem called CDRMP that was proven to be NP hard and provided a heuristic solution. They also
defined a cross-domain rule-mining problem with access relaxations under dynamic collaborations [22]
called β-CDRMP and DCDRMP and presented the heuristic solutions for mining minimal sets of
authorization rules. Besides mining positive rules in the cross domain, John et al. [23] considered the
mining of negative rules from a given set of multi-cloud access requests, thereby defining a novel
problem called CDRMP-H, and presented a solution to further reduce the number of mining rules,
including the positive and the negative.

Future Internet 2020, 12, 164 4 of 28

2.2. Research on Constraints in ABAC

Various studies have focused on specifying constraints in ABAC systems. Jin et al. [24] proposed a
unified model called ABACα that could configure three classical models. They also presented a policy
specification language that specified constraints on attribute-assignment relationships. Bijon et al. [25]
proposed an attribute-based constraint specification language (ABCL) for specifying a variety of
constraints. The ABCL was used to specify constraints on a single attribute or on multiple attributes of
a particular entity. Although the constraints in ABACαwere event-dependent, the constraints in ABCL
were uniformly enforced no matter which attribute assignment was changed. Helil et al. [26] first
examined the potential relationships between subjects and objects and then proposed an attribute-based
access control constraint based on subject similarity. Jha et al. [27] presented a specification and
verification of the SoD constraints in ABAC systems, analyzed the complexity of enforcing the SOD
constraints and proposed an approach for solving them. Roy et al. [12] presented an employee
replacement problem (ERP) in ABAC, in which the SOD constraints, BOD constraints, and UC
constraints were simultaneously taken into consideration. The authors also provided a solution for
verifying whether a particular subset of users in an ABAC system could be replaced with a smaller set
of users while satisfying different types of constraints. Additionally, Alohaly et al. [28] proposed an
automated framework to extract the ABAC constraints from natural language policies.

2.3. Research on Visual Representation for Access Information

Several techniques have been proposed for the visual representation of access information in
a matrix form. To reduce the complexity of role-mining problems, Colantonio et al. [29] divided
the user-permission-assignment dataset into several subsets and proposed a visual method for role
mining. To reduce the mining scale, Verde et al. [30] converted role mining into a clustering problem,
which compressed the division into a single sample, visually extracted similar features from multiple
divisions, and ensured the integrity of the mining results. To facilitate the visual elucidation of access
control matrices, Das et al. [31] introduced a novel method called visual mining of ABAC polices
(VisMAP), which derived rules from the visual representation for a given authorization matrix while
minimizing the number of rules. To enhance interpretability of the role-mining process, a novel
method for role optimization is proposed in our work [1], which uses partitioning and compressing
technologies to validate the accuracy of the method. Zheng et al. [32] provided a concrete example to
visually specify ABAC rules and proposed a novel approach for detecting conflicts by transforming
rules into a set of binary sequences.

2.4. Characteristics of Our Work

Two main limitations are apparent in the existing studies. The first limitation is that the policy
mining scale is very large, and the mining process itself is confusing, complex, and lacks interpretability.
The second limitation is that most existing policy engineering methods do not consider the SOD
constraints, though various studies on different types of constraints in ABAC have been developed
and assume that ABAC systems already exist in advance. However, in many cases, the systems are
completely unknown and need to be constructed. Hence, in this work, we propose a novel policy
engineering method (PEO_VR&SOD) with two main characteristics: (1) Visual representation technique
with Hamming distance is used to reduce the policy-mining scale and enhance interpretability, and (2)
the enforcement of SOD constraints is taken into consideration in the policy optimization. We also
compare the performance of the PEO_VR&SOD with that of the existing methods through experiments.

3. Preliminaries

3.1. Basic Components of ABAC

According to the NIST standard for ABAC systems [33], we present the basic components of
ABAC as follows:

Future Internet 2020, 12, 164 5 of 28

(1) U represents a finite set of requesting users. Each element of the set is denoted as ui, where 1 ≤ i ≤ |U|.
(2) O represents a finite set of requested objects. Each element of the set is denoted as oi, where 1 ≤ i ≤ |O|.
(3) OP represents a finite set of the operations allowed to be performed on the objects in an ABAC

system. Each element of the set is denoted as opi, where 1 ≤ i ≤ |OP|. For instance, if there are
only two operations allowed in a system: read and write, then we represent OP = {read, write}.

(4) E represents a finite set of environments in which authorizations are made, such as time and
locations. These authorizations are independent of users and objects. Each element of the set is
denoted as ei, where 1 ≤ i ≤ |E|.

(5) UA represents a finite set of attribute names of users. Each element of the set is denoted as uai,
where 1 ≤ i ≤ |UA|. User attribute uai can associate several values. If we use Valuai to represent
the one-to-many mapping of uai onto a set of attribute values, it can be formalized as:

∀uai ∈ UA : Valuai =
{
valuij|1 ≤ j ≤ nu

i , nu
i ∈ Z+

}
∪ {null}, (1)

where null indicates that the corresponding attribute values of the user is unknown or uncertain.
For instance, user attribute Role in a hospital can take values of Doctor, Nurse, and Patient,
and then we represent ValRole = {Doctor, Nurse, Patient}.

(6) UAV represents a finite set of all the possible attribute name–value pairs of users. Each element
of the set is denoted in the form of the equality uai = xi, where uai ∈ UA, xi ∈ Valuai . For instance,
if there are two attributes of users: Role and Specialty, where Role can take values of Doctor, Nurse
and Patient, and Specialty can take values of Cardiology, Medicine, and Pediatrics, then UAV is
represented as: {Role = Doctor, Role = Nurse, Role = Patient, Specialty = Cardiology, Specialty =

Medicine, Specialty = Pediatrics}.
(7) UUAV ⊆ U × UAV represents a many-to-many assignment of users to their attribute name-value

pairs. It can be formalized as:

UUAV =
{
(uk : ua1 = x1, ua2 = x2, . . . , uai = xi, . . .)

∣∣∣uk ∈ U, (uai = xi) ∈ UAV
}
. (2)

(8) OA represents a finite set of attribute names of objects. Each element of the set is denoted as oai,
where 1 ≤ i ≤ |OA|. The object attribute oai is also associated with several values. If we use Valoai

to represent the one-to-many mapping of oai onto a set of attribute values, it can be formalized as:

∀oai ∈ OA : Valoai =
{
valoi j|1 ≤ j ≤ no

i , no
i ∈ Z+

}
∪ {null} (3)

where null indicates that the corresponding attribute values of the object is unknown or uncertain.
For instance, object attribute Department in a hospital can take values of Cardiology, Dermatology,
and Gynecology, and then we represent ValDepartment = {Cardiology, Dermatology, Gynecology}.

(9) OAV represents a finite set of all the possible attribute name-value pairs of objects. Each element
of the set is denoted in the form of the equality oai = yi, where oai ∈ OA, yi ∈ Valoai . For instance,
if there are two attributes of objects: Department and RecordOf, where Department can take values
of Cardiology, Dermatology, and Gynecology, and RecordOf can take values of Doctor, Nurse,
Patient, and Staff, then OAV is represented as: {Department = Cardiology, Department = Dermatology,
Department = Gynecology, RecordOf = Doctor, RecordOf = Nurse, RecordOf = Patient, RecordOf = Staff}.

(10) OOAV ⊆O ×OAV represents a many-to-many assignment of objects to their attribute name–value
pairs. It can be formalized as:

OOAV =
{
(ok : oa1 = y1, oa2 = y2, . . . , oai = yi, . . .)

∣∣∣ok ∈ O, (oai = yi) ∈ OAV
}
. (4)

For the sake of brevity, we assume that environments are irrelevant to policy engineering in an
ABAC system and thus do not consider the environmental factors in this paper.

Future Internet 2020, 12, 164 6 of 28

3.2. Basic Policy-Mining Problem in ABAC

Besides the basic components of ABAC, the other components involved in traditional ABAC
policy mining [20] can be presented as follows:

(1) A represents a set of all possible authorizations that occur in an ABAC system. Each element of
the set is represented as a = <u,o,op>, which allows user u to perform operation op on object o,
where u ∈ U, o ∈ O, op ∈ OP.

(2) P represents an ABAC policy, which is also referred to as a set of authorization rules AR.
Each element ar in AR is denoted in a 3-tuple form <UAV’,OAV’,OP’>, where UAV’ ⊆ UAV,
OAV’ ⊆ OAV, OP’ ⊆ OP.

For the sake of simplicity, assume that any rule ar comprises only one operation, and ar is simply
represented as <UAV’, OAV’, op>. Figure 1 presents the factors influencing the access decisions in
ABAC, where single arrow heads represent which factors influence the access decisions and double
arrow heads represent the one-to-many or many-to-many mappings between these influencing factors
and other components of ABAC.Future Internet 2020, 10, x FOR PEER REVIEW 7 of 29

Figure 1. Factors influencing access decisions.

The basic ABAC policy-mining problem [21–23], in terms of the above elements, states that,
given a set of authorizations A = {a1,a2,…}, a mapping list UUAV and a mapping list OOAV must
find a set AR of authorization rules that can cover all the authorizations in A. Specifically, for any
authorization a = <u,o,op>, user u can perform operation op on object o if and only if some
combination of several attribute–value pairs of u in the UUAV, as well as those of o in the OOAV,
can match a rule with op in AR. Furthermore, the number of mining rules is minimized.

3.3. Enforcement of SOD Constraints in ABAC

The SOD constraint includes static SOD and dynamic SOD. In this paper, we only consider the
former, as we do not deal with environmental attributes, such as time and locations, and instead
simply such attributes as SOD. The k-n SOD constraint [13] is expressed as sod < {t1, t2, …, ti…, tn}, k >,
where n and k are integers, such that 2 ≤ k ≤ n. Each ti is an access permission that is represented as a
2-tuple form (op, o), where op ∊ OP, o ∊ O. We represent the set of such sod constraints as ω = {sod1,
sod2,…}.

To cover all the access tuples in a k-n SOD constraint, the authorization rules can be used as a
substitute for the tuple. Similar to the k-n SOD constraint, the k-n SOAR constraint [13] is expressed
as soar < {ar1, ar2, … arn}, k>, where each ari is an authorization rule, and n and k are integers, such
that 2 ≤ k ≤ n. We represent the set of such soar constraints as ξ = {soar1, soar2, …}.

MEAR constraints can be used to enforce SOAR constraints. The t-m MEAR constraint mear <
{ar1, ar2, … arm}, t > [13] conveys that, for the given m rules ar1, ar2, … arm in an ABAC system, no user
is allowed to have t or more of these m rules, where each ari is an authorization rule, and m and t are
integers, such that 2 ≤ t ≤ m. We represent the set of such mear constraints as ψ = {mear1, mear2, …}.

Figure 1. Factors influencing access decisions.

The basic ABAC policy-mining problem [21–23], in terms of the above elements, states that,
given a set of authorizations A = {a1,a2, . . . }, a mapping list UUAV and a mapping list OOAV must
find a set AR of authorization rules that can cover all the authorizations in A. Specifically, for any
authorization a = <u,o,op>, user u can perform operation op on object o if and only if some combination
of several attribute–value pairs of u in the UUAV, as well as those of o in the OOAV, can match a rule
with op in AR. Furthermore, the number of mining rules is minimized.

Future Internet 2020, 12, 164 7 of 28

3.3. Enforcement of SOD Constraints in ABAC

The SOD constraint includes static SOD and dynamic SOD. In this paper, we only consider the
former, as we do not deal with environmental attributes, such as time and locations, and instead simply
such attributes as SOD. The k-n SOD constraint [13] is expressed as sod < {t1, t2, . . . , ti . . . , tn}, k >, where n
and k are integers, such that 2 ≤ k ≤ n. Each ti is an access permission that is represented as a 2-tuple form
(op, o), where op ∈OP, o ∈O. We represent the set of such sod constraints as ω= {sod1, sod2, . . . }.

To cover all the access tuples in a k-n SOD constraint, the authorization rules can be used as a
substitute for the tuple. Similar to the k-n SOD constraint, the k-n SOAR constraint [13] is expressed as
soar < {ar1, ar2, . . . arn}, k>, where each ari is an authorization rule, and n and k are integers, such that
2 ≤ k ≤ n. We represent the set of such soar constraints as ξ = {soar1, soar2, . . . }.

MEAR constraints can be used to enforce SOAR constraints. The t-m MEAR constraint mear < {ar1,
ar2, . . . arm}, t > [13] conveys that, for the given m rules ar1, ar2, . . . arm in an ABAC system, no user is
allowed to have t or more of these m rules, where each ari is an authorization rule, and m and t are
integers, such that 2 ≤ t ≤ m. We represent the set of such mear constraints as ψ = {mear1, mear2, . . . }.

3.4. Hamming Distance

Since the authorization list for some operations is a Boolean matrix, each row (or each column) can
be regarded as a binary vector of the same length. The well-known Hamming distance [34], which is
widely used to measure the distance between two different equal-length vectors, can identify clusters of
the same (or similar) use–object pairs. Hamming distance states that, given two equal-length Boolean
vectors x and y, the Hamming distance between x and y, denoted as Dis(x, y), is the number of positions
where the vectors take different values for the same column position.

For instance, given two row vectors, x = “100110” and y = “110011”, Dis(x, y) = 3. Clearly,
the distance between any two rows in Aop increases with an increasing number of column positions
that take different values.

3.5. SAT-Based Model Counting

The well-known SAT solver [35,36] is commonly used to solve the model counting problem.
An instance of the SAT-based model counting problem is a Boolean formula made up of different
clauses. Each clause is a disjunctive or conjunctive form of Boolean variables. A Boolean formula,
which can be expressed using the conjunction or disjunction of different clauses, is categorized into the
conjunctive normal form (CNF) and the disjunctive normal form (DNF). Clearly, there are different
truth assignments for a Boolean formula. Essentially, the model counting problem is to find truth
assignments for a specific Boolean formula.

4. Proposed Method

In this section, we propose a novel method called PEO_VR&SOD, which includes two aspects:
(1) ABAC policy mining with visual representation and (2) policy optimization with separation-of-duty
constraints. Its flow chart is presented in Figure 2.

As shown in the figure, to reduce the mining scale and enhance the interpretability of policy
mining, we adopt the visual technique with Hamming distance to rearrange, portray and partition
an original authorization matrix, and discover a minimal set of authorization rules from rearranged
submatrices. Subsequently, we utilize the method of SAT-based model counting to verify whether the
separation of duty constraints can be satisfied in the constructed ABAC system.

Future Internet 2020, 12, 164 8 of 28

Future Internet 2020, 10, x FOR PEER REVIEW 8 of 29

3.4. Hamming Distance

Since the authorization list for some operations is a Boolean matrix, each row (or each column)
can be regarded as a binary vector of the same length. The well-known Hamming distance [34],
which is widely used to measure the distance between two different equal-length vectors, can
identify clusters of the same (or similar) use–object pairs. Hamming distance states that, given two
equal-length Boolean vectors x and y, the Hamming distance between x and y, denoted as Dis(x, y),
is the number of positions where the vectors take different values for the same column position.

For instance, given two row vectors, x = “100110” and y = “110011”, Dis(x, y) = 3. Clearly, the
distance between any two rows in Aop increases with an increasing number of column positions that
take different values.

3.5. SAT-Based Model Counting

The well-known SAT solver [35,36] is commonly used to solve the model counting problem.
An instance of the SAT-based model counting problem is a Boolean formula made up of different
clauses. Each clause is a disjunctive or conjunctive form of Boolean variables. A Boolean formula,
which can be expressed using the conjunction or disjunction of different clauses, is categorized into
the conjunctive normal form (CNF) and the disjunctive normal form (DNF). Clearly, there are
different truth assignments for a Boolean formula. Essentially, the model counting problem is to
find truth assignments for a specific Boolean formula.

4. Proposed Method

In this section, we propose a novel method called PEO_VR&SOD, which includes two aspects:
(1) ABAC policy mining with visual representation and (2) policy optimization with
separation-of-duty constraints. Its flow chart is presented in Figure 2.

As shown in the figure, to reduce the mining scale and enhance the interpretability of policy
mining, we adopt the visual technique with Hamming distance to rearrange, portray and partition
an original authorization matrix, and discover a minimal set of authorization rules from rearranged
submatrices. Subsequently, we utilize the method of SAT-based model counting to verify whether
the separation of duty constraints can be satisfied in the constructed ABAC system.

Figure 2. Flow chart of PEO_VR&SOD.

Figure 2. Flow chart of PEO_VR&SOD.

4.1. Policy Mining with Visual Representation

4.1.1. Preprocessing

First, we present the definitions of the matrix representations for UUAV and OOAV, respectively.

Definition 1. (UUA) Represents the Boolean matrix form corresponding to a given UUAV. It can be represented
as follows:

UUA[i][j] =
{

1, i f user ui has the attribute value in the jthcolumn
0, otherwise

. (5)

Definition 2. (OOA) Represents the Boolean matrix form corresponding to a given OOAV. It can be represented
as follows:

OOA[i][j] =
{

1, i f object oi has the attribute value in the jthcolumn
0, otherwise

. (6)

To satisfy basic policy mining, we construct an extensive users-objects-operations relationship for
a given set of authorizations A. This relationship can be equivalently denoted as a constructed matrix
UOPA, which is a generalized Cartesian product of the matrix UUAA and the matrix OOAA for the
requesting users and requested objects, respectively. The rows of UOPA correspond to all the possible
user–object pairs, and the columns correspond to the attribute-value pairs of the users and objects,
as well as the operations in A.

Example 1. Given an authorization list A, a matrix UUAA of the attribute value assignments for users, and a
matrix OOAA of the attribute value assignments for objects in Tables 1–3, respectively, then, the matrix UOPA

can be constructed as in Table 4, where the notations uav and oav represent the attribute values of users and
objects, respectively.

Future Internet 2020, 12, 164 9 of 28

Table 1. Authorization list A.

User Object Operation

u1 o1 op1

u2 o1 op1

u2 o1 op2

u3 o2 op1

u3 o2 op2

u4 o2 op1

Table 2. Matrix UUAA.

User uav1 uav2 uav3 uav4

u1 0 1 1 0

u2 1 0 1 0

u3 1 0 0 1

u4 0 1 0 1

Table 3. Matrix OOAA.

Object oav1 oav2 oav3

o1 1 0 1

o2 0 1 1

Table 4. Matrix UOPA.

User-Object uav1 uav2 uav3 uav4 oav1 oav2 oav3 op1 op2

u1-o1 0 1 1 0 1 0 1 1 0

u2-o1 1 0 1 0 1 0 1 1 1

u3-o1 1 0 0 1 1 0 1 0 0

u4-o1 0 1 0 1 1 0 1 0 0

u1-o2 0 1 1 0 0 1 1 0 0

u2-o2 1 0 1 0 0 1 1 0 0

u3-o2 1 0 0 1 0 1 1 1 1

u4-o2 0 1 0 1 0 1 1 1 0

To mine suitable authorization rules from the constructed matrix UOP, we need to find the
attribute–value pairs for users and objects, such that the values of their corresponding cells in one
row are 1, as is the value of the operation cell. Meanwhile, there is not any row where the value of
the operation cell is 0 while retaining the values of the cells as 1 for the same attribute-value pairs.
The various combinations of different attribute-value pairs that meet the requirements are referred to
as the ABAC authorization rules, the number of which needs to be minimum.

In other words, our method involves finding the minimal set of rules from the UOP that can cover
all the rows with the operation columns having values of 1. Meanwhile, the different attribute-value
pairs in the set do not present in any row with the operation column containing a value of 0.

To find a suitable and minimal set of rules, we present two guiding principles as follows:

(1) Principle 1: Assume that k1 and k2 are two different combinations of attribute-value pairs included
in rules ar1 and ar2, respectively. If k1 ⊆ k2 (that is, the number of attribute-value pairs in k2 is
greater than that in k1), then the authorizations covered by k2 can also be covered by k1; moreover,

Future Internet 2020, 12, 164 10 of 28

k2 is more restricted than k1. The authorizations covered by rule ar increase in number as the
number of attribute-value pairs in ar decreases. Thus, we should choose short-length rules for the
number of attribute-value pairs in any rule.

(2) Principle 2: To discover a minimal set of rules while ensuring a short length in any rule,
we decompose the UOP into two submatrices that consist of operation columns with values of 1
and 0. We denote these columns as UOPop=1 and UOPop=0 and sort UOPop=1 in ascending order
according to the number of values of 1 in any row. We attempt to mine rules to cover all the
authorizations corresponding to UOPop=1.

However, the constructed UOP becomes much more confusing and complex as the number of
user–object pairs increases. In other words, it is difficult to analyze and identify the authorization rules
from such a representation. Therefore, we need to find an alternative for the list of authorizations to
further facilitate policy mining while making the authorization representation more visually appealing
and understandable.

4.1.2. Visual Representation for Authorizations

Definition 3. (Aop) Represents the Boolean matrix form for a list of authorizations A with operation op,
where the rows correspond to users, and the columns correspond to objects. This can be represented as follows:

Aop[i][j] =
{

1, i f ui is allowed to per f orm op on o j
0, otherwise

. (7)

Example 2. An illustrative ABAC authorization matrix Aop is shown in Table 5, which includes 10 users and
10 objects. An equivalently rearranged matrix Aop’ is presented in Table 6. We only mark the cells whose values
are 1 for an intuitive representation. Obviously, it is more convenient to analyze and handle Aop’, which provides
a motivation for functionally representing Aop.

Table 5. Original matrix Aop.

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10
u1 1 1 1
u2 1 1 1
u3 1 1 1 1
u4 1 1 1 1
u5 1 1
u6 1 1 1
u7 1 1
u8 1 1 1 1
u9 1 1 1 1
u10 1 1 1

Table 6. Rearranged matrix Aop’.

o5 o9 o3 o4 o7 o8 o6 o1 o2 o10
u8 1 1 1 1
u9 1 1 1 1
u3 1 1 1 1
u4 1 1 1 1
u5 1 1
u7 1 1
u1 1 1 1
u2 1 1 1
u6 1 1 1
u10 1 1 1

Future Internet 2020, 12, 164 11 of 28

To visually represent the authorization matrix, we use the Hamming distance to rearrange it as
defined below.

Definition 4. (Visual representation problem for authorizations) Given an authorization matrix Aop, and a
Hamming distance list D between any two rows of Aop, find a rearranged matrix Aop’ such that: (1) The sum of
distances between the adjacent rows of Aop’ is minimum, and (2) the submatrices {s1, s2, . . . } are intuitively
included in Aop’ while covering all the cells with values of 1, which can be formalized as follows:

 min(
∑
i

Dis(Aop
′[i], Aop

′[i + 1])),∀Dis(Aop
′[i], Aop

′[i + 1]) ∈ D

Aop
′[i′][j′] = 1,∀sk ∈ {s1, s2, . . .} included in Aop

′,∀Aop
′[i′][j′] in sk

. (8)

According to Definition 5, we present the process of matrix rearrangement in Algorithm 1.

Algorithm 1 Matrix rearrangement

Input: original matrix Aop

Output: rearranged matrix Aop’
1. Initialize Aop’ = Aop;
2. Represent Aop’ as a list of row vectors: Aop’[1], Aop’[2], . . . ;
3. Identify matrix Dr of the Hamming distances between any two row vectors such that
∀i,j: Dr[i][j] = Dis(Aop’[i], Aop’[j]);
4. for each Aop’[i] in Aop’ do
5. if (∃Aop’[j]: Dr[i][j] < Dr[i][i + 1]) then
6. swap(Aop’[i + 1], Aop’[j]);
7. end if
8. end for

The distance matrix Dr for the original matrix in Table 5 is shown in Table 7, where both the rows
and columns correspond to the row vectors, and the values of cells are the Hamming distances between
any two rows. According to Algorithm 1, the same (or similar) row vectors are clustered by choosing the
minimal distances. Similarly, we can also rearrange Aop’ to cluster the same (or similar) column vectors.
These clusters of rows and columns then form a submatrix, and several such submatrices together
cover all the cells of Aop where Aop[i][j] = 1. Specifically, since Dr [10][1] = Dr[10][2] = Dr[10][6] = 0,
we can swap row vector Aop’[1] with Aop’[8], Aop’[2] with Aop’[9], and Aop’[6] with Aop’[7], respectively,
and the result in step 1 is shown in Table 8, which clusters the same row vectors together, such as
{Aop’[6], Aop’[1], Aop’[2], Aop’[10]}, {Aop’[5], Aop’[7]}, and {Aop’[8], Aop’[9], Aop’[3], Aop’[4]}. Subsequently,
we implement the rearrangement towards the column vectors. Since Dc[4][7] = Dc[4][8] = 0, we swap
the corresponding columns in step 2, and the result is shown in Table 9. Similarly, we swap the second
column with the ninth column in step 3, and the result is shown in Table 10. According to the minimal
distances between the adjacent columns, we swap the first column with the eighth column in step 4,
and the result is shown in Table 11, which is consistent with the visual representation in Table 6.

Future Internet 2020, 12, 164 12 of 28

Table 7. Distance matrix Dr.

Aop’[1] Aop’[2] Aop’[3] Aop’[4] Aop’[5] Aop’[6] Aop’[7] Aop’[8] Aop’[9] Aop’[10]

Aop’[1] 0 0 7 7 3 0 3 7 7 0

Aop’[2] 0 0 7 7 3 0 3 7 7 0

Aop’[3] 7 7 0 0 6 7 6 0 0 7

Aop’[4] 7 7 0 0 6 7 6 0 0 7

Aop’[5] 3 3 6 6 0 3 0 6 6 3

Aop’[6] 0 0 7 7 3 0 3 7 7 0

Aop’[7] 3 3 6 6 0 3 0 6 6 3

Aop’[8] 7 7 0 0 6 7 6 0 0 7

Aop’[9] 7 7 0 0 6 7 6 0 0 7

Aop’[10] 0 0 7 7 3 0 3 7 7 0

Table 8. Step 1 for rearrangement.

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10

u8 1 1 1 1

u9 1 1 1 1

u3 1 1 1 1

u4 1 1 1 1

u5 1 1

u7 1 1

u6 1 1 1

u1 1 1 1

u2 1 1 1

u10 1 1 1

Table 9. Step 2 for rearrangement.

o1 o2 o3 o4 o8 o7 o6 o5 o9 o10

u8 1 1 1 1

u9 1 1 1 1

u3 1 1 1 1

u4 1 1 1 1

u5 1 1

u7 1 1

u6 1 1 1

u1 1 1 1

u2 1 1 1

u10 1 1 1

Future Internet 2020, 12, 164 13 of 28

Table 10. Step 3 for rearrangement.

o1 o9 o3 o4 o7 o8 o6 o5 o2 o10

u8 1 1 1 1

u9 1 1 1 1

u3 1 1 1 1

u4 1 1 1 1

u5 1 1

u7 1 1

u6 1 1 1

u1 1 1 1

u2 1 1 1

u10 1 1 1

Table 11. Step 4 for rearrangement.

o5 o9 o3 o4 o8 o7 o6 o1 o2 o10

u8 1 1 1 1

u9 1 1 1 1

u3 1 1 1 1

u4 1 1 1 1

u5 1 1

u7 1 1

u6 1 1 1

u1 1 1 1

u2 1 1 1

u10 1 1 1

4.1.3. Policy Mining

In this subsection, we take the rearranged authorization matrix Aop’ and the matrices UUA and
OOA as inputs and present the process of policy mining in Algorithm 2.

In Algorithm 2, we first partition the rearranged matrix into k small matrices according to the
number of submatrices in Lines 1–3, Line 4 defines three sets of rules, Initial_rules, Uninitial_rules,
and Candidate_rules, and initializes them. From Line 5, we start to mine the rules in each submatrix.
For each submatrix Aop’i, we construct UOPAop

′

i and decompose it into UOP
Aop
′

i
op=1 and UOP

Aop
′

i
op=0 according

to Principle 2 in Line 6. We insert all the attribute-value pairs present in UOP
Aop
′

i
op=1 into the set Initial_rules

and insert all the attribute-value pairs present in UOP
Aop
′

i
op=0 into the set Uninitial_rules in Lines 7–8.

Next, in Lines 9–21, we use double loops for the sets Candidate_rules and Initial_rules to choose the
short-length rules that are not present in Uninitial_rules and consider them as candidate rules. To further
simplify the rules in set Candidate_rules, we estimate whether the length of any rule (that is, the number
of attribute-value pairs) can be reduced in the last few lines. As shown in Table 11, three submatrices
(<{u8,u9,u3,u4}, {o3,o4,o7,o8}>, <{u5,u7}, {o6,o1}>, and <{u1,u2,u6,u10}, {o1,o2,o10}>), which separate the
rearranged matrix into three partitions, are visually appealing. It is more convenient and feasible to
derive rules from each small partition, and the detailed mining processes are omitted owing to the
limited space.

Future Internet 2020, 12, 164 14 of 28

Algorithm 2 Policy mining

Input: rearranged matrix Aop’, matrices UUA and OOA
Output: set AR of authorization rules
1. Identify the number of visual submatrices in Aop’ as k;
2. Based on the visual submatrices, separate Aop’ into n partitions: Aop’1, Aop’2, . . . , and Aop’k. In each partition,
the columns correspond to the same set of objects, and the rows correspond to different sets of users;
3. According to k sets of users in different partitions, separate UUA into k partitions: UUA1, UUA2, . . . ,
and UUAn;
4. Define and initialize the sets of rules: Initial_rules = ø, Uninitial_rules = ø, Candidate_rules = ø;
5.for each Aop’i in {Aop’1,Aop’2, . . . ,Aop’k} do
6. Construct matrix UOPAop

′

i using the Cartesian product of the UUAi and OOA, and decompose it into

UOP
Aop

′

i
op=1 and UOP

Aop
′

i
op=0;

7. Identify combinations of the different attribute-value pairs present in all rows of UOP
Aop

′

i
op=1 and sort them in

ascending order according to the number of attribute-value pairs. Consider them as initial rules and insert
them into Initial_rules;

8. Identify the combinations of different attribute-value pairs present in all rows of UOP
Aop

′

i
op=0. Do not consider

them as rules and insert them into Uninitial_rules;
9. for each combination of attribute-value pairs ar in Candidate_rules do
10. for each combination of attribute-value pairs ar’ in Initial_rules do
11. if (ar is not null)∧(ar ⊆ ar’) then
12. continue;/*authorizations covered by ar’ has been covered by ar*/
13. else
14. if (ar∩ar’) < Uninitial_rules then/*authorizations covered by both ar and ar’ are allowed*/
15. Candidate_rules = (Candidate_rules\{ar})∩{ar∩ar’};
16. else /*authorizations covered by ar’ are only allowed*/
17. Candidate_rules = Candidate_rules∩{ar’};
18. end if
19. end if
20. end for
21. end for
22. for each rule car in Candidate_rules do
23. for each attribute-value pair a in car do
24. if (car\{a}) < Uninitial_rules then
25. car = car\{a};
26. end if
27. end for
28. AR = AR∪{car};
29. end for
30.end for

Computational complexity: Choosing suitable rules mainly depends on the double loops in Lines
9–21 and the estimation operations in Lines 22–29. Assume that the number of submatrices is k and
that the number of rows with operation columns containing values of 1 in each submatrix Aop’i is x;
then, the total execution time of the algorithm is O(k × (x2

× (|Aop’I − x|) + x2)), which is influenced by
the number of partitions and the size of each submatrix.

4.2. Policy Optimization with Separation-of-Duty Constraints

First, we present three status functions among users, authorization rules, and access tuples of the
SOD constraint, defined as follows.

Future Internet 2020, 12, 164 15 of 28

Definition 5. (Status functions)

(1) user_rulesγ(u) represents a set of authorization rules that allows user u to perform operations on objects
under the system status γ;

(2) tuple_rulesγ(t) represents a set of authorization rules that allows access to tuple t for a given SOD constraint
under the system status γ;

(3) user_tuplesγ(u) represents a set of tuples of a given SOD constraint that is authorized to user u under the
system status γ. It can be formalized as

user_tuplesγ(u) =
{
t
∣∣∣∃ar ∈ user_rulesγ(u) : ar ∈ tuple_rulesγ(t)

}
. (9)

To demonstrate whether the SOD constraints can be satisfied, the different status functions in
Definition 6 are used in the following example.

Example 3. Given a constructed ABAC system status γ, where the rules associated with each user are shown in
Table 12. Consider a set of SOD constraints ω = {sod1, sod2}, where sod1 = <{t1, t2, t3}, 2> and sod2 = <{t4, t5,
t6}, 3>. The rules that are allowed to access any tuple with respect to sod1 and sod2 are presented inTables 13
and 14, respectively.

Table 12. Sets of different user_rulesγ(u).

User Rules

u1 {ar1, ar2, ar4, ar5}
u2 {ar3, ar7}
u3 {ar1, ar2, ar4, ar5}
u4 {ar6}

Table 13. Sets of different tuple_rulesγ(t) with respect to sod1.

Tuple Rules

t1 {ar7}
t2 {ar3}
t3 {ar1,ar2}

Table 14. Sets of different tuple_rulesγ(t) with respect to sod2.

Tuple Rules

t4 {ar4, ar5, ar6}
t5 {ar3}
t6 {ar1, ar2}

According to sod1 and Table 13, at least two users are required to collaborate and together have t1,
t2, and t3, and all these access tuples can be done using either the rules ar1, ar3, and ar7 or the rules
ar2, ar3, and ar7. In other words, no user can own these three rules at the same time. Table 8 shows
that sod1 can be satisfied under γ. Similarly, according to sod2 and Table 14, any two users cannot own
rules ar1, ar3, and ar5 at the same time. Table 12 demonstrates, however, that users u1 and u2 can access
all the tuples of sod2 through these three rules. Hence, sod2 cannot be satisfied under γ. Therefore,
immediately enforcing SOD constraints in ABAC systems appears to be intractable.

Reducing the problem of verifying SOD constraints in an ABAC system into the construction of
MEAR constraints includes two phases: (1) Converting k-n SOD constraints into k-n SOAR constraints
and (2) constructing t-m MEAR constraints from k-n SOAR constraints.

Future Internet 2020, 12, 164 16 of 28

4.2.1. Construction of k-n SOAR Constraints from k-n SOD Constraints

Given a constructed rule set AR and a specific SOD constraint <{t1, t2, . . . , tn}, k> under system
status γ, we convert the input instance (<{t1, t2, . . . , tn}, k>, AR) into an intermediate form according
to the following steps:

Step 1. For each access tuple ti in the constraint, we identify set tuple_rulesγ(ti) as a substitute for ti;
Step 2. Replace rule set AR with a union of different set of rules associated with each tuple in

the constraint.
Then, the corresponding intermediate form, which is denoted as CIF, can be represented as CI F

=<{S1, S2, . . . Sn}, AR’>, where Si = tuple_rulesγ(ti), and AR′ =
n
∪

i=1
Si ⊆ AR.

According to the conversion, two conclusions can be made:

(1) The process of the conversion does not take value k of the constraint into consideration because,
for each k’-n SOAR constraint constructed, k’ takes the value of k in the following process
of constructions.

(2) AR’ in CIF does not contain the rules in (AR\AR’) because the rules not in AR’ are not relevant to
the construction of the SOAR constraints.

A SAT solver takes the formula in CNF as the input parameter for solving the problem, which can
identify the total number of different types of such assignments. For the given intermediate form
CIF = <{S1,S2, . . . Sn},AR’>, we next construct a CNF formula F corresponding to CIF through the
following steps:

Step 1. For each rule ari in AR’, create the corresponding literal variable ari;
Step 2. For each Si and AR’, create the corresponding clause using the disjunction of different

literals, which is formalized as ar1 ∨ ar2 ∨ . . .;
Step 3. Construct a CNF formula using the conjunction of different clauses, which is represented

as F = (
n
∧

i=1
Siclause)∧AR′clause.

Thus, a set of several different literals that can satisfy a truth assignment for F forms the SOAR
constraint, and all sets of such literals form different types of SOAR constraints, where the value of k
remains constant.

Example 4. Consider a SOD constraint sod = <{t1, t2, t3, t4}, 2> in the ABAC system statusγ. The corresponding
rules associated with each tuple are given in Table 15.

Table 15. Sets of different tuple_rules(t) for sod.

Tuple Rules

t1 {ar4}
t2 {ar2}
t3 {ar1, ar3}
t4 {ar2, ar3, ar4}

First, we convert sod into the intermediate form CIF = <{{ar4}, {ar2}, {ar1, ar3}, {ar2, ar3, ar4}}, {ar1,
ar2, ar3, ar4}>. Next, we construct the Boolean formula F for CIF as F = ar4 ∧ ar2 ∧ (ar1 ∨ ar3)∧ (ar2 ∨

ar3 ∨ ar4)∧ (ar1 ∨ ar2 ∨ ar3 ∨ ar4). It is readily verified that {ar1, ar2, ar4} can satisfy a truth assignment
for F, and <{ar1, ar2, ar4}, 2> is regarded as a SOAR constraint. Moreover, {ar2, ar3, ar4}, ar2, , ar3, ar4}
can also satisfy such assignments, and <{ar2, ar3, ar4}, 2>, <{ar1, ar2, ar3, ar4}, 2> are the other two
SOAR constraints corresponding to sod.

Future Internet 2020, 12, 164 17 of 28

4.2.2. Construction of t-m MEAR Constraints from k-n SOAR Constraints

In this subsection, we determine how to construct MEAR constraints for the given SOAR
constraints. Using the notions of the k-n SOAR constraint and the t-m MEAR constraint, as well as the
status function user_rulesγ(u) in Definition 6, we can define the safety and satisfiability of the system
status as the following.

Definition 6. (Safety of the system status, safesoar(γ)) Given an ABAC system status γ and a k-n SOAR
constraint soar = <{ar1, ar2, . . . arn}, k>, if any set of (k − −1) users cannot have all the n rules under γ, then γ
is safe with respect to soar, which is denoted as safesoar(γ) = 1. Otherwise, γ is unsafe with respect to soar,
which is denoted as safesoar(γ) = 0. Let the set of different k-n SOAR constraints be ξ = {soar1, soar2, . . . }; if γ
is safe with respect to each soari, then γ is safe with respect to ξ, which is denoted as safeξ(γ) = 1. Otherwise,
γ is unsafe with respect to ξ, which is denoted as safeξ(γ) = 0.

The safety of the system status is formally expressed as:

∀{u1, u2, . . . , uk−1} ⊂ U : {ar1, ar2, . . . , arn}
k−1
∪

i=1
user_rulesγ(ui)⇒ sa f esoar(γ) = 1. (10)

The unsafety of the system status is formally expressed as:

∃{u1, u2, . . . , uk−1} ⊂ U :
k−1
∪

i=1
user_rulesγ(ui) ⊇ {ar1, ar2, . . . , arn} ⇒ sa f esoar(γ) = 0. (11)

Definition 7. (Satisfiability of the system status, satisfiedmear(γ)) Given an ABAC system status γ and a t-m
MEAR constraint mear = <{ar1, ar2, . . . arm}, t>, if no user is allowed to have t or more of these m rules under
γ, then γ is satisfied with respect to mear, which is denoted as satisfiedmear(γ) = 1. Otherwise, γ is unsatisfied
with respect to mear, which is denoted as satisfiedmear(γ) = 0. Let the set of different t-m MEAR constraints be ψ
= {mear1, mear2, . . . }; if γ is satisfied with respect to each meari, then γ is satisfied with respect to ψ, which is
denoted as satisfiedψ(γ) = 1. Otherwise, γ is unsatisfied with respect to ψ, which is denoted as satisfiedψ(γ) = 0.

The satisfiability of the system status is formally expressed as:

∀u ∈ U :
∣∣∣user_rulesγ(u)∩ {ar1, ar2, . . . arm }|< t⇒ satis f iedmear(γ) = 1. (12)

The unsatisfiability of the system status is formally expressed as:

∃u ∈ U :
∣∣∣user_rulesγ(u)∩ {ar1, ar2, . . . arm }| ≥ t⇒ satis f iedmear(γ) = 0. (13)

Statement 1. Given an ABAC system status γ and a set of SOAR constraints ξ = {soar1, soar2, . . . }, the process
for verifying whether γ is safe with respect to ξ is in P.

Proof. We prove this statement through the following three steps: (1) Use status function user_rulesγ()
and identify user_rulesγ(u) for some user u under γ (2). Based on the formal expression in Definition 7,
identify the number of the rules in user_rulesγ(u) present in any sod, which is represented as s, and (3)
compare s with k included in sod. These steps can be readily computed. If |U|,|AR|, and |ξ| are used
to represent the total number of users, the number of authorization rules and the number of SOAR
constraints under γ, respectively, then the computational complexity for verifying whether safeξ(γ)
is true is O(|U|×|AR|×|ξ|), which is polynomial time. Thus, the verification process for enforcing the
SOAR constraints is in P. �

Statement 2. Given an ABAC system status γ and a set ψ of MEAR constraints, the process of verifying
whether γ is satisfied with respect to ψ is also in P.

Future Internet 2020, 12, 164 18 of 28

Proof . This verification is similar to that of Theorem 1, so the detailed process is omitted due to limited
space. Here, the enforcement of MEAR constraints under γ is also available in polynomial time. �

Definition 8. (Implicit enforcement of SOAR constraints) Given a k-n SOAR constraint soar and a t-m MEAR
constraint set ψ = {mear1, mear2, . . . } in the system status γ, soar can be implicitly enforced by ψ if and only if
∀mear ∈ ψ :satisfiedmear(γ)⇒safesoar(γ).

Then, we present an approach for constructing t-m MEAR constraints in Algorithm 3, which takes
a k-n SOAR constraint constructed from a k-n SOD constraint as input and outputs a set of MEAR
constraints that can implicitly enforce SOAR.

Algorithm 3 Construction of t-m MEAR constraints

Input:k-n SOAR constraint soar = <{ar1,ar2, . . . arn},k>, where 2 ≤ k ≤ n
Output: set ψ of t-m MEAR constraints
1. Initialize ψ = ø;
2. if k == 2 then
3. ψ = {<{ar1,ar2, . . . arn},n>};
4. else if k == n then
5. ψ = {<{ar1,ar2, . . . arn},2>};
6. else
7. for t = 2 to

⌊
n−1
k−1

⌋
+ 1 do

8. m = (k-1) × (t-1)+1;
9. for any subset {ar1,ar2, . . . arm’} in {ar1,ar2, . . . arn} do
10. ψ = ψ∪{<{ar1,ar2, . . . arm’},t>};
11. end for
12. end for
13.end if

As observed from Lines 2–5 in Algorithm 3, two lemmas can be determined with the following:

Lemma 1. Given a 2-n SOAR constraint, it can be efficiently enforced by the t-m MEAR constraint if and only
if m = n, and t = n.

Lemma 2. Given a n-n SOAR constraint, it can be efficiently enforced by the t-m MEAR constraint if and only
if m = n, and t = 2.

Theorem 1. Given a k-n SOAR constraint (k > 2), it can be efficiently enforced by the constructed t-m
MEAR constraints through Algorithm 3 if t ≤ (

⌊
n−1
k−1

⌋
+ 1)

Proof . According to Definitions 7 and 8, any user is allowed to have (t − 1) rules at most, and any
(k − 1) users are allowed to have (k − 1) × (t − 1) rules at most. We use the method of contradiction to
prove this theorem. Without a loss of generality, assume that t =

⌊
n−1
k−1

⌋
+ 1+ 1; the k-n SOAR constraint

is still satisfied, i.e., the number of rules associated with (k − 1) users is (k − 1) × (
⌊

n−1
k−1

⌋
+ 2 − 1) ≈

n− 1 + k− 1 > n, which breaches the k-n SOAR constraint. Thus, the assumption is false. �

To further demonstrate the effectiveness of Algorithm 3, we next provide an example to show the
construction of MEAR constraints from a given SOD constraint.

Example 5. Given a set of authorization rulesAR = {ar1, ar2, ar3, ar4, ar5} and a SOD constraint sod = <{t1, t2,
t3, t4, t5}, 3> in the ABAC system status γ, let the sets of tuple_rulesγ(t) with respect to sod be {ar1, ar2}, {ar3},
{ar2, ar3}, {ar4}, and {ar4, ar5}, respectively.

Future Internet 2020, 12, 164 19 of 28

Then, for sod, the corresponding soars that can be constructed using the method of SAT-based
model counting are as follows:

{<{ar2, ar3, ar4}, 3>, <{ar1, ar3, ar4}, 3>, <{ar1, ar2, ar3, ar4}, 3>, <{ar1, ar3, ar4, ar5}, 3>, <{ar2, ar3, ar4,
ar5}, 3>, <{ar1, ar2, ar3, ar4, ar5}, 3>}.

The different sets of mears constraints corresponding to each soar according to Algorithm 3 are
given in Table 16.

Table 16. Different sets of mears with respect to soars.

Soar Mears

<{ar2, ar3, ar4}, 3> {<{ar1, ar2, ar4}, 2>}
<{ar1, ar3, ar4}, 3> {<{ar2, ar3, ar4}, 2>}

<{ar1, ar2, ar3, ar4}, 3> {<{ar1, ar2, ar3}, 2>, <{ar2, ar3, ar4}, 2>, <{ar1, ar2, ar4}, 2>, <{ar1, ar3, ar4}, 2>}
<{ar1, ar3, ar4, ar5}, 3> {<{ar1, ar3, ar4}, 2>, <{ar3, ar4, ar5}, 2>, <{ar1, ar3, ar5}, 2>, <{ar1, ar4, ar5}, 2>}
<{ar2, ar3, ar4, ar5}, 3> {<{ar2, ar3, ar4}, 2>, <{ar3, ar4, ar5}, 2>, <{ar2, ar3, ar5}, 2>, <{ar2, ar4, ar5}, 2>}

<{ar1, ar2, ar3, ar4, ar5}, 3>
{<{ar1, ar2, ar3}, 2>, <{ar1, ar2, ar4}, 2>, <{ar1, ar2, ar5}, 2>, <{ar1, ar3, ar4}, 2>,
<{ar1, ar3, ar5}, 2>, <{ar1, ar4, ar5}, 2>, <{ar2, ar3, ar4}, 2>, <{ar2, ar3, ar5}, 2>,

<{ar2, ar4, ar5}, 2>, <{ar3, ar4, ar5}, 2>, <{ar1, ar2, ar3, ar4, ar5}, 3>}

5. Experimental Evaluations

To evaluate the efficiency and effectiveness of the PEO_VR&SOD, we next implemented
experiments using both real and synthetic datasets and compare the performance of PEO_VR&SOD
with that of existing methods. All the experiments were carried out on a standard desktop PC with an
Intel i5–7400 CPU, 4 GB RAM, and a 160 GB hard disk running a 64-bit Windows 7 operating system.
All simulations were compiled and run in Eclipse IDE under the Java Developer environment.

5.1. Performance Comparison with the Xu-Stoller and VisMAP in Real Datasets

First, we consider the following real datasets from [10], as shown in Table 17. These datasets have
been widely used for research on different methods of ABAC policy mining, such as Xu-Stoller and
VisMAP. The first seven columns in the table represent the corresponding dataset name, numbers
of users, user attributes, objects, object attributes, number of all possible attribute values for users
and objects, and number of authorizations. To evaluate the efficiency of our method in the policy
mining stage, we consider the number of authorization rules in the policy and the execution time as
evaluation measures.

Table 17. Descriptions of real datasets.

Dataset |U| |UA| |O| |OA| |Val| |A| Xu-Stoller VisMAP Our Method

|P| T(s) |P| T(s) |P| T(s)

University 20 6 34 5 76 168 10 0.02 10 0.02 10 0.02
Healthcare 21 6 16 7 55 51 11 0.02 7 0.02 7 0.02

Project Management 16 7 40 6 77 189 19 0.03 12 0.03 12 0.03

We repeatedly implement the experiments 5 times in the above three datasets, take an average of
overall values, and compare the results including |P| and T with the performance of Xu-Stoller and
VisMAP in the last columns of Table 17. The number of authorization rules mined using our method is
less than that using Xu-Stoller and is equal to that of VisMAP. Meanwhile, in the table, there is almost
no difference in execution time for all three methods. This is because there is a small number of users,
objects, and authorizations in any real dataset; thus, it is feasible to find suitable rules using Xu-Stoller,
though both our method (PEO_VR&SOD) and VisMAP adopt visual representation technology for
a given authorization relationship before policy mining. Thus, PEO_VR&SOD performs as well as
Xu-Stoller and VisMAP on the small University, Healthcare, and Project Management datasets.

Future Internet 2020, 12, 164 20 of 28

5.2. Performance Comparison with VisMAP in Synthetic Datasets

Since it is very difficult to find suitable real datasets, we next construct synthetic datasets with
specific parameters, where the number of users varies from 100 to 1000 with a step of 100; the number
of objects are 100, 200, 500, and 1000; and the attributes for users and objects randomly take values from
the above real datasets. To evaluate the efficiency of PEO_VR&SOD, we take into consideration the
number of mining rules and execution time as measures and compare the results with the performance
of VisMAP. Additionally, as indicated in Algorithms 1 and 2, we partition the rearranged matrix by
visual representations for the original matrix, while VisMAP directly separates an original matrix
before rearrangement. If the synthetic datasets constructed are already sufficiently visual, then the
authorization matrices need to be neither rearranged nor partitioned. Therefore, we first consider the
following cases with no partition.

We repeatedly implement the experiments 10 times in different synthetic datasets and take the
average value. The results are shown in Figures 3 and 4. For Figure 3, the lateral axis represents
the number of users, and the vertical axis represents the number of rules in the policy. For Figure 4,
the lateral axis represents the number of users, and the vertical axis represents the comparison of
execution time.

Future Internet 2020, 10, x FOR PEER REVIEW 21 of 29

number of users, objects, and authorizations in any real dataset; thus, it is feasible to find suitable
rules using Xu-Stoller, though both our method (PEO_VR&SOD) and VisMAP adopt visual
representation technology for a given authorization relationship before policy mining. Thus,
PEO_VR&SOD performs as well as Xu-Stoller and VisMAP on the small University, Healthcare,
and Project Management datasets.

5.2. Performance Comparison with VisMAP in Synthetic Datasets

Since it is very difficult to find suitable real datasets, we next construct synthetic datasets with
specific parameters, where the number of users varies from 100 to 1000 with a step of 100; the
number of objects are 100, 200, 500, and 1000; and the attributes for users and objects randomly take
values from the above real datasets. To evaluate the efficiency of PEO_VR&SOD, we take into
consideration the number of mining rules and execution time as measures and compare the results
with the performance of VisMAP. Additionally, as indicated in Algorithms 1 and 2, we partition the
rearranged matrix by visual representations for the original matrix, while VisMAP directly
separates an original matrix before rearrangement. If the synthetic datasets constructed are already
sufficiently visual, then the authorization matrices need to be neither rearranged nor partitioned.
Therefore, we first consider the following cases with no partition.

We repeatedly implement the experiments 10 times in different synthetic datasets and take the
average value. The results are shown in Figures 3 and 4. For Figure 3, the lateral axis represents the
number of users, and the vertical axis represents the number of rules in the policy. For Figure 4, the
lateral axis represents the number of users, and the vertical axis represents the comparison of
execution time.

Figure 3. Comparison of rules for different numbers of users and objects.

Figure 4. Comparison of time for different numbers of users and objects.

0
10
20
30
40
50
60
70
80
90

100
110
120

100 200 300 400 500 600 700 800 900 1,000

nu
m

be
r o

f r
ul

es

number of users

|O|=100
|O|=200
|O|=500
|O|=1000

0
100
200
300
400
500
600
700
800
900

1,000
1,100

100 200 300 400 500 600 700 800 900 1,000

tim
e

(s
)

number of users

|O|=100
|O|=200
|O|=500
|O|=1000

Figure 3. Comparison of rules for different numbers of users and objects.

Future Internet 2020, 10, x FOR PEER REVIEW 21 of 29

number of users, objects, and authorizations in any real dataset; thus, it is feasible to find suitable
rules using Xu-Stoller, though both our method (PEO_VR&SOD) and VisMAP adopt visual
representation technology for a given authorization relationship before policy mining. Thus,
PEO_VR&SOD performs as well as Xu-Stoller and VisMAP on the small University, Healthcare,
and Project Management datasets.

5.2. Performance Comparison with VisMAP in Synthetic Datasets

Since it is very difficult to find suitable real datasets, we next construct synthetic datasets with
specific parameters, where the number of users varies from 100 to 1000 with a step of 100; the
number of objects are 100, 200, 500, and 1000; and the attributes for users and objects randomly take
values from the above real datasets. To evaluate the efficiency of PEO_VR&SOD, we take into
consideration the number of mining rules and execution time as measures and compare the results
with the performance of VisMAP. Additionally, as indicated in Algorithms 1 and 2, we partition the
rearranged matrix by visual representations for the original matrix, while VisMAP directly
separates an original matrix before rearrangement. If the synthetic datasets constructed are already
sufficiently visual, then the authorization matrices need to be neither rearranged nor partitioned.
Therefore, we first consider the following cases with no partition.

We repeatedly implement the experiments 10 times in different synthetic datasets and take the
average value. The results are shown in Figures 3 and 4. For Figure 3, the lateral axis represents the
number of users, and the vertical axis represents the number of rules in the policy. For Figure 4, the
lateral axis represents the number of users, and the vertical axis represents the comparison of
execution time.

Figure 3. Comparison of rules for different numbers of users and objects.

Figure 4. Comparison of time for different numbers of users and objects.

0
10
20
30
40
50
60
70
80
90

100
110
120

100 200 300 400 500 600 700 800 900 1,000

nu
m

be
r o

f r
ul

es

number of users

|O|=100
|O|=200
|O|=500
|O|=1000

0
100
200
300
400
500
600
700
800
900

1,000
1,100

100 200 300 400 500 600 700 800 900 1,000

tim
e

(s
)

number of users

|O|=100
|O|=200
|O|=500
|O|=1000

Figure 4. Comparison of time for different numbers of users and objects.

Figure 3 shows that the number of rules varies with a varying number of users for different
numbers of objects. If the number of objects is fixed at 100, and the number of users varies from 100
to 1000, then the number of rules varies from 19 to 47, which increases slightly with an increase in
the number of users; however, if the number of objects is fixed at 1000, the number of rules varies
from 31 to 113, showing a clear increase. Conversely, if we fix the number of users at 100 and 1000,
then the number of rules also increases with an increasing number of both objects and users. Obviously,
the varying number of mining rules tends to grow linearly, particularly when the number of objects is
small. This is because, the greater the number of users is, the more rules that can be constructed from
the mining process.

Future Internet 2020, 12, 164 21 of 28

Figure 4 shows that the execution time varies with a varying number of users for different numbers
of objects. If the number of objects is less than 500, then the execution time is always below 335 s and
tends to grow linearly. However, if the number is greater than 500, then the execution time increases
exponentially to around 1100 s with 1000 users and 1000 objects, which is unacceptable. That is
attributed to the fact that the dimension of an authorization matrix becomes larger and larger with an
increasing number of users and objects, and a large-size matrix requires more time to be rearranged
using Algorithm 1.

To demonstrate the interpretability of the mining process, we employ synthetic datasets on which
VisMAP has been executed, where the numbers of users and objects are 100, 200, 500, and 1000.
In addition, the number of partitions for each rearranged matrix is 1, 2, and 4. We repeatedly implement
the experiments 10 times on these synthetic datasets, output the number of rules and the execution
time, and take their average values. Comparisons of the results for PEO_VR&SOD and VisMAP are
shown in Table 18.

Future Internet 2020, 12, 164 22 of 28

Table 18. Performance comparison with VisMAP.

|U| |O|

|Partitions|

1 2 4 1 2 4

VisMAP PEO_VR&SOD

|P| T(s) |P| T(s) |P| T(s) |P| T(s) |P| T(s) |P| T(s)

100 100 19 0.59 38 0.72 62 0.35 19 0.59 22 0.84 30 0.93
200 100 26 1.77 55 1.11 84 1.03 26 1.77 31 1.98 42 2.14
500 100 34 10.18 76 5.38 108 5.9 34 10.18 42 10.73 53 11.95

1000 100 47 43.28 96 20.46 197 10.92 47 43.28 56 43.61 74 44.17
100 200 23 1.63 48 1.57 78 0.95 23 1.63 26 1.87 34 2.02
200 200 37 4.25 77 3.33 114 2.14 37 4.25 42 5.01 53 5.61
500 200 54 21.54 96 12.36 146 10.78 54 21.54 56 22.34 62 23.24

1000 200 70 100.4 145 43.01 197 39.77 70 100.4 81 105.34 98 106.11
100 500 28 8.27 50 9.78 89 4.72 28 8.27 33 8.77 43 9.07
200 500 45 17.64 91 16.41 156 9.39 45 17.64 50 18.13 65 18.55
500 500 67 75.23 141 49.92 224 33.57 67 75.23 74 76.02 87 76.93

1000 500 89 334.98 207 163.96 304 115.50 89 334.98 99 335.44 115 336.01
100 1000 31 33.84 60 47.46 109 10.09 31 33.84 35 34.11 47 34.89
200 1000 53 62.47 100 70.63 180 33.43 53 62.47 58 62.88 68 63.56
500 1000 78 248.87 175 174.30 282 100.21 78 248.87 87 249.19 103 250.17

1000 1000 113 1052.78 218 695.67 335 452.52 113 1052.78 126 1053.11 155 1053.88

Future Internet 2020, 12, 164 23 of 28

Table 18 shows that, for both methods, as the number of users and objects increases, the number
of rules increases slightly, while the execution time increases more clearly whenever |Partitions| is
equal to 1, 2, or 4, which is consistent with the experimental analyses shown in Figures 3 and 4. Second,
as the number of partitions increases, the number of rules increases clearly, while the execution time
decreases in VisMAP; however, both the number of rules and the execution time increase slightly in
PEO_VR&SOD. Specifically, when the number of users and objects is fixed at 1000 and 100, respectively,
for the former, the number of rules varies from 47 to 197 with an increase of more than 300%, while the
time varies from 43.28 to 10.92 with a decrease of more than 75%; for the latter, the number of rules
increases from 47 to 74, and the time increases from 43.28 to 44.17. This is attributed to the fact that the
original matrix in VisMAP is separated into several partitions before policy mining and spends little
time on the small datasets. However, the rearranged matrix is separated during mining and spends
more time with the number of partitions according to Algorithm 2. Although VisMAP outperforms
PEO_VR&SOD for execution time, the number of rules using our proposal is less than that of VisMAP,
and the overhead in time for PEO_VR&SOD is minimal compared to the benefit of the number of the
mining rules.

In the above evaluations, we implement the experiments for VisMAP and PEO_VR&SOD with
the same experimental setups: the number of users and objects varies while keeping the number of
their attributes and attribute values constant. However, there are other properties, such as the length
and size of authorization rules, need to be considered for evaluating the performance of Xu-Stoller.
Furthermore, no partition exists in Xu-Stoller. Therefore, Xu–Stoller will not outperform VisMAP or
PEO_VR&SOD for execution time on the same datasets.

5.3. Performance Comparison with Xu-Stoller on Synthetic Datasets

To further evaluate the efficiency of our method, we construct synthetic datasets and consider a
similar setup of parameters to that used in Xu-Stoller. These parameters involve the number of users
(|U|), the number of objects (|O|), the number of attribute-value pairs of users (|UAV|), the number of
attribute-value pairs of objects (|OAV|), the maximum number of rules used to construct the datasets
(|RC|), and the maximum length of any mining rule (|RL|). In addition, to fairly and effectively compare
the performance of PEO_VR&SOD and Xu–Stoller, we convert our constructed datasets into data
formats in which Xu–Stoller can be executed. We assume that each constructed authorization includes
a single permission because any rule in our policy engineering system involves only one operation.

To study the effect of different parameters on the mining results, we consider three scenarios:
(1) |UAV| and |OAV| vary from 20 to 40 with a step of 5, (2) |RC| varies from 20 to 50 with a step of
5, and (3) |RL| varies from 2 to 5 with a step of 1. One parameter varies while keeping the others
constant when any scenario happens. Since the effect of variations in users or objects is considered
(as shown in Figures 3 and 4), the values of |U| and |O| are fixed at 1000 and 100, respectively, in the
following. The descriptions of the datasets and their parameters are shown in the first six columns
in Table 19. We repeatedly implement the experiments 10 times on different datasets and take the
median value. The number of the mining rules for the proposed algorithm (|PPEO_VR&SOD|) and that of
Xu-Stoller (|PXu-Stoller|) are presented in the last two columns of the table. Table 19 shows that, for all
these datasets, both PEO_VR&SOD and Xu–Stoller discover almost the same number of rules, which is
less than the maximum number of rules used to construct the datasets.

Moreover, we compare the average execution time with that of Xu–Stoller in Figures 5–7 with
error bars, where the lateral axis represents the varying values of different parameters, and the vertical
axis represents changes in execution time.

Future Internet 2020, 12, 164 24 of 28

Table 19. Comparison of rules with Xu-Stoller for different parameters.

|U| |O| |UAV | |OAV | |RCmax| |RLmax| |PXu-Stoller| |PPEO_VR&SOD|

1000 100 20 20 30 5 27 26.31
1000 100 25 25 30 5 25.67 25.67
1000 100 30 30 30 5 26.67 25.11
1000 100 35 35 30 5 26.67 25.37
1000 100 40 40 30 5 27.53 26.89
1000 100 25 25 20 5 17.67 17.53
1000 100 25 25 40 5 36 35.31
1000 100 25 25 50 5 43 42.83
1000 100 25 25 30 4 25.67 25.39
1000 100 25 25 30 3 24.67 24.64
1000 100 25 25 30 2 24 24

Future Internet 2020, 10, x FOR PEER REVIEW 25 of 29

Figure 5. Comparison of time with Xu-Stoller for different numbers of attribute-value pairs.

Figure 6. Comparison of time with Xu-Stoller for different |RC| values.

Figure 7. Comparison of time with Xu-Stoller for different |RL| values.

These figures show that, for PEO_VR&SOD, the execution time tends to grow linearly and does
not obviously vary as the number of attributes values, the value of |RC|, and/or the value of |RL|
vary. However, for Xu–Stoller, Figure 5 demonstrates that the execution time first increases
exponentially and then decreases gradually with an increasing number of attribute values.
Specifically, the time increases remarkably from around 33 s to around 8000 s when the number of
attribute values varies from 20 to 30 and then decreases gradually to around 7000 s when the value

1

10

100

1,000

10,000

20 25 30 35 40

tim
e

(s
)

number of attribute–value pairs

Xu-Stoller

PEO_VR&SOD

1

10

100

1,000

10,000

20 25 30 35 40 45 50

tim
e

(s
)

|RC|

Xu-Stoller

PEO_VR&SOD

1

10

100

1,000

2 3 4 5

tim
e

(s
)

|RL|

Xu-Stoller

PEO_VR&SOD

Figure 5. Comparison of time with Xu-Stoller for different numbers of attribute-value pairs.

Future Internet 2020, 10, x FOR PEER REVIEW 25 of 29

Figure 5. Comparison of time with Xu-Stoller for different numbers of attribute-value pairs.

Figure 6. Comparison of time with Xu-Stoller for different |RC| values.

Figure 7. Comparison of time with Xu-Stoller for different |RL| values.

These figures show that, for PEO_VR&SOD, the execution time tends to grow linearly and does
not obviously vary as the number of attributes values, the value of |RC|, and/or the value of |RL|
vary. However, for Xu–Stoller, Figure 5 demonstrates that the execution time first increases
exponentially and then decreases gradually with an increasing number of attribute values.
Specifically, the time increases remarkably from around 33 s to around 8000 s when the number of
attribute values varies from 20 to 30 and then decreases gradually to around 7000 s when the value

1

10

100

1,000

10,000

20 25 30 35 40

tim
e

(s
)

number of attribute–value pairs

Xu-Stoller

PEO_VR&SOD

1

10

100

1,000

10,000

20 25 30 35 40 45 50

tim
e

(s
)

|RC|

Xu-Stoller

PEO_VR&SOD

1

10

100

1,000

2 3 4 5

tim
e

(s
)

|RL|

Xu-Stoller

PEO_VR&SOD

Figure 6. Comparison of time with Xu-Stoller for different |RC| values.

Future Internet 2020, 10, x FOR PEER REVIEW 25 of 29

Figure 5. Comparison of time with Xu-Stoller for different numbers of attribute-value pairs.

Figure 6. Comparison of time with Xu-Stoller for different |RC| values.

Figure 7. Comparison of time with Xu-Stoller for different |RL| values.

These figures show that, for PEO_VR&SOD, the execution time tends to grow linearly and does
not obviously vary as the number of attributes values, the value of |RC|, and/or the value of |RL|
vary. However, for Xu–Stoller, Figure 5 demonstrates that the execution time first increases
exponentially and then decreases gradually with an increasing number of attribute values.
Specifically, the time increases remarkably from around 33 s to around 8000 s when the number of
attribute values varies from 20 to 30 and then decreases gradually to around 7000 s when the value

1

10

100

1,000

10,000

20 25 30 35 40

tim
e

(s
)

number of attribute–value pairs

Xu-Stoller

PEO_VR&SOD

1

10

100

1,000

10,000

20 25 30 35 40 45 50

tim
e

(s
)

|RC|

Xu-Stoller

PEO_VR&SOD

1

10

100

1,000

2 3 4 5

tim
e

(s
)

|RL|

Xu-Stoller

PEO_VR&SOD

Figure 7. Comparison of time with Xu-Stoller for different |RL| values.

Future Internet 2020, 12, 164 25 of 28

These figures show that, for PEO_VR&SOD, the execution time tends to grow linearly and does
not obviously vary as the number of attributes values, the value of |RC|, and/or the value of |RL| vary.
However, for Xu–Stoller, Figure 5 demonstrates that the execution time first increases exponentially
and then decreases gradually with an increasing number of attribute values. Specifically, the time
increases remarkably from around 33 s to around 8000 s when the number of attribute values varies
from 20 to 30 and then decreases gradually to around 7000 s when the value is close to 40. Further,
the time required in our method is below 100 s for any case, while Xu-Stoller requires significantly more
time with an increasing number of attribute values. PEO_VR&SOD runs faster than Xu-Stoller because
the former eliminates the redundant attributes from each candidate rule, as shown in Lines 22–29 of
Algorithm 2, while the latter takes more time in the generalization step while eliminating attribute
expressions with constraints. Figures 6 and 7 demonstrate that the execution time irregularly fluctuates
up and down with increasing values of |RC| and |RL|. Detailed analyses are not discussed in this paper,
similar to the analyses in [27]. Thus, PEO_VR&SOD outperforms Xu–Stoller on these datasets.

In the above evaluations, we implement the experiments for Xu-Stoller and PEO_VR&SOD with
the same experimental setups: considering not only the varying number of users and objects as well
as that of their attributes, but also number of rules used to construct the datasets and the maximum
length of any mining rule. However, we do not need to consider all of these setups for VisMAP on the
same datasets. Therefore, VisMAP will outperform Xu–Stoller as well as PEO_VR&SOD for execution
time on the same datasets.

5.4. Performance Evaluation of Enforcement of SOD Constraints

To evaluate the effectiveness of PEO_VR&SOD, we study the performance of enforcing SOD
constraints in the policy optimization stage, which can be converted into a study on the effects
of enforcing MEAR constraints. We also employed real datasets (as shown in Table 17) that were
used to construct an ABAC system in the policy mining stage. Further, the SOD constraints were
synthetically constructed similar to the examples in this paper, such as the 3–5 SOD constraints.
Moreover, the Rel-SAT model counter [37] is used for constructing the SOAR constraints. As shown
by Definition 8 and Statement 2, the verification of the MEAR constraints is primarily affected by the
number of users, as well as that of the rules. Therefore, we implemented experiments in datasets where
the number of users varies from 20 to 50 with a step of 10, and the number of rules varies from 5 to 20
with a step of 5. The execution time for verification with a varying number of users and rules is shown
in Figure 8.

Future Internet 2020, 10, x FOR PEER REVIEW 26 of 29

is close to 40. Further, the time required in our method is below 100 s for any case, while Xu-Stoller
requires significantly more time with an increasing number of attribute values. PEO_VR&SOD runs
faster than Xu-Stoller because the former eliminates the redundant attributes from each candidate
rule, as shown in Lines 22–29 of Algorithm 2, while the latter takes more time in the generalization
step while eliminating attribute expressions with constraints. Figures 6 and 7 demonstrate that the
execution time irregularly fluctuates up and down with increasing values of |RC| and |RL|.
Detailed analyses are not discussed in this paper, similar to the analyses in [27]. Thus,
PEO_VR&SOD outperforms Xu–Stoller on these datasets.

In the above evaluations, we implement the experiments for Xu-Stoller and PEO_VR&SOD
with the same experimental setups: considering not only the varying number of users and objects as
well as that of their attributes, but also number of rules used to construct the datasets and the
maximum length of any mining rule. However, we do not need to consider all of these setups for
VisMAP on the same datasets. Therefore, VisMAP will outperform Xu–Stoller as well as
PEO_VR&SOD for execution time on the same datasets.

5.4. Performance Evaluation of Enforcement of SOD Constraints

To evaluate the effectiveness of PEO_VR&SOD, we study the performance of enforcing SOD
constraints in the policy optimization stage, which can be converted into a study on the effects of
enforcing MEAR constraints. We also employed real datasets (as shown in Table 17) that were used
to construct an ABAC system in the policy mining stage. Further, the SOD constraints were
synthetically constructed similar to the examples in this paper, such as the 3–5 SOD constraints.
Moreover, the Rel-SAT model counter [37] is used for constructing the SOAR constraints. As shown
by Definition 8 and Statement 2, the verification of the MEAR constraints is primarily affected by
the number of users, as well as that of the rules. Therefore, we implemented experiments in datasets
where the number of users varies from 20 to 50 with a step of 10, and the number of rules varies
from 5 to 20 with a step of 5. The execution time for verification with a varying number of users and
rules is shown in Figure 8.

Figure 8 shows that the execution time tends to grow linearly and does not obviously vary
with an increasing number of users for each specific policy configuration. However, when the
number of users remains constant, the time varies clearly with a varying number of rules.
Specifically, for 10 rules, the time always remains around 0.02 s as the number of users varies, while
for 30 users, the time varies from around 0.02 to 0.04 as the number of rules varies. This occurs
because the more rules there are, the larger the size of the set of SOAR constraints constructed by
the Rel-SAT model counter will be, and the greater the number of MEAR constraints that will be
generated using Algorithm 3. Obviously, the total time for the verification of MEAR constraints
increases with an increasing number of constraints.

Figure 8. Execution time for different numbers of users and rules.

0.01

0.02

0.03

0.04

0.05

20 30 40 50

tim
e

(s
)

number of users

|P|=5 |P|=10 |P|=15 |P|=20

Figure 8. Execution time for different numbers of users and rules.

Figure 8 shows that the execution time tends to grow linearly and does not obviously vary with
an increasing number of users for each specific policy configuration. However, when the number of
users remains constant, the time varies clearly with a varying number of rules. Specifically, for 10 rules,
the time always remains around 0.02 s as the number of users varies, while for 30 users, the time
varies from around 0.02 to 0.04 as the number of rules varies. This occurs because the more rules

Future Internet 2020, 12, 164 26 of 28

there are, the larger the size of the set of SOAR constraints constructed by the Rel-SAT model counter
will be, and the greater the number of MEAR constraints that will be generated using Algorithm 3.
Obviously, the total time for the verification of MEAR constraints increases with an increasing number
of constraints.

5.5. Discussions

From the above analyses, we present some discussions in the following:
(1) For the sake of brevity, we do not consider the environments, such as time and locations.

However, consideration of time factor in the constrained policy engineering is also an interesting topic.
Take the dynamic SOD for example, the k-n dynamic SOD can be modified as dsod < {t1, t2, . . . , ti . . . ,
tn}, k, [bt, et]>, where [bt, et] is a time interval. It states that the enforcement of the SOD constraint is
valid from bt to et. Similarly, both the authorization set and rule set also need to be modified with
time intervals.

(2) Figures 3 and 4 aim to demonstrate the performance of our method with different number of
users and objects, and the result is consistent with the analysis of the computational complexity of
Algorithm 2. In fact, VisMAP and Xu–Stoller have the similar performance, which have been presented
in the state-of-the-art literatures and also can be observed from Tables 18 and 19. Thus, we do not make
the similar figures for VisMAP and Xu-Stoller in our work.

(3) Figures 5–7 demonstrate variations of execution time for Xu-Stoller with different number of
attribute-value pairs of users and objects, different maximum number of rules used to construct the
datasets, and different maximum length of any mining rule, respectively. However, these attribute
properties are constant for the evaluation of VisMAP, and thus we do not make the same type of graphs
for VisMAP.

(4) Although PEO_VR&SOD performs better for mining optimal sets of rules in the above real and
synthetic datasets, Either VisMAP or Xu-Stoller does well for some scenarios, and the corresponding
synthetic datasets are more appropriate for efficiency evaluations of VisMAP or Xu-Stoller. Specifically,
it is observed from Table 18 that, VisMAP outperforms PEO_VR&SOD for execution time with the
increasing number of partitions. From Figure 7, the number of users and objects are fixed at 1000
and 100, respectively. Xu–Stoller also outperforms PEO_VR&SOD when the maximum length of any
mining rule takes varies of 2 and 3.

6. Conclusions

A novel method for policy-engineering optimization called PEO_VR&SOD was proposed in
this paper. We first used the visual technique with Hamming distance to reduce the policy-mining
scale and presented the policy mining algorithm. Then, we used the method of SAT-based model
counting to convert the SOD constraints into the corresponding SOAR constraints and constructed
MEAR constraints to implicitly enforce the SOAR constraints in the constructed policy-engineering
system. As a result, the proposed method can successfully address the stated problems of enhancing
interpretability while mining a minimal set of rules and implicitly enforcing SOD constraints in a
constructed ABAC system. The experiments demonstrated that the proposed method is efficient and
effective. However, a few interesting issues remain to be solved. One issue is how to implement
PEO_VR&SOD in systems such as blockchains, wireless sensor networks, and the internet of things.
Another issue is how to implement cardinality constraints for policy-engineering optimizations in
future work.

Author Contributions: Conceptualization, W.S.; methodology, W.S.; validation, W.S. and H.S.; formal analysis,
W.S.; data curation, H.S. and H.X.; writing—original draft preparation, W.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was partially supported by the Natural Science Foundation of China (61501393), the Natural
Science Foundation of Henan Province of China (182300410145, 182102210132), and Foundation of Henan
Educational Committee under Contract No. 20B20031.

Future Internet 2020, 12, 164 27 of 28

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sun, W.; Su, H.; Liu, H. Role-Engineering Optimization with Cardinality Constraints and User-Oriented
Mutually Exclusive Constraints. Information 2019, 10, 342. [CrossRef]

2. Batra, G.; Atluri, V.; Vaidya, J.; Sural, S. Deploying ABAC Policies Using RBAC Systems. J. Comput. Secur.
2019, 27, 483–506. [CrossRef] [PubMed]

3. Narouei, M.; Takabi, H. A Nature-Inspired Framework for Optimal Mining of Attribute-Based Access
Control Policies. In International Conference on Security and Privacy in Communication Systems; Springer:
Cham, Switzerland, 2019; pp. 489–506.

4. Servos, D.; Osborn, S.L. Current Research and Open Problems in Attribute-Based Access Control.
ACM Comput. Surv. 2017, 49, 1–45. [CrossRef]

5. Chakraborty, S.; Sandhu, R.; Krishnan, R. On the Feasibility of Attribute-Based Access Control Policy Mining.
In Proceedings of the 20th IEEE International Conference on Information Reuse and Integration for Data
Science, Los Angeles, CA, USA, 30 July–1 August 2019; pp. 245–252.

6. Narouei, M.; Khanpour, H.; Takabi, H.; Parde, N.; Nielsen, R.D. Towards a Top-down Policy Engineering
Framework for Attribute-based Access Control. In Proceedings of the 22nd ACM on Symposium on Access
Control Models and Technologies, Indianapolis, IN, USA, 21–23 June 2017; pp. 103–114.

7. Medvet, E.; Bartoli, A.; Carminati, B.; Ferrari, E. Evolutionary Inference of Attribute-Based Access Control
Policies. In Proceedings of the 8th International Conference on Evolutionary Multi-Criterion Optimization,
Guimarães, Portugal, 29 March–1 April 2015; pp. 351–365.

8. Mocanu, D.; Turkmen, F.; Liotta, A. Towards ABAC policy mining from logs with deep learning.
In Proceedings of the 18th International Multiconference, Ljubljana, Slovenia, 12–13 October 2015; pp. 124–128.

9. Benkaouz, Y.; Erradi, M.; Freisleben, B. Work in progress: K-nearest neighbors techniques for ABAC policies
clustering. In Proceedings of the 2016 ACM International Workshop on Attribute Based Access Control,
New Orleans, LA, USA, 11 March 2016; pp. 72–75.

10. Xu, Z.; Stoller, S.D. Mining Attribute-Based Access Control Policies. IEEE Trans. Dependable Secur. Comput.
2015, 12, 533–545. [CrossRef]

11. Das, S.; Mitra, B.; Atluri, V.; Vaidya, J.; Sural, S. Policy Engineering in RBAC and ABAC. In From Database to
Cyber Security; Springer: Cham, Switzerland, 2018; pp. 24–54.

12. Roy, A.; Sural, S.; Majumdar, A.K.; Vaidya, J.; Atluri, V. Enabling Workforce Optimization in Constrained
Attribute Based Access Control Systems. IEEE Trans. Emerg. Top. Comput. 2019, 7, 1. [CrossRef]

13. Jha, S.; Sural, S.; Atluri, V.; Vaidya, J. Enforcing Separation of Duty in Attribute Based Access Control
Systems. In Proceedings of the 11th International Conference on Information Systems Security, Kolkata, India,
16–20 December 2015; pp. 61–78.

14. Krautsevich, L.; Lazouski, A.; Martinelli, F.; Yautsiukhin, A. Towards Attribute-Based Access Control
Policy Engineering Using Risk. In Proceedings of the 1st International Workshop on Risk Assessment and
Risk-Driven Testing, Istanbul, Turkey, 12 November 2013; pp. 80–90.

15. Biswas, P.; Sandhu, R.; Krishnan, R. Label-Based Access Control: An ABAC Model with Enumerated
Authorization Policy. In Proceedings of the 2016 ACM International Workshop on Attribute Based Access
Control, New Orleans, LA, USA, 11 March 2016; pp. 1–12.

16. Iyer, P.; Masoumzadeh, A. Mining positive and negative attribute-based access control policy rules.
In Proceedings of the 23nd ACM on Symposium on Access Control Models and Technologies, Indianapolis,
IN, USA, 13–15 June 2018; pp. 161–172.

17. Das, S.; Sural, S.; Vaidya, J.; Atluri, V. HyPE: A Hybrid Approach toward Policy Engineering in Attribute-Based
Access Control. IEEE Lett. Comput. Soc. 2018, 1, 25–29. [CrossRef] [PubMed]

18. Gautam, M.; Jha, S.; Sural, S.; Vaidya, J.; Atluri, V. Poster: Constrained policy mining in attribute based
access control. In Proceedings of the 22nd ACM on Symposium on Access Control Models and Technologies,
Indianapolis, IN, USA, 21–23 June 2017; pp. 121–123.

19. Das, S.; Sural, S.; Vaidya, J.; Atluri, V. Poster: Using Gini Impurity to Mine Attribute-based Access Control
Policies with Environment Attributes. In Proceedings of the 23nd ACM on Symposium on Access Control
Models and Technologies, Indianapolis, IN, USA, 13–15 June 2018; pp. 213–215.

http://dx.doi.org/10.3390/info10110342
http://dx.doi.org/10.3233/JCS-191315
http://www.ncbi.nlm.nih.gov/pubmed/31929684
http://dx.doi.org/10.1145/3007204
http://dx.doi.org/10.1109/TDSC.2014.2369048
http://dx.doi.org/10.1109/TETC.2019.2944787
http://dx.doi.org/10.1109/LOCS.2018.2889980
http://www.ncbi.nlm.nih.gov/pubmed/30906923

Future Internet 2020, 12, 164 28 of 28

20. Talukdar, T.; Batra, G.; Vaidya, J.; Atluri, V.; Sural, S. Efficient bottom-up mining of attribute based access
control policies. In Proceedings of the 3rd IEEE International Conference on Collaboration and Internet
Computing, San Jose, CA, USA, 15–17 October 2017; pp. 339–348.

21. John, J.C.; Sural, S.; Gupta, A. Authorization Management in Multi-Cloud Collaboration Using Attribute-based
Access Control. In Proceedings of the 15th International Symposium on Parallel and Distributed Computing,
Fuzhou, China, 8–10 July 2016; pp. 190–195.

22. John, J.C.; Sural, S.; Gupta, A. Optimal Rule Mining for Dynamic Authorization Management in Collaborating
Clouds using Attribute-based Access Control. In Proceedings of the 10th IEEE International Conference on
Cloud Computing, Honolulu, HI, USA, 25–30 June 2017; pp. 739–742.

23. John, J.C.; Sural, S.; Gupta, A. Attribute-based access control management for multicloud collaboration.
Concurr. Comput. Pract. Exp. 2017, 29, e4199. [CrossRef]

24. Jin, X.; Krishnan, R.; Sandhu, R. A unified attribute-based access control model covering DAC, MAC and
RBAC. In Proceedings of the 26th Annual IFIP WG 11.3 Conference on Data and Applications Security and
Privacy XXVI, Paris, France, 11–13 July 2012; pp. 41–55.

25. Bijon, K.Z.; Krishnan, R.; Sandhu, R. Towards an attribute based constraints specification language.
In Proceedings of the 2013 International Conference on Social Computing, Washington, DC, USA,
8–14 September 2013; pp. 108–113.

26. Helil, N.; Rahman, K. Attribute based access control constraint based on subject similarity. In Proceedings
of the 2014 IEEE Workshop on Advanced Research and Technology in Industry Applications, Ottawa,
ON, Canada, 29–30 September 2014; pp. 226–229.

27. Jha, S.; Sural, S.; Atluri, V.; Vaidya, J. Specification and Verification of Separation of Duty Constraints in
Attribute-Based Access Control. IEEE Trans. Inf. Forensics Secur. 2018, 13, 897–911. [CrossRef]

28. Alohaly, M.; Takabi, H.; Blanco, E. Towards an Automated Extraction of ABAC Constraints from Natural
Language Policies. In Proceedings of the 34th IFIP TC 11 International Conference on ICT Systems Security
and Privacy Protection, Lisbon, Portugal, 25–27 June 2019; pp. 105–119.

29. Colantonio, A.; Pietro, R.D.; Ocello, A.; Verde, N.V. Visual Role Mining: A Picture Is Worth a Thousand Roles.
IEEE Trans. Knowl. Data Eng. 2012, 24, 1120–1133. [CrossRef]

30. Verde, N.V.; Vaidya, J.; Atluri, V.; Colantonio, A. Role engineering: From theory to practice. In Proceedings
of the Second ACM Conference on Data and Application Security and Privacy, San Antonio, TX, USA,
7–9 February 2012; pp. 181–192.

31. Das, S.; Sural, S.; Vaidya, J.; Atluri, V.; Rigoll, G. VisMAP: Visual Mining of Attribute-Based Access Control
Policies. In Proceedings of the 15th International Conference on Information Systems Security, Hyderabad,
India, 16–20 December 2019; pp. 79–98.

32. Zheng, G.; Xiao, Y. A Research on Conflicts Detection in ABAC Policy. In Proceedings of the 7th International
Conference on Computer Science and Network Technology, Dalian, China, 19–20 October 2019; pp. 408–412.

33. Hu, V.C.; Ferraiolo, D.; Kuhn, D.R.; Schnitzer, A.; Sandlin, K.; Miller, R.; Scarfone, K. Guide to
Attribute-Based Access Control (ABAC) Definition and Considerations; Technical Report; NIST Special Publication;
National Institute of Standards and Technology: Gaithersburg, MA, USA, 2014.

34. Ernvall, J.; Katajainen, J.; Penttonen, M. NP-completeness of the Hamming sales-man problem. BIT Numer. Math.
1985, 25, 289–292. [CrossRef]

35. Gomes, C.P.; Kautz, H.A.; Sabharwal, A.; Selman, B. Satisfiability Solvers. In Handbook of Knowledge
Representation; Elsevier: Amsterdam, The Netherlands, 2008; pp. 89–134.

36. Huang, H.; Khan, L.; Zhou, S. Classified enhancement model for big data storage reliability based on Boolean
satisfiability problem. Clust. Comput. 2020, 23, 483–492. [CrossRef]

37. Bayardo, J.R., Jr.; Roberto, J.; Robert, S. Using CSP look-back techniques to solve real-world SAT instances.
In Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth Innovative
Applications of Artificial Intelligence Conference, Providence, RI, USA, 27–31 July 1997; pp. 203–208.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/cpe.4199
http://dx.doi.org/10.1109/TIFS.2017.2771492
http://dx.doi.org/10.1109/TKDE.2011.37
http://dx.doi.org/10.1007/BF01935007
http://dx.doi.org/10.1007/s10586-019-02941-1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Research on Policy Engineering in ABAC
	Research on Constraints in ABAC
	Research on Visual Representation for Access Information
	Characteristics of Our Work

	Preliminaries
	Basic Components of ABAC
	Basic Policy-Mining Problem in ABAC
	Enforcement of SOD Constraints in ABAC
	Hamming Distance
	SAT-Based Model Counting

	Proposed Method
	Policy Mining with Visual Representation
	Preprocessing
	Visual Representation for Authorizations
	Policy Mining

	Policy Optimization with Separation-of-Duty Constraints
	Construction of k-n SOAR Constraints from k-n SOD Constraints
	Construction of t-m MEAR Constraints from k-n SOAR Constraints

	Experimental Evaluations
	Performance Comparison with the Xu-Stoller and VisMAP in Real Datasets
	Performance Comparison with VisMAP in Synthetic Datasets
	Performance Comparison with Xu-Stoller on Synthetic Datasets
	Performance Evaluation of Enforcement of SOD Constraints
	Discussions

	Conclusions
	References

