
future internet

Article

The Value of Simple Heuristics for Virtualized
Network Function Placement

Zahra Jahedi † and Thomas Kunz *,†

The Department of Systems and Computer Engineering, Carleton University, 1125 Colonel By Drive,
Ottawa, ON K1S 5B6, Canada; zahrajahedi@cmail.carleton.ca
* Correspondence: tkunz@sce.carleton.ca;
† These authors contributed equally to this work.

Received: 24 August 2020; Accepted: 23 September 2020; Published: 25 September 2020
����������
�������

Abstract: Network Function Virtualization (NFV) can lower the CAPEX and/or OPEX for service
providers and allow for quick deployment of services. Along with the advantages come some
challenges. The main challenge in the use of Virtualized Network Functions (VNF) is the VNFs’
placement in the network. There is a wide range of mathematical models proposed to place the
Network Functions (NF) optimally. However, the critical problem of mathematical models is that
they are NP-hard, and consequently not applicable to larger networks. In wireless networks, we are
considering the scarcity of Bandwidth (BW) as another constraint that is due to the presence of
interference. While there exist many efforts in designing a heuristic model that can provide solutions
in a timely manner, the primary focus with such heuristics was almost always whether they provide
results almost as good as optimal solution. Consequently, the heuristics themselves become quite
non-trivial, and solving the placement problem for larger networks still takes a significant amount of
time. In this paper, in contrast, we focus on designing a simple and scalable heuristic. We propose
four heuristics, which are gradually becoming more complex. We compare their performance
with each other, a related heuristic proposed in the literature, and a mathematical optimization
model. Our results demonstrate that while more complex placement heuristics do not improve the
performance of the algorithm in terms of the number of accepted placement requests, they take longer
to solve and therefore are not applicable to larger networks.In contrast, a very simple heuristic can
find near-optimal solutions much faster than the other more complicated heuristics while keeping
the number of accepted requests close to the results achieved with an NP-hard optimization model.

Keywords: virtualized network function; wireless multi-hop networks; network function embedding
problem; Service graph, linear programming; interference; simple; fast

1. Introduction

The use of Network Function Virtualization (NFV) can bring advantages and challenges at the
same time. One of the main challenges is the optimized placement of the virtualized functions based
on the characteristics and available resources of the network [1]. In most cases, Virtualized Network
Functions (VNF) form a chain of Network Functions (NF) with predefined parameters that are referred
to as a Service Graph (SG) [1]. The placement of all NFs in a SG is a Network Function Embedding
Problem (NFEP). NFEP is defined as mapping the Virtual Network Functions (VNF) and the links
between them to the physical network. NFEP can be solved by modeling it as an optimization problem
that can be solved using different Linear Programming (LP) solvers/tools [1]. Such optimization
models are proven to be NP-hard and are not scalable. The alternative solution is to design a heuristic
that can provide near-optimal solutions with lower complexity. While there have been numerous
proposed heuristics for NFEP in wired and wireless networks, the focus has mostly been on providing

Future Internet 2020, 12, 161; doi:10.3390/fi12100161 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
https://orcid.org/0000-0002-6241-778X
http://www.mdpi.com/1999-5903/12/10/161?type=check_update&version=1
http://dx.doi.org/10.3390/fi12100161
http://www.mdpi.com/journal/futureinternet


Future Internet 2020, 12, 161 2 of 16

results close to an optimal solution. Consequently, the proposed heuristics became quite complex
and highly time-consuming for larger networks, limiting their scalability. In contrast, in this paper,
we explore simple heuristics and their benefits/drawbacks. We aim to design a heuristic that is as
simple as possible, allowing it to be time-efficient/scalable and therefore applicable to larger networks.
We are particularly interested in the case of multi-hop wireless networks, with their more severe
bandwidth-constraints, but believe that the insights from this work could also apply to other networks
where NFs have to be placed, such as data centre networks, wired access networks, or the next
generation of cellular networks.

To design a simple heuristic we break our design process into four heuristics that each include
one more parameter than the previous heuristic. The following briefly summarizes the four heuristics.

• Random placement: The first heuristic places NFs randomly in the network and connects the
source and destination of the request to the NFs based on their order in the SG via a shortest
path. This heuristic can be used as a benchmark to show the worst result that can be expected,
placing NFs randomly.

• Shortest path placement: The second heuristic considers the shortage of BW in wireless multi-hop
networks due to the presence of interference. This heuristic first finds a shortest path between
source and destination of a request by using the Dijkstra algorithm and places NFs along the
shortest path based on their order in the service graph.

• All shortest path placement: The third heuristic considers the probability of having more than one
shortest path and chooses the one with more nodal resources along the path. The main idea here
is to increase the chance of placing the current request successfully. In this heuristic, we rank the
shortest paths based on their available nodal resources and select the one ranked first. NFs will be
placed along the chosen shortest path based on their order in the SG.

• Fast and Cost-Efficient (FACE) placement: The fourth and last heuristic is named FACE. FACE
uses the same method as the all shortest path heuristic to choose a shortest path but places NFs
differently. In placing the NFs, FACE gives priority to the one that has fewer options for placement.

We compare the results gathered from the four mentioned heuristics, an optimization model,
and an alternative heuristic. The collected results show that the optimization model has highest
execution time in comparison to all explored heuristics. However, it can reach the best results in terms
of number of accepted requests. Our comparison between heuristics shows that the shortest path
heuristic can place as many requests as the more complex ones with comparable cost. It can be seen
through the gathered results that adding additional complexities will not only increase the execution
time and computational resources needed to find a placement for NFs. It also does not improve the
number of accepted requests or decrease the cost of NFs placement.

The rest of the paper is organized as follows. The next section reviews related work. Section 3
introduces our proposed placement heuristics, Section 4 shows the performance comparison of all
6 placement methods studied, and the paper concludes in Section 5. Table 1 lists all acronyms used
throughout this paper.



Future Internet 2020, 12, 161 3 of 16

Table 1. List of acronyms.

Acronym Description

BW Bandwidth

CI Confidence Interval

CAPEX Capital Expenditure

DP Dynamic Programming

FACE Fast and Cost-Efficient

ILP Integer Linear Programming

LFGL the Least-First-Greatest-Last

LP Linear Programming

MA Markov Approximation

NF Network Function

NFEP Network Function Embedding Problem

NFV Network Function Virtualization

OPEX Operational Expenditure

SG Service Graph

SLFL Simple Lazy Facility Location

VNF Virtualized Network Function

2. Related Work

NFEP can be solved via using mathematical methods or by designing a heuristic algorithm.
Although mathematical models provide an optimal solution, they are complex and proven to be
NP-hard [2]. The alternative is to design a heuristic that can provide near-optimal solutions with
less computational demand and near optimal performance. Although there is (potentially) some
performance loss (in our case the acceptance rate of new requests) between the heuristic algorithms
and direct solving method, heuristic algorithms have advantage in computational complexity when
solving large-scale network optimization problems [3]. There exists a wide range of heuristics proposed
for VNF placement. The proposed methods are designed based on the objectives of their authors.
Our goal here is to design a heuristic that can place (ideally) as many requests as the mathematical
model while reducing the resource consumption by SGs. Here we review recently proposed heuristics
that provide novel methods for mapping SGs’ NFs to a physical network and compare them in terms
of their complexity and performance.

The heuristic proposed by the authors of [4] breaks a SG into the NFs and the links connecting
them. The proposed multi-stage algorithm finds all possible options for each NF and defines a cost for
each option based on the cost of traveling from previously placed NFs to the current NF according to
the path it should take. The algorithm runs in θ(n2m) where n is the number of nodes in the physical
network and m is the number of NFs per SG. The use of a multi-stage algorithm may make it easier
to find a solution for placing each NF but the solution does not minimize the cost for the whole
SG. The results are not compared against a simple version of the proposed solution to demonstrate
how breaking the problem into sub-problems and the other considered parameters contributes to
the reported results. In another example, the authors of [5] used Dynamic Programming (DP) to
organize the problem into smaller interdependent sub-problems of placing each VNF and the virtual
link connected to it towards the next VNF. The solutions for the sub-problems are then aggregated
to compose the overall chain placement. Similar to [4,5] breaks the problem of SG placement into
the placement of each NF and the virtual link connected to it. However, providing a solution that



Future Internet 2020, 12, 161 4 of 16

minimizes the resource consumption by a NF and the link connected to it does not ensure that the
final solution minimizes the cost of the whole SG placement. In [5] there is a lack of evaluations
against very simple placement approaches. Finally, in another similar approach we have a three step
placement algorithm proposed in [6]. The proposed algorithm in [6] first computes the list of physical
node candidates for each VNF, then sorts them based on the number of physical node candidates for
placement in increasing order. In the last step, the heuristic computes the placement cost of that VNF
and its virtual link to the physical network and chooses the one with the lowest cost. The same problem
arises here as the placement focuses on placement of each NF instead of the whole SGs. The results
in [6] are not compared against a simpler version of the provided heuristic such as the one that starts
from the first NF of the SG instead of sorting the NFs based on their number of candidates. Such a
comparison would demonstrate how this step of the algorithm contribute to improving the results.

The authors in [7] break the placement problem into placing NFs and connecting them. In the first
step, the proposed heuristic in [7] places the NFs based on their resource demand. The heuristic in [7]
gives priority to the NF with the highest demand and place it in the cheapest node of the network.
The value of each node is obtained from a formula that considers the available resource capacity,
the price for each resource unit, and the ability to connect to other nodes. The placed NFs then connect
through the available shortest path. Although the proposed algorithm considers multiple factors in
obtaining a node for placement of NFs it does not consider the whole chain of NFs in its placement
and may end up taking a path much longer than the shortest path from source to destination.

Ref. [8] proposes an algorithm that considers NF placement, routing, and the traffic changing
affect of NFs. The proposed heuristic is based on the observation that some NFs can increase a flow’s
BW, e.g., by adding authentication headers, or decrease a flow’s BW by compressing, filtering, etc.
The Least-First-Greatest-Last (LFGL) algorithm proposed in [8] starts from the NFs that decrease
the BW usage and uses the Dijkstra algorithm to identify the closest node to the source. The LFGL
algorithm then places the NFs decreasing the traffic rate in the closest node to the source until there
is no space and then advances to the second closest node and so on. The process of placement is the
same for the increasing BW usage NFs, except it starts from the destination node and places the NFs
increasing the BW usage closer to the destination. The endpoints of the first and the second stage of
the placement are then connected through a shortest path. The LFGL heuristic assumes that we have
the freedom to re-organize the order of NFs within a SG. This may not be realistic, as in most cases the
order of NFs cannot be changed (once a flow is encrypted, for example, it would become difficult to
filter it based on payload attributes). The results in [8] do not provide a comparison between LFGL
and a simpler version of the proposed heuristic to show the effectiveness of the considered parameters.

In designing a heuristic the challenge is to consider the parameters that can improve the
performance of an algorithm and avoid the ones that only complicate the model. [9] proposes a
solution called Simple Lazy Facility Location (SLFL) that optimizes the placement of VNF instances in
response to on-demand workload. Upon new demand arrival, a combination of installation, migrations,
and reassignments can be applied to optimize the placement [9]. In each case, the cost of migrating
the already deployed VNF, installing the new VNF instance, or adding to the already deployed VNFs
are being compared with each other and the one with the lowest cost will be considered. Although it
is mentioned that SLFL runs in polynomial time, its execution time is not reported. A performance
comparison between SLFL and a model that places the NFs randomly does not show the effect of the
parameters considered in the heuristic on the number of accepted requests.

The heuristic algorithm proposed in [10] works based on the centrality matrix. The centrality for
each node in [10] is defined as the sum of the total size of flows which have their shortest path going
through that node. They assume that the source and destination of all flows are known and determine
the node that has the most total traffic volume passing through. The main goal of the algorithm in [10]
is to activate fewer licenses of a certain type of NF. At each iteration, the algorithm compares the cost of
activating a new NF in the node with the highest centrality with the cost of the flow traversing through
already placed NFs and only activates a new one if it decreases the placement cost. Ref. [11] propose



Future Internet 2020, 12, 161 5 of 16

different heuristics and compares their performance in terms of the maximum number of requests
that can be placed in a network. Between the proposed heuristics in [11] only one, named heuristic-A,
is not combined with a proposed mathematical model. Heuristic-A places requests one by one along
the shortest path between source and destination. The other heuristics, heuristic-B, B+, B+COR, and C
are all being combined with the mathematical model to reduce their execution time. As the proposed
mathematical model in [11] aims at solving the placement problem for all flows at once, the flows
are divided into the groups. These heuristics start from the first group and solve the optimization
problem for this group. Based on the solution, the problem is updated again and being solved for the
next group. Heuristic B randomly groups the requests, heuristic C is the same as B but also consider
minimizing the number of used cores in the network. Heuristic B+COR sorts nodes in ascending
order based on the number of flows passing through them. Less crowded nodes are selected first to
distribute the load away from bottleneck nodes. It is stated that B+COR can place more requests in the
network in comparison to other proposed heuristics. However, [11] did not compare the execution
time of the models and only considered the maximum number of the flows that each heuristic can
place in the same network. As we will show later in our results, the more complex heuristics combined
with a mathematical model may bring better results in terms of the number of accepted requests but
suffer from high execution time and therefore are not applicable to large scale networks.

Another attempt in simplifying the problem of VNF placement is to reduce the complexity
of the mathematical model by reducing the size of the search space. One example is the heuristic
proposed in [12]. A sampling-based Markov approximation (MA) approach is proposed in [12] to solve
the NP-hard problem which requires a long convergence time. The method begins with a random
feasible solution and iterates the process of transformation from the current solution to another feasible
solution until the steady-state distribution of the Markov chain appears. To reduce the execution time,
the solution space is reduced to a subset of randomly chosen nodes that satisfy the resource demands
of a request. It is been stated that the problem can be solved in polynomial time but the execution
time of the algorithm is not being reported or compared with other proposed heuristics with similar
time complexity. Additionally, the subset of nodes could be chosen based on more sophisticated
parameters to reach a near optimal solution faster. Another example is [13], where the proposed
heuristic narrows the target search space of VNF placement by introducing a smaller accessible scope
to which the possible locations of VNFs are confined. The requests are categorized based on their
source and destination. The nodes with lowest sum of distance from source and destination are in the
accessible scope of the request. The size of each accessible scope for each set of requests is proportional
to the total traffic volume of those requests. It is shown in [13] that the size of the accessible scope
will impact the time efficiency and performance of the NF placement. Considering all nodes to be in
the accessible scope will not reduce the execution time but will provide the acceptance ratio of the
optimization model. On the other hand, a very small accessible scope will decrease the execution time
but also the acceptance ratio. This approach considers the whole SG and its source and destination.
Unlike previous heuristics it does not choose the reduced search space randomly. In the design of
one of our heuristics we adopted this idea to narrow the search space and showed in our results that
this method can provide near optimal number of accepted requests, and reduce average cost and
execution time.

In our design of a heuristic, we start from the simplest model and add parameters one by one to
be able to measure their impact on the performance of the number of accepted requests. Compared to
wired networks, multihop wireless networks such as MANETs, VANETs, or wireless sensor networks
suffer from severe bandwidth (BW) limitations. That is due to several reasons: typical wireless
technologies operate at lower transmission rates, compared to wired technologies such as Ethernet, etc.
Also, when multihop wireless networks are built up from devices using a single radio, flows interfere
with themselves (a node that is a relay between source and destination can only either receive or
transmit, but not both at the same time). Finally, wireless technologies typically experience significant
interference (either from other flows or due to the above self-interference), drastically lowering the



Future Internet 2020, 12, 161 6 of 16

available BW for each link. We therefore emphasize minimizing the BW consumption while placing as
many requests as possible. We compare the performance of the proposed heuristics with the heuristic
proposed in [13] and an optimization model proposed in [1] that formulates and solves an Integer
Linear Programming (ILP) model for wireless multi-hop networks.

3. Placement Heuristics

As discussed in the previous section, the main focus of the models proposed for embedding VNFs
into a physical network is on designing a heuristic that can achieve near-optimal results. However,
the main reason for avoiding optimization models is their complexity and high execution time. Here we
aim at exploring how much complexity is required and what benefit we can achieve with simple
heuristics, studying a sequence of four, increasingly complex, heuristics. Each heuristic is designed
to show the effect of the added parameter on the number of accepted requests, the average cost of
the resources consumed by a SG, and the execution time of the algorithm. We start from the simplest
heuristic and in each heuristic consider an additional parameter in the NFs’ placement.

In all heuristics, it is assumed that requests arrive one at a time and are placed separately.
Each request has a duration, once an accepted request expires, it will be removed from the network and
the associated used resources will be released. Each SG request has a specific source and destination,
nodal resource demand for each NF, and a BW demand for all virtual links. The physical network
consists of nodes with a given amount of nodal resource and links with a specific available BW. We only
consider a single nodal resource and its consumption. The nodal resource could represent memory,
storage, or CPU resources of a physical node. The model is designed for a wireless multi-hop network
and considers the effect of interference in BW consumption. To include the effect of interference in
the BW consumption we use an interference model widely used in the literature called the protocol
model [14].

The protocol interference model defines an interference set for each link in the physical network.
The interference set for each link consists of all the links Eu,v that are connected to the nodes in the
transmission range R of the sender or receiver. du′u represents the distance between node u and u′.
intsetEuv captures that transmission on the link between node u and v will reduce the available BW of
all the links whose transmitter is within the transmission range of the sender u or the receiver v.

∀Euv ∈ Lp : intsetEuv = {Eu′v′du′u ∨ dv′v ∨ dv′u ∨ du′v ≤ R} (1)

3.1. Random Placement

The first heuristic is the simplest algorithm that can be used for embedding the NFs of an SG into
a physical network. The random placement heuristic can be divided into two parts: placing the NFs
and connecting the NFs. To place a NF, the algorithm randomly chooses a node that has sufficient
nodal resources. In this stage, if there is no node with sufficient nodal resource for any of the NFs
the request will be rejected. If all NFs are placed successfully, the algorithm moves to the connecting
stage. The algorithm starts from the source and connects it to the node used for placement of the first
NF of the SG, finding a shortest hop path via Dijkstra algorithm. This process of connecting nodes
continues until the node that contains the last NF of the SG connects to the destination. As the path
from source to destination that passes all the NFs based on their order is identified, BW availability
will be checked. BW consumption is based on the summation of the BW consumed by passing each
link and due to interference.

To describe this heuristic and the next ones better, consider the following example of an SG
placement that will be solved by all of the heuristics. Assume we have a wireless multi-hop network
with six nodes. Nodal resources of the nodes in the wireless network are Cn = {12, 11, 10, 20, 14, 8}
units, and the available BW of the links in the physical network are all 20 units. The nodal resource
demand of a SG of 3 NFs is c f = {2, 1, 4} and the BW demand of the request is 2 units. The SG’s source
is node 1 and its destination is node 5. Figure 1 shows the topology of the physical network and a



Future Internet 2020, 12, 161 7 of 16

random placement of the SG. As can be seen, although all three NFs could have been placed in the
source node and the shortest path between source and destination is only two hops, the length of the
chosen path is six hops, consuming significantly more BW.

Figure 1. Random placement example.

3.2. Shortest Path Placement

The presence of interference in wireless multi-hop networks causes a scarcity of BW. To reduce
BW consumption, our second heuristic first finds a shortest path between source and destination of
the SG request via Dijkstra’s algorithm. NFs then will be placed along the shortest path. The shortest
path will be checked for availability of sufficient BW to accommodate this flow, considering both the
actual links used and the impact on adjacent links due to interference. Should any link exceed their
available BW the request gets rejected. The shortest path placement places the first NF in the first
node of the path that has sufficient nodal resources. The next NF of the SG will be placed in the same
node as the previous NF if possible, otherwise it will be placed in the next node along the shortest
path with sufficient available nodal resource. This process continues until all NFs are placed. If any
of the NFs cannot be placed due to a lack of nodes with sufficient nodal resources, the request gets
rejected. Figure 2 shows the shortest path placement applied to the same example as the previous
section. We can see from the example that this model reduces the BW consumption in comparison to
the random placement.

Figure 2. Random placement example.

3.3. All Shortest Path Placement

Our third heuristic takes advantage of the fact that there can be more than one shortest path
between a source and destination. To increase the probability of accepting a request, this heuristic
searches for all shortest paths in the network and chooses the one that has a maximum-minimum
nodal resource. The search for all shortest paths is performed by using a search method similar to
Breadth First Search (BFS). BFS explores the links of the graph to discover the node that is reachable
from the source node. It computes the shortest distance (in terms of number of hops) from the source
to each reachable node in the graph. We modified BFS to start from the source and end when it reaches
the destination node. Also, in addition to the distance, we record the shortest paths themselves. In our
search for shortest paths we define an array and a set for each node u in the physical network:



Future Internet 2020, 12, 161 8 of 16

• distu: An array that represents the shortest distance (number of hops) from the source node.
• nodesu: A set which records nodes involved in each shortest path found from source node to

node u.

The initial value of dist for all nodes is infinity, except for the source node which is equal to 0,
and initially set of nodes for all nodes is empty. The search algorithm starts traversing the physical
network graph and while visiting neighbor y of node x it compares the value of disty with distx + 1.
If disty is greater than distx + 1, disty describes a path longer than the shortest path. So we decrease
disty to distx + 1 and assign nodesx to nodesy. If disty = distx + 1, we found another shortest path to
node y. In this case, nodesy is the union of nodesx and nodesy. The pseudo-code of this search algorithm
is presented as Algorithm 1. This algorithm finds all possible shortest paths for any pairs of nodes.
The output of the algorithm is nodesdest, which is a set of shortest paths from a source nod x to a
destination node dest in the physical network.

Algorithm 1: Finding all shortest paths.
Result: nodesdest that contains all shortest paths
x is the source node;
y are the neighbors of node x;
while y ∼ destination do

if disty > distx + 1 then
disty ← distx + 1;
nodesy ← nodesx;

else if disty = distx + 1 then
nodesy ← [nodesy; nodesx];

x ← y;
y← neighbors− o f − y;

end

The following example demonstrates how we update the parameters of each node during the
search for all shortest paths. As shown in Figure 3, we consider a network of 6 nodes and want to find
all shortest paths from node 1 to 5. In the first stage, we update the parameters of the source node’s
neighbors, which are nodes 2 and 3. Figure 3a shows the first stage and updated parameters of the
neighbors of node 1. Figure 3b shows the second stage, after we updated the parameters for neighbors
of node 2. In the final stage, when processing node 5, dist5 = dist3 + 1. So we update nodes5 to the
union of nodes3 and nodes5. Figure 3c shows the final stage. All available shortest paths from 1 to 5 are
recorded in nodes5.

(a) First step (b) Second step (c) Final step

Figure 3. First, second, and final stages of finding all shortest paths.

We applied this all shortest path heuristic to the same example in the previous sections and the
resulting placement is shown in Figure 4. Between the source and destination of the SG there are two
shortest paths {1, 3, 5}, and {1, 2, 5}. The maximum-minimum resource belongs to the second path.
All NFs are placed in the source node as the policy here is to place them in the first node that has
sufficient nodal resources.



Future Internet 2020, 12, 161 9 of 16

Figure 4. All shortest path placement example.

3.4. Fast and Simple Heuristic Algorithm (FACE)

The final heuristic uses the same method as the previous heuristic in choosing a shortest
path. Additionally, the FACE algorithm keeps a decreasing list of shortest paths based on their
maximum-minimum nodal resource. In each stage of the placement process, if the placement was not
possible for the chosen shortest path, it tries the next shortest path in the list. The following strategy
will be deployed to place the NFs along the chosen shortest path.

The NFs are sorted based on the number of possible candidate nodes in an increasing order.
A candidate node parameter candid fi

is defined for each NF of the SG and is equal to the number of
nodes along the shortest path that can be used for the placement of that specific NF. In choosing the
nodes along the shortest path we consider two parameters: a node has to provide sufficient nodal
resources, and the NFs that previously were placed. The order of the NFs in the SG is fixed and we
cannot re-organize them. Furthermore, we do not want to have a placement that passes a physical link
more than once. E.g. if the third NF of the SG is being placed in the second node of the shortest path,
subsequent NFs in the SG cannot be placed in the first node. The candidate nodes are being chosen
based on the placement of previous NFs to avoid loops and backtracking in the placement. If there are
no candidate nodes for any of the NFs at any stage of placement, the chosen path is infeasible and the
placement process will choose the next shortest path with maximum-minimum nodal resource and
repeat the process of NF placement.

To place the chosen NF in one of the nodes along the shortest path we sort its candidate nodes
based on their index difference and choose the node with the lowest index difference. The index of
the nodes along the shortest path is equal to their order in the shortest path e.g., the source node’s
index is one. The index of a NF is equal to its order in the SG, e.g., the index of the first NF of the
SG is one and the index of second NF is two. We compare the index of the chosen NF with the index
of the candidate nodes and choose the one with the minimum index difference with the chosen NF.
In the end, the available resources of the nodes, BW of the links, and the list of candidate nodes for the
remaining NFs will be updated.

We applied FACE heuristic to the same example as previous sections. Figure 5 shows the result of
placement by FACE heuristic. As all of NFs had three options for placement, the algorithm started
from the first NF and placed it in the node with minimum index difference, which is the source node.
The second NF is placed in the second node of the chosen shortest path as it has minimum index
difference and the third NF is placed in the third node of the chosen shortest path.

Figure 5. FACE heuristic placement.



Future Internet 2020, 12, 161 10 of 16

3.5. Accessible Scope Heuristic

We also implemented one heuristic proposed in the literature that limits the location of VNFs to
nodes on the shortest path(s). The accessible scope heuristic [13] reviewed earlier introduces the notion
of accessible scope to which the possible locations of VNFs are confined. Based on a flow’s source
and destination, nodes with lowest sum of distance from source and destination are in the accessible
scope of the request. In essence, these are all nodes on all shortest paths. Once the search space is
thus narrowed, an optimal placement algorithm then solves the placement problem on this smaller
subproblem. In our implementation, we use the model described in the next subsection.

3.6. Optimization Model

In our previous work [15] we proposed an optimization model for placement of the SGs in wireless
multi-hop networks. That model uses Integer Linear Programming (ILP) to place a chain of NFs,
subject to constraints on nodal resources, link bandwidth, connectivity, and interference. The objective
of the optimization model is to minimize the mapping cost, defined as the sum of BW consumed by
the actual flows, the bandwidth lost in adjacent links due to interference, and the consumption of
nodal resources. As the results in [15] show, the execution time for placing SGs even in small networks
grows fast, even for small networks of 20 to 40 nodes.

3.7. Summary

This section reviews 6 possible ways of solving the network function placement problem,
from randomly placing the NFs to solving a complex optimization model. As the latter results
will show, the more complex solutions require more computational time to arrive at a solution per
request, which limits their applicability to smaller networks. The question then becomes how much
complexity is really needed to achieve reasonably good results. Or in other words: if we choose a
simpler solution, do we loose out on performance (number of accepted requests, costs of placement)?

4. Modeling Environment and Results

Two platforms are being used to solve the placement problems: MATLAB to implement our
heuristic algorithms, and AMPL to solve the mathematical optimization model and the alternative
heuristic proposed in [13]. AMPL is a modeling language designed to be used for solving optimization
problems such as linear and non-linear programming problems [16]. We used AMPL to solve the
optimization model and the compared heuristic as it works with a wide range of solvers. We used
BARON for solving our optimization model in AMPL as described in more detail in [16]. Unlike AMPL,
which is designed for solving optimization models, MATLAB allows us to develop our heuristic
algorithm for VNF placement.

The wireless topologies are generated with the use of the method proposed in [17]. The nodes are
randomly deployed in a square area, based on a uniform distribution. We generate topologies with 20,
30, 40, and 100 nodes, the network area grows with the number of nodes. We keep the average node
density constant, consequently the network size ranges from 490 ∗ 490 m2 for the 20 nodes network to
980 ∗ 980 m2 for the 40 nodes network [17]. Nodes in the wireless network are directly connected if
their distance is less than or equal to the transmission range of the nodes. This transmission range is
constant for all nodes and we verified that all of the generated topologies are connected.

We used the same parameter values as [1] in order to be able to compare our results. The nodal
resource of nodes and the bandwidth of links are values uniformly distributed between 100 and 150 in
the first network scenarios. In later scenarios, we increase the available BW and the nodal resource
availabilities to observe their impact on the performance of the heuristics. Flows arrive over time,
following a Poisson process with an average rate of four flows per 100 time units. Each flow has
a lifetime, exponentially distributed with an average of µ = 500 time units and is accompanied by
a SG, defining the required NFs and their interconnection to handle this flow. There are 6 NFs per



Future Internet 2020, 12, 161 11 of 16

request. The nodal resource demands of each NF follow a uniform distribution between 1 and 20.
The bandwidth requirement of all links of the request is the same and chosen uniformly from between
1 and 50 units.

4.1. Performance Metrics

To measure the performance of our proposed heuristics and compare their performance with each
other, we used the following metrics.

• Accepted requests: The total number of accepted requests during a simulated network lifetime of
20,000 s.

• Average Cost: Average of the BW and nodal resource units used for the deployed requests that are
not expired. Please note that this includes the bandwidth of links actually used by flows, as well
as the bandwidth consumed on adjacent links due to interference.

• Execution time: The total time that it takes to place all requests over the simulated network
lifetime of 20,000 s.

Each data point is the average of 10 runs, generating a new random topology and sequence of
flow arrivals each time. In addition to the average, we also plot the 95% confidence intervals.

4.2. Results

In order to evaluate the relative performance of our heuristics and to determine the time it takes
to solve the placement problem, we designed three scenarios.

• In a first scenario, we applied our heuristic models to wireless multi-hop networks of increasing
size to evaluate their performance in terms of the time it takes to solve the placement problem
and their success in placing the requests. To benchmark our results, we applied the Integer
Linear Programming (ILP) model for wireless multi-hop networks introduced in [1] to the same
topologies and the same set of requests as our heuristic models. We compared our results with
the accessible scope heuristic proposed in [13] that we reviewed earlier.

• In a second scenario, we focus on the first four proposed heuristics and apply them to a larger size
network of 100 nodes to compare their performance in terms of the number of accepted requests,
average cost, and execution time. In this scenario, we maintain the number of nodes and increase
the available links’ BW.

• In a third scenario, similar to the second scenario, we compare the performance of our proposed
heuristics as resource availability changes. Here we increase the nodal resource of the nodes
while keeping the number of nodes constant at 100. In this scenario, in addition to comparing
the relative performance of the proposed heuristics, we can also identify the impact of increasing
nodal resources on the number of accepted requests.

Figure 6 shows the average number of accepted requests and their 95 % Confidence Intervals
(CI) for a simulated network lifetime of 20,000 s. We applied our 4 heuristics, the accessible scope
heuristic, and the ILP model to the same physical networks and the same set of requests. We increased
the number of nodes from 20 to 30 and 40 nodes. For each network size, we repeated the experiment
10 times with different network topologies, averaged the number of accepted requests and calculated
the corresponding 95 % CI. The most surprising part of the results is that the average number of
accepted requests is almost the same for all heuristics, except for the random placement strategy.
The differences in the average acceptance rates, as indicated by the 95 % confidence intervals, are not
statistically significant. It may seems counter-intuitive that, for a 30 node network, the ILP has a
slightly lower average acceptance rate than the accessible scope heuristic. However, as we have
shown in [1], accommodating placement requests one at a time (as we did here) will impact future
placement requests. In this case, ILP successfully placed a request along nodes on a non-shortest path.
This reduced available resources, preventing the placement of subsequent requests. The shortest path



Future Internet 2020, 12, 161 12 of 16

heuristics would have failed to place such a request, resulting in more resources remaining available
to place future requests.

Figure 6. Average number of accepted requests.

While the four heuristics are quite different in terms of their level of complexity, the shortest path
heuristic can place the same number of requests as the complicated accessible scope heuristic or even
FACE. All the steps added to our heuristic after the focusing on (a randomly determined) shortest path
do not improve the number of accepted requests. However, these steps add complexity and as we can
see in Table 2 increases the execution time. For a 40 node network, applying an optimization model
takes almost 10 times as long as the accessible scope heuristic, 100 times longer than FACE, and almost
1000 times longer than the simple shortest path heuristic. Randomly placing network functions in the
network actually takes longer (in our implementation), as we repeatedly need to discover shortest
paths between consecutively placed NFs. In a network where such information is readily available,
for example in the centralized controller of an SDN architecture, randomly placing NFs and placing
them in a best-effort manner along the shortest path between source and destination would have
approximately the same, minimal, time complexity.

We also collected the execution times for the 4 simpler heuristics for a 100 node network.
Again, the results clearly show the superior performance of the simple shortest path heuristic. The time
listed here (2.3 s) is the average time to process all arriving requests. With, on average, four requests
arriving per 100 time units, and the simulations running for 20,000 time units, we process approximately
800 requests in 2.3 s, so each request individually takes slightly less than 3 ms. This indicates quite
clearly that this heuristic scales well for larger networks, allowing processing arriving new flows in
real time. Unlike more complex approaches, the execution time of our simple heuristic is related to the
number of nodes in the shortest path, not the number of nodes in the network.



Future Internet 2020, 12, 161 13 of 16

Table 2. Execution times in seconds for networks of different size.

Network Size 20 30 40 100

ILP model 142.6 427.3 967.22 -

The accessible scope heuristic 49.9 66.5 96.80 -

FACE 1.45 3.4 6.5 43.82

All shortest path 1.21 3.2 5.4 40.32

Shortest path 0.53 1.1 1.5 2.3

Random 1.3 5.2 6.1 137

The advantage of the simple shortest path heuristic is that it provides a total number of accepted
requests close to the optimization model in a timely manner. The all-shortest path and FACE heuristic
incur a pre-processing step to calculate all shortest paths for all possible source and destinations in the
network. This is a one-time process and does not depend on the number of requests. We excluded this
one time calculation of all shortest paths for all pairs of nodes from their execution time. However,
in case of dynamic topologies, we may have to run these steps multiple times, potentially each time a
new request arrives.

Limiting the placement heuristic to a shortest path will not eliminate the optimal placement in
most cases. Over 97 % of the requests are being placed along a shortest path by the optimization
model. However, this focus on the shortest path(s) results in a huge decrease in the execution time
of all heuristics compared to the optimization model. In terms of the average cost, as the number of
accepted requests are similar for heuristics that use a shortest path for placement of the NFs, we end up
with more or less the same BW costs. The only potential difference would be the impact of interference,
which only the last three approaches explicitly consider during the placement process. However,
at least for the results presented here, this impact made little difference overall.

In the second scenario, we apply our 4 proposed heuristics to a 100 nodes network. We chose
a network with 100 nodes in order to have more shortest paths available for each pair of nodes in
comparison to smaller networks and be able to compare the performance of the all-shortest path
and FACE with the one that only considers one shortest path. We vary the uniform distribution that
the physical links’ BW is chosen from to model increased bandwidth availability. The intervals are
[300, 400], [500, 600], [700, 800], [900, 1000], [1000, 1100]. As can be seen from Figure 7, the average
number of accepted requests increases as we increase the initially available links’ BW. The x-axis is
labeled by the beginning of each BW interval. We can observe that the average number of accepted
requests remains similar for all heuristics (except for the random placement). High consumption of
BW due to the presence of interference makes BW a bottleneck for NF placement in wireless multi-hop
networks. Increasing the available BW will mitigate the impact of this bottleneck, and increased the
number of accepted requests uniformly for all heuristics. As discussed above, for each simulation run,
we have about 800 flow arrivals. If we increase the bandwidth sufficiently (to at least 900 units per
link), essentially all flows can be accommodated, independent of the heuristic, as long as NFs are place
on a shortest path between source and destination.

Finally, in the last scenario, for a network of 100 nodes, we increase the nodal resource by
increasing the uniform distribution that the nodal resource is chosen from. The intervals are [1000, 1100],
[2000, 2500], and [3000, 3500]. Figure 8 shows the acceptance ratio, again the x-axis is labeled by the
beginning of each nodal resource interval. Unlike the results shown in Figure 7, increasing the nodal
resource does not results in an increase in the average number of accepted requests. We conclude
that bandwidth is a more significant factor in multi-hop wireless networks. Again we see that the
performance of the shortest path, the all shortest path, and the FACE heuristics are the same in terms
of the average number of accepted requests. As our results show for all scenarios, the difference
in performance (in terms of accepted requests) between the shortest path heuristic and the optimal



Future Internet 2020, 12, 161 14 of 16

solution as shown in Figure 6 is not statistically significant. Any heuristic that can beat the simple
heuristic would therefore also have to outperform the optimal solution. We therefore do not expect
such a superior heuristic to exist.

Figure 7. Average number of accepted requests.

Figure 8. Average number of accepted requests.



Future Internet 2020, 12, 161 15 of 16

5. Conclusions

One main challenge in the use of NFVs is to optimally map the SG requests to the physical
network. As optimal placement methods are NP-hard and cannot be applied to large networks,
we have to design a heuristic with lower complexity that is scalable and can reach near optimal results.
Although there exists a wide range of heuristics proposed for VNF placement, none has focused
on design a simple heuristic that is time efficient and hence scalable. We explored four heuristics,
ranging from very simple to more complex, involving backtracking, in order to identify the simplest
possible method that can place a high number of requests in the network in a timely manner.

We compared the performance of our four heuristics with a mathematical model and a popular
heuristic proposed in the literature. Our results show that randomly placing NFs, as expected, produces
poor results (low acceptance rate, high costs). So some effort is warranted in placing NFs. However,
and somewhat unexpected, the simple shortest path heuristic can reach similar results as more complex
heuristics. Additional steps, added to the all shortest paths and the FACE heuristic, do not increase the
number of accepted requests. Even more complex heuristics such as the accessible scope heuristic [13]
do not improve the acceptance rate. In fact, as shown in Figure 6, all these approaches provide,
statistically speaking, the same performance as an optimization model. However, as shown in Table 2,
the simpler the heuristic, the faster its execution time. The simplest shortest path heuristic can process
a newly arriving flow in a few milliseconds in a network of 100 nodes, arguing for its scalability and
suitability for real-time admission control.

We explored the effect of increasing BW and nodal resources on the performance of each heuristic.
However, we kept the request arrival rate and network density constant. Going forward, we will
more thoroughly evaluate and compare the performance of the various heuristics as we vary these
parameters as well, resulting in networks that are more lightly or highly loaded.

We also plan to explore possible ways to improve the performance of the shortest path heuristic.
Baed on the results presented here, improving the heuristic in a scenario where we process flow
arrivals one at a time by more selectively placing NFs among candidate nodes will be of limited benefit.
However, in [5] we already showed that considering already placed flows jointly with a new flow
arrival (placement request) may result in more accepted requests overall. While that work used small
networks and the optimization model, we plan to extend this to the heuristic approaches as well.
The added complexity of such an approach is that such an approach potentially moves some of the
already placed NFs. We therefore would need to consider which NFs can be moved and at what
cost. This “reconfiguration costs” needs to be considered in a complete solution. Jointly considering
multiple requests will also increase the heuristic’s execution time, potentially limiting its scalability.

Author Contributions: Conceptualization, T.K.; investigation, Z.J.; methodology, T.K.; project administration,
T.K.; software, Z.J.; writing—original draft, Z.J.; writing—review & editing, T.K. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Natural Sciences and Engineering Research Council of Canada
(NSERC), under a Discovery Grant on “SDN-Enabling Multihop Wireless Networks”.

Conflicts of Interest: The authors declare no conflict of interest.

Reference

1. Jahedi, Z.; Kunz, T. Optimal VNF Placement: Addressing Multiple Min-Cost Solutions. E-Business and
Telecommunications: 15th International Joint Conference, Invited Extended Paper from DCNET 2018;
Obaidat, M.S., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–23.

2. Laghrissi, A.; Taleb, T. A Survey on the Placement of Virtual Resources and Virtual Network Functions.
IEEE Commun. Surv. Tutor. 2019, 21, 1409–1434. [CrossRef]

3. Chen, W.; Yin, X.; Wang, Z.; Shi, X. Placement and Routing Optimization Problem for Service Function
Chain: State of Art and Future Opportunities. arXiv 2019, arXiv:1910.02613.

4. Orchestrating Virtualized Network Functions. IEEE Trans. Netw. Serv. Manag. 2016, 13, 725–739. [CrossRef]

http://dx.doi.org/10.1109/COMST.2018.2884835
http://dx.doi.org/10.1109/TNSM.2016.2569020


Future Internet 2020, 12, 161 16 of 16

5. Ghribi, C.; Mechtri, M.; Zeghlache, D. A Dynamic Programming Algorithm for Joint VNF Placement and Chaining;
ACM: New York, NY, USA, 2016; pp. 19–24.

6. Riggio, R.; Bradai, A.; Rasheed, T.; Schulz-Zander, J.; Kuklinski, S.; Ahmed, T. Virtual Network Functions
Orchestration in Wireless Networks; IFIP: Stockoholm, Sweden, 2015; pp. 108–116.

7. Nguyen, T.M.; Fdida, S.; Pham, T.M. A Comprehensive Resource Management and Placement for Network Function
Virtualization; IEEE: Piscataway, NJ, USA, 2017; pp. 1–9.

8. Ma, W.; Beltran, J.; Pan, Z.; Pan, D.; Pissinou, N. SDN-Based Traffic Aware Placement of NFV Middleboxes.
IEEE Trans. Netw. Serv. Manag. 2017, 14, 528–542. [CrossRef]

9. Ghaznavi, M.; Khan, A.; Shahriar, N.; Alsubhi, K.; Ahmed, R.; Boutaba, R. Elastic Virtual Network Function
Placement; IEEE: Piscataway, NJ, USA, 2015; pp. 255–260.

10. Bouet, M.; Leguay, J.; Combe, T.; Conan, V. Cost based placement of vDPI functions in NFV infrastructures.
Int. J. Netw. Manag. 2015, 25, 490–506. [CrossRef]

11. Mohammadkhan, A.; Ghapani, S.; Liu, G.; Zhang, W.; Ramakrishnan, K.K.; Wood, T. Virtual function
placement and traffic steering in flexible and dynamic software defined networks. In Proceedings of the 21st
IEEE International Workshop on Local and Metropolitan Area Networks, Beijing, China, 22–24 April 2015;
pp. 1–6.

12. Pham, C.; Tran, N.H.; Ren, S.; Saad, W.; Hong, C.S. Traffic-Aware and Energy-Efficient vNF Placement for
Service Chaining: Joint Sampling and Matching Approach. IEEE Trans. Serv. Comput. 2020, 13, 172–185.
[CrossRef]

13. Qi, D.; Shen, S.; Wang, G. Towards an efficient VNF placement in network function virtualization. Comput.
Commun. 2019, 138, 81–89. [CrossRef]

14. Gupta, P.; Kumar, P.R. The capacity of wireless networks. IEEE Trans. Inf. Theory 2000, 46, 388–404.
[CrossRef]

15. Jahedi, Z.; Kunz, T. Virtual Network Function Embedding in Multi-hop Wireless Networks. In Proceedings
of the 15th International Joint Conference on e-Business and Telecommunications, ICETE 2018—Volume 1:
DCNET, ICE-B, OPTICS, SIGMAP and WINSYS, Porto, Portugal, 26–28 July 2018; pp. 199–207.

16. AMPL: A modeling language for large-scale optimization. OR/MS Today 2009, 36, 68.
17. Kunz, T.; Mahmood, K.; Li, L. Broadcasting in multihop wireless networks: The case for multi-source

network coding. In Proceedings of the IEEE International Conference on Communications (ICC), Ottawa,
ON, Canada, 10–15 June 2012; pp. 5157–5162.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TNSM.2017.2729506
http://dx.doi.org/10.1002/nem.1920
http://dx.doi.org/10.1109/TSC.2017.2671867
http://dx.doi.org/10.1016/j.comcom.2019.03.005
http://dx.doi.org/10.1109/18.825799
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Placement Heuristics 
	Random Placement
	Shortest Path Placement
	All Shortest Path Placement
	Fast and Simple Heuristic Algorithm (FACE)
	Accessible Scope Heuristic
	Optimization Model
	Summary

	Modeling Environment and Results 
	Performance Metrics
	Results

	Conclusions 
	References

