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Abstract: Bridge displacement measurement is an important area of bridge health monitoring,
which can directly reflect whether the deformation of bridge structure exceeds its safety permission.
Target tracking technology and Digital Image Correlation (DIC) are two fast-developing and
well-known methods for non-contact bridge displacement monitoring in Digital Image Processing
(DIP) methods. The former’s cost of erecting detection equipment is too large for bridges with
a large span that need to locate more multi-targets because of its tracking only one target on a
camera while the latter is not suitable for remote detection because it requires very high detection
conditions. After investigating the evolution of bridge displacement monitoring, this paper proposes
a bridge displacement monitoring algorithm based on multi-target tracking. The algorithm takes full
account of practical application and realizes accuracy, robustness, real-time, low-cost, simplicity, and
self-adaptability, which sufficiently adapts the bridge displacement monitoring in theory.
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1. Introduction

Due to the frequent occurrence of structural constructions’ safety accidents in recent years,
the national property and people’s lives have suffered tremendous losses. Hence, it is deeply
recognized that real-time online monitoring and health assessment of structural constructions,
especially those newly built, are very important. In view of the emergence of new structural
constructions, long-span bridges, and complex system buildings, the health monitoring and safety
assessment of structures should be paid more attention. Structural displacement, as a key index of
structural safety evaluation, can directly reflect whether the deformation of bridge structure exceeds its
safety permission. It can provide effective parameters for structural damage identification and health
monitoring. Displacement monitoring can be applied to wood [1], bridges [2], dams [3], anti-lock
brake systems [4], stay cables [5], and vibration analysis in vitro imaging systems [6], etc.

For structural construction like bridges, there are still a lot of contact displacement monitoring
methods in use, such as acceleration sensor and displacement meter [7], Global Positioning System
(GPS) [8], electronic total station [9], laser interferometer [10], and so on. Contact monitoring methods
often need to install sensors on bridges, which makes the maintenance of sensors become very difficult
in the later period because of bridges’ often crossing the sea or rivers. In order to overcome these
limitations, non-contact displacement monitoring methods have gradually emerged in recent years.
Among them, the Digital Image Processing (DIP) method stands out for its high accuracy and simple
installation of equipment. At present, the Digital Image Correlation (DIC) [1,4,5,11–22] method is the
mainstream for bridge displacement monitoring using DIP.

DIC, also called digital speckle correlation, is to obtain the deformation information of the
Region of Interest (ROI) from two digital images before and after deformation. The image before
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deformation can be called the reference image and the image after deformation can be called the
deformed image. The basic principle of DIC is to mesh the ROI in the reference image, treat the
motion of each sub-region as a rigid motion, and calculate the correlation according to the pre-defined
correlation function through a certain search method for each sub-region. In the deformed image,
the location of the sub-region after deformation is the region whose cross-correlation coefficient with
the sub-region in the reference image is the maximum, and then the displacement of the sub-region
is obtained. By calculating all the sub-regions, the deformation information of the whole field can
be obtained. The DIC method is welcomed by some scholars because it is easy to implement and
its calculation accuracy is high. Despite its great advantages, the DIC method has to carry out more
tedious data processing in order to obtain better measurement results. Its computational efficiency
can not meet the requirements of fast measurement. In the process of a speckle image’s acquisition
and transmission, there are also many factors (such as signal noise, data missing, etc.) that affect
the accuracy of measurement results. Therefore, how to better apply the DIC method to the actual
measurement; there are still many research works to be further improved [4,11–22].

Target tracking [23–26], as its name implies, is to locate the position of a specific target in each
frame of the image and generate the motion trajectory of the target. Setting a target board on the
point which needs displacement monitoring, the displacement of the point can be known by the target
board’s displacement after processing the sampled image. The target board for sampling is designed
with special geometric patterns, which Light Emitting Diode (LED) lights.

Initially, many scholars set the target board as a rectangular board with special square black-and
white geometric patterns and obtain the center of a window by a special algorithm. This method
has high monitoring accuracy of sub-millimeters under ideal conditions. However, the target has a
directional characteristic that is, when using the target as the photographed object, each of its sides
must be horizontal or vertical. If it is tilted, the precision of displacement monitoring will be reduced
dramatically [25]. Another disadvantage of this method is that its calibration of the visual monitoring
system designed is complex, leading to large calculation. To overcome this problem, Lu et al. [26]
changed the pattern on the target board into a circle so that the precision would not be affected even if
the target board was tilted. Moreover, the computation complexity of this method is much less than the
above method. In [26], the method’s cost of erecting detection equipment is too large for bridges with
a large span that need to locate more multi-targets because of its tracking only one target on a camera.

In order to overcome the limitations of DIC, target tracking technology and other existing
approaches, a novel algorithm based on specific target tracking technology is proposed in this article
that can measure displacements of multi-targets simultaneously and be free of complex data processing.
Experiments have been conducted to test the algorithm’s various properties with images obtained
by Photoshop (Adobe Photoshop CS6, Adobe Systems Incorporated, San Jose, California, USA).
Results show that this method realizes accuracy, robustness, real-time, low-cost, simplicity, and
self-adaptability, which sufficiently adapts the bridge displacement monitoring in theory.

The remainder of the paper is organized as follows. Section 2 discusses the key fundamentals of
target tracking technology and DIC. The proposed algorithm is described in Section 3. The experimental
results are analyzed in Section 4. Section 5 draws conclusions.

2. Digital Image Correlation

The basic principle of DIC is to mesh the ROI in the reference image, treat the motion of each
sub-region as a rigid motion, and calculate the correlation according to the pre-defined correlation
function through a certain search method for each sub-region. In the deformed image, the location of
the sub-region after deformation is the region whose cross-correlation coefficient with the sub-region
in the reference image is the maximum, and then the displacement of the sub-region is obtained.
By calculating all the sub-regions, the deformation information of the whole field can be obtained.

In the DIC method, we need to determine a correlation coefficient function, which is a criterion
to measure the matching degree between reference subset and target subset and then find out the
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extremum of correlation coefficient by corresponding integral pixel displacement search method to
extract displacement information. About the extremum, we take the maximum value in positive
correlation coefficient function and the minimum value in negative correlation coefficient function.
Different expressions of correlation coefficients have different performance and its performance will
directly affect the search accuracy and computation efficiency of the DIC method. Two commonly used
correlation coefficient functions, Zero Normalized Cross-Correlation (ZNCC) and Zero Normalized
Sum of Squared Differences (ZNSSD), are presented in Equation (1) [27–29]:

CZNCC =
M
∑

i=−M

M
∑

j=−M
[
{ f (xi ,yj)− fm}{g(x′i ,y

′
j)−gm}

∆ f ∆g ],

CZNSSD =
M
∑

i=−M

M
∑

j=−M
[

f (xi ,yj)− fm
∆ f −

g(x′i ,y
′
j)−gm

∆g ]2,
(1)

where f () and g() mean the gray level intensity of a pixel for the reference and deformed images,

respectively, and

fm = 1
(2M+1)2

M
∑

i=−M

M
∑

j=−M
f (xi, yj),

gm = 1
(2M+1)2

M
∑

i=−M

M
∑

j=−M
g(x′i , y′j),

∆ f =

√
M
∑

i=−M

M
∑

j=−M
[ f (xi, yj)− fm]2,

∆g =

√
M
∑

i=−M

M
∑

j=−M
[g(x′i , y′j)− gm]2.

The advantages of this method are that the algorithm is simple and easy to realize, it is the whole
field of view and the non-contact deformation monitoring, and the monitoring precision is high.

The disadvantages of this method are that it is a deformation monitoring method according to the
speckle image of the structure. If the texture of the structure surface is good, the speckle image with a
good effect can be obtained, and the results of deformation monitoring will also be good. However,
when the texture of the structure surface is general or no obvious texture, it is necessary to make
artificial spots, otherwise the displacement can not be monitored by this method. In addition, it can
be seen from the principle that the essence of this method is to carry out a large number of repeated
calculations, and the overall calculation is very large. If the image pixels are large, the correlation
computation of the two images would be extremely large so it can not meet the requirements of
monitoring speed at all.

3. Proposed Algorithm

The digital image correlation method can calculate the whole field displacement. If it is used in
bridge displacement monitoring, the actual environment is not suitable and the amount of calculation
is very large so it is difficult to meet the monitoring speed. The algorithm proposed in this paper
improves the specific target tracking technology to make it more meet the needs of actual bridge
displacement monitoring. A flowchart of the proposed algorithm is shown in Figure 1. It is mainly
composed of eight modules. In each module, the algorithm in this paper is optimized to meet the
real-time, robustness, and adaptability as far as possible under the premise of monitoring accuracy.
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Figure 1. Flowchart of the proposed algorithm.

As mentioned earlier, current target tracking algorithms’ cost of erecting detection equipment is
too large for bridges with a large span that need to locate more multi-targets because of its tracking
only one target on a camera, and DIC has difficulty guaranteeing the accuracy and real-time because
of its complicated data processing. The proposed algorithm in this paper can meet the real-time and
accuracy under the premise of monitoring multiple targets.

The algorithm proceeds as follows.
System calibration is acquiring the actual distance value represented by each pixel under the

current monitoring distance before the displacement monitoring. The calibration method adopted
in this paper is to separate two target boards by a known distance (preferably greater than 50 m),
take photos, and run the algorithm to obtain the central coordinates of the two target boards in the
image. Dividing the known distance by the coordinate difference between the two target boards is the
actual distance respected by each pixel.

Image capturing means using the image acquisition system of the Charge Coupled Device (CCD)
camera to collect images.

Color conversion means converting the collected images into gray images for processing.
Image denoising, as its name implies, is to filter out the noise in the image with a filter. In this

paper, an adaptive median filter is used for denoising. Sxy represents a sub-image whose center is at
(x, y). The adaptive median filter described in detail is as follows:

zmin denotes the minimum brightness value in Sxy.
zmax denotes the maximum brightness value in Sxy.
zmed denotes the median brightness value in Sxy.
zxy denotes the brightness value at coordinates (x, y).
This adaptive median filtering algorithm works in two levels, Level A and Level B:
Level A: If zmin < zmed < zmax, turn to Level B.

Otherwise, increase window size.
If the window size <=Smax, repeat Level A.
Otherwise, output zmed.

Level B: If zmin < zxy < zmax, output zxy.
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Otherwise, output zmed.
Smax represents the allowable maximum adaptive filter windows size and Smax = 5 in this paper.
Many denoising methods are applied to this algorithm and the denoising effect is similar. In this

paper, the adaptive median filter is selected and other denoising methods also can be used instead.
Image enhancement uses top-hat transformation to uniform background and histogram

equalization to enhance the contrast. Assuming that f (x, y) is a grayscale image and b(x, y) is a
structural element, b erosion of image f at (x, y) is defined as Equation (2) and b dilation of image f at
(x, y) is defined as Equation (3). Top-hat transformation is defined as Equation (4):

[ f 	 b](x, y) = min
(s,t)∈b

{ f (x + s, y + t)}, (2)

[ f ⊕ b](x, y) = max
(s,t)∈b

{ f (x− s, y− t)}, (3)

That( f ) = f − ( f 	 b)⊕ b. (4)

Background simplification uses erosion and hole filling technology. The structural element size
of erosion procedure is a disk structure with a radius of 1. Hole filling technology is explained
in Equation (5), where A represents a binary image, Ac represents the complementary set of A, B
represents a 4-connected structural element, and X0 represents an all-black image except for a white
spot in each hole. If Xk = Xk−1, the algorithm ends at step k of the iteration. The parallel set of X and
A is the image after hole filling:

Xk = (Xk−1 ⊕ B) ∩ Ac, k = 1, 2, 3, ... (5)

Feature recognition’s flowchart is shown in Figure 2. The main principle is to take the vertices of
eight directions on the edge of the region and calculate the distances from them to the center of the
region, respectively. Then, the standard deviation of these eight distances is calculated and a threshold
is set. If the standard deviation is less than this threshold, the region is recognized as a circle.

In this paper, the method of obtaining the center of a circle is the centroid location by first-order
central moment method. It is a method of determining the centroid of image by using the geometric
invariant first-order moment of a digital image. The concept of geometric moment was first proposed
by Hu in 1962, and it is shown in Equation (6):

mpq =
∫ +∞

−∞

∫ +∞

−∞
xpyq f (x, y)dxdy, (6)

where f (x, y) means the continuous image function and mpq means p + q order moments of the
continuous image function.

For this paper, the image function f (x, y) is a discrete numerical image so its integral operation is
replaced by summation operation. mpq is shown in Equation (7):

mpq = ∑x ∑y xpyq f (x, y). (7)

The zero-order moment of the region represents the region’s mass and the first-order moment
represents the region’s center of mass. The coordinates of the region’s center of mass can be determined
by combining the two, and it is presented in Equation (8):

m00 = ∑x ∑y f (x, y),
m10 = ∑x ∑y x f (x, y),
m01 = ∑x ∑y y f (x, y),

uc = m10/m00,
vc = m01/m00,

(8)
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where (uc, vc) means the coordinate of the region’s center.
Displacement calculation is to calculate the pixel displacement of the central coordinate of

each circular target and determine the actual displacement distances according to the results of
system calibration.

Compared with other image displacement monitoring algorithms, the algorithm in this paper
has two main advantages. The first advantage is that the algorithm designs specific region detection
conditions directly according to the characteristics of the target without image correlation method so it
eliminates a lot of repeated calculations. When there are more pixels in the image, the advantage of
this algorithm will be more obvious. The second advantage is that the algorithm can monitor multiple
targets at the same time, unlike [25,26], where a camera can only monitor one target, which greatly
reduces the cost of camera equipment. In summary, this algorithm is suitable for rapid displacement
monitoring of large structures such as bridges.

Figure 2. Flowchart of feature recognition.

4. Evaluation

In this paper, three experiments are conducted to verify the proposed algorithm’s accuracy,
robustness, real-time, self-adaptability, low-cost, and simplicity mentioned above. The original pictures
in the experiments are made by Photoshop and the algorithm is realized by MATLAB language (R2016a,
MathWorks, Natick, MA, USA).
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In the first experiment, accuracy and self-adaptability can be proved. The accuracy of the
algorithm can reach a sub-pixel level and meet the daily needs of bridges. This algorithm can
automatically detect the number of target boards without setting a fixed number in advance, reflecting
the self-adaptability of the algorithm. This algorithm realizes multi-target simultaneous monitoring
and greatly reduces the cost of monitoring and facilitates later data processing, reflecting the low-cost
and simplicity of the algorithm. In the second and third experiments, robustness and real-time can
be proved respectively. The robustness of the algorithm is reflected in that, when the target board
is slightly contaminated, the algorithm can still identify the location of the target board and the
accuracy is almost unaffected. The algorithm is implemented in a frequency domain as far as possible
and each step is calculated and compared to select the shortest time-consuming sub-algorithm from
sub-algorithms that can achieve the same effect. If the displacement exceeds the threshold, real-time
warning can be achieved. In the fourth experiment, the algorithm is achieved by C++ language to
prove its availability in the actual environment.

4.1. Accuracy Experiment

As shown in Figure 3, we used Photoshop to make the picture to simulate actual scenes. We first
move the target boards in the graph by certain amounts of displacement, which is shown in Table 1.
The program calculates the target boards’ displacement values of two pictures before and after the
displacement. The results of the operation are shown in Figure 4 (The first column represents the X
coordinate of the displacement, the second column represents the Y coordinate of the displacement,
and each row represents the target board number), reflecting that the accuracy of the algorithm can
reach a sub-pixel level.

Figure 3. Image that simulates real environments (seven target boards).

Table 1. Certain displacement values of movement (the leftmost target board is No. 1).

Target Board Number Initial Position (Pixel) Shifted Position (Pixel) Displacement (Pixel)

1 (110, 339) (117, 346) (7, 7)
2 (169, 306) (189, 306) (7, 0)
3 (286, 262) (286, 269) (0, 7)
4 (383, 216) (383, 209) (0, 7)
5 (484, 169) (491, 169) (7, 0)
6 (575, 121) (568, 128) (7, 7)
7 (680, 81) (680, 81) (0, 0)
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1

2

3

4

5

6

7

1 2

6.9506 7

7.0246 0.0075

0 7

0.0246 6.9925

6.9260 0.0075

6.9754 7.0075

0 0

Figure 4. The displacement calculation results of the program.

To verify the self-adaptability of the algorithm, we replaced the original picture and repeated the
experiment above. The image that simulates real environments is shown in Figure 5. The displacements
set is shown in Table 2. The operation results of the program are shown in Figure 6.

Figure 5. Image that simulates real environments (three target boards).

1

2

3

1 2

10 4.9794

10.0198 5.0103

4.9802 5.0103

Figure 6. The displacement calculation results of the program.

Table 2. Certain displacement values of movement (the leftmost target board is No. 1).

Target Board Number Initial Position (Pixel) Shifted Position (Pixel) Displacement (Pixel)

1 (214, 311) (224, 306) (10, 5)
2 (516, 311) (506, 306) (10, 5)
3 (736, 321) (741, 316) (5, 5)

The results of the two experiments show that the accuracy of the proposed algorithm can reach
1/10th of a pixel and self-adaptability has also been proved very well.
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4.2. Robustness Experiment

To verify the robustness of the algorithm, some stains of different shapes are added to the
target boards in Figure 3. Pictures before and after displacement are shown in Figures 7 and 8.
In order to reflect the advantages of the algorithm, we set different stains between pictures before and
after displacement.

Figure 7. Image with stains before displacement.

Figure 8. Image with stains after displacement.

Positions of target boards before and after displacement are shown in Table 1. The operation
results of the program are shown in Figure 9. The experiment can prove the robustness of the algorithm
and the accuracy is almost unaffected.

1

2

3

4

5

6

7

1 2

6.9754 7.0075

7.0247 0.0075

0.0494 7

0.0494 7

6.9754 0.0075

6.9754 7.0075

0 0

Figure 9. The displacement calculation results for images with stains of the program.
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Figures 10 and 11 show the main process of image processing by the algorithm. The binarization
threshold is 0.8 in this paper.

The original image. The image after color conversion.

The image after top-hat transformation. The image after histogram equalization.

Figure 10. The main process of image processing by the algorithm.

The image after adaptive median filter. The image after binaryzation.

The image after hole filling. The image after erosion.

Figure 11. The main process of image processing by the algorithm.
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4.3. Real-Time Experiment

In this experiment, three kinds of pictures in Figures 3, 5 and 7 are used to verify the real-time
performance of the algorithm, respectively. Figures 3, 5 and 7’s five sets of running time of the program
are shown in Table 3. The results show that the real-time performance of the algorithm can achieve
timely early warning.

Table 3. The running time of the program.

Image Running Time (s)

Figure 3 2.74, 2.71, 2.71, 2.73, 2.73
Figure 5 3.29, 3.16, 3.14, 3.17, 3.17
Figure 7 2.69, 2.70, 2.70, 2.69, 2.69

4.4. Actual Environment Experiment

In this experiment, the algorithm in this paper was achieved by C++ language. We bought the
CCD camera and the turntables and built a real-time displacement monitoring system.

The experimental principle is shown in Figure 12. The large circle is a turntable and its background
can be any. The right side of the turntable is the target board. Assuming that the distance between the
center of the target board and the center of the turntable is r, the turntable is divided into 16 equal
parts according to the angle so each angle is π/8. Assuming that the rotation angle is θ, the starting
position is shown in Figure 12 and the turntable is rotated in a counterclockwise direction. Assuming
that the center of the turntable is the origin of the coordinate, the x-axis is the horizontal direction and
the y-axis is the vertical direction, the coordinate of the center of the target board is (r cos θ, r sin θ).
The initial coordinate of the center of the target board is (r, 0) so the theoretical displacement of the
target board rotated for one circle with the turntable is (r − r cos θ, |r sin θ|)(0 ≤ θ < 2π). In this
experiment, r = 500 mm, the number of monitoring targets is 2, the radius of the target boards
is 70 mm, the displacement monitoring distance is 10 m, the parameters of the CCD camera are
shown in Table 4, and the results of the real-time displacement monitoring experiment are shown
in Table 5. According to the calculation, the average error of the experiment is 3 mm, which verifies
the effectiveness and reliability of the proposed algorithm. The CCD camera equipment is shown in
Figure 13, and the turntable equipment is shown in Figure 14.

Figure 12. The experimental principle.
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Table 4. The parameters of the CCD camera.

Parameter Name Parameter Size

Basler ace classic acA2040-90uc
Sensor CMV4000

Resolution (H×V pixels) 2048×2048
Frame rate (fps) 90

Mono/color c
Bit depth 8/12
Interface USB 3.0

Pixel size (µm2) 5.5×5.5
Sensor size (mm2) 11.26×11.26

Optical size 1"

Table 5. Results of the real-time displacement monitoring experiment.

Theoretical Displacement (mm) Monitoring Displacement (Left) (mm) Monitoring Displacement (Right) (mm)

(0, 0) (1.23, 0.02) (0.08, 0.05)
(38.05, 191.35) (39.78, 191.01) (39.07, 190.89)

(146.45, 353.55) (141.5, 354.05) (142.3, 354.12)
(308.64, 461.95) (303.52, 464.05) (304.51, 463.50)

(500, 500) (496.01, 502.27) (498.24,502.35)
(691.35, 461.95) (685.12, 465.10) (684.66, 460.95)
(853.55, 353.55) (847.48, 357.24) (848.14, 351.46)
(961.95, 191.35) (956.79, 194.02) (957.03, 186.0)

(1000, 0) (994.25, 0.91) (994.28, 1.78)
(961.95, 191.35) (956.26, 187.48) (956.79, 194.12)
(853.55, 353.55) (845.54, 353.89) (847.48, 357.24)
(691.35, 461.95) (684.40, 461.15) (684.61, 460.62)
(308.64, 461.95) (305.62, 463.25) (305.51, 463.23)
(146.45, 353.55) (142.50, 354.02) (142.32, 354.08)
(38.05, 191.35) (39.23, 191.05) (39.01, 191.89)

Figure 13. The CCD camera equipment.
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Figure 14. The turntable equipment.

5. Conclusions

This paper presents a novel displacement monitoring algorithm for real-time displacement
monitoring of multiple targets. The proposed algorithm overcomes the unicity of tracking targets in
single target tracking algorithms and the non-real-time performance in the DIC method. This paper
sets three different experiments to verify the algorithm’s performance and the results show that the
proposed algorithm can realize accuracy of 1/10th of a pixel, robustness, real-time, low-cost, simplicity
and self-adaptability. This paper also sets an actual environment experiment, and the results show
that this method in the paper can achieve the displacement monitoring accuracy of 3 mm error at
a 10 m monitoring distance. However, this paper focuses on the research of the algorithm and the
preliminary construction of the real-time displacement monitoring system. This paper only verifies
that the algorithm is effective for the displacement monitoring. The present research is not perfect,
and the follow-up is still to be done. For example, the most remote monitoring distance is based on the
camera resolution and the size of the tracking target board. What is the change law? What are the real
issues to be overcome to use this system for the actual bridge?
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