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Abstract: Due to the dense deployment of base stations (BSs) in heterogeneous cellular networks
(HCNs), the energy efficiency (EE) of HCN has attracted the attention of academia and industry.
Considering its mathematical tractability, the Poisson point process (PPP) has been employed to
model HCNs and analyze their performance widely. The PPP falls short in modeling the effect
of interference management techniques, which typically introduces some form of spatial mutual
exclusion among BSs. In PPP, all the nodes are independent from each other. As such, PPP may not be
suitable to model networks with interference management techniques, where there exists repulsion
among the nodes. Considering this, we adopt the Matérn hard-core process (MHCP) instead of PPP,
in which no two nodes can be closer than a repulsion radius from one another. In this paper, we study
the coverage performance and EE of a two-tier HCN modelled by Matérn hard-core process (MHCP);
we abbreviate this kind of two-tier HCN as MHCP-MHCP. We first derive the approximate expression
of coverage probability of MHCP-MHCP by extending the approximate signal to interference ratio
analysis based on the PPP (ASAPPP) method to multi-tier HCN. The concrete SIR gain of the MHCP
model relative to the PPP model is derived through simulation and data fitting. On the basis of
coverage analysis, we derive and formulate the EE of MHCP-MHCP network. Simulation results
verify the correctness of our theoretical analysis and show the performance difference between the
MHCP-MHCP and PPP modelled network.

Keywords: Matérn hard-core process; coverage probability; energy efficiency

1. Introduction

In recent years, in order to meet the increasing data rate requirements of users, the traditional
cellular networks have evolved into heterogeneous cellular networks (HCNs) [1,2]. HCNs include
macro base stations (MBSs) for wide coverage and several kinds of micro base stations for small
coverage, such as Pico base stations (PBSs), femto base stations, etc [3].

The Poisson point process (PPP)-based model can not only reflect the randomness of the BS
distribution, but can also give easy analysis results [4]. Thus, the existing performance analysis for
HCN is mostly based on the PPP model [5,6]. However, in reality, the deployment of base stations (BSs)
is not completely random, and there is usually a certain spatial correlation between them. Non-PPP
models, such as the Poisson Cluster Processes (PCP), Ginibre Point Process, Hard-core Processes, etc.,
can better reflect the spatial characteristics of base station deployment than PPP [7–10].

It is very difficult to analyze the interference statistical characteristics of HCN based on non-PPP
models in theory, which hinders the performance analysis and optimization of HCN using non-Poisson
models [11]. Fortunately, an approximate signal to interference ratio (SIR) analysis method based on
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PPP is developed in [12–14]. The method approximately evaluates the coverage of HCN based on the
non-PPP model by scaling the SIR threshold in the corresponding PPP model. The scaling coefficient
of the SIR threshold is called SIR gain; the method is called as approximate SIR analysis based on PPP
(ASAPPP). Using the ASAPPP method, the authors of [15] give the approximate SIR distribution of the
network based on Ginibre Point process and Square Lattice, respectively. The authors of [16] analyze
the approximate SIR distribution of the network based on Poisson Hole Process (PHP). However, [15,16]
only cover the one-tier cellular network model. [17] derives the coverage probability of the two-tier
HCN modelled by PPP and PCP, but the derivation process is too complicated and the results can only
be obtained by numerical computation. [18] and [19] analyze the distribution of the conditional success
probability for HCN based on PPP and non-PPP, respectively. According to the principle of nearest
BS access, [20] investigate the approximate SIR distribution of K-tier HCNs with the use of ASAPPP
method. However, due to channel fading, the nearest BS may not be able to provide the maximum
receiving power for the target user.

With the dense deployment of BSs in HCN, more and more attention has been paid to the energy
efficiency (EE) of HCN [21–24]. In [25–29], the EE of HCN under the PPP model is studied, and the
strategies to optimize the EE are proposed from the aspects of transmit power, BS sleeping, BS density
and so on. Also under the PPP model, [30–32] analyzes the relationship between EE and spectral
efficiency (SE), [33–37] analyze or optimize the Area SE and EE of HCN. However, the EEs of HCNs
based on non-PPP models have not been analytically investigated.

Due to the dense deployment of BSs in HCN, it is usually necessary to keep a certain distance
between BSs in order to reduce mutual interference. The Matérn hard core process (MHCP) is a special
PPP, whose condition is that the distance between all points is greater than a certain distance. It has
been verified that, in practice, the deployment of BSs is repulsive, and MHCP can better model the
distribution of these BSs [9,10]. Based on this consideration, we use two independent MHCPs to model
the distributions of MBSs and PBS and we abbreviate the two-tier HCN as MHCP-MHCP.

In 5G and future mobile networks, the traffic growth of mobile communications comes not
only from public telecommunication users but also from dedicated telecommunication users of
vertical industries [38]. To meet the explosive traffic growth and provide a better quality of
experience (QoE), dense deployed HCNs will provide a higher system throughput and spectrum
utilization than conventional networks. To achieve the above key performance metrics, scholars have
proposed various spectrum sharing technologies [39–41]. In dense deployed HCN, the number of
public telecommunication users and dedicated telecommunication users is very large, so the traffic
characteristics of public telecommunication systems and dedicated telecommunication systems are
inconsistent in time and space. In such a way, the application of spectrum sharing technology in HCN
is very meaningful [40].

In this paper, we focus on the EE of the two-tier MHCP-MHCP network. We first derive the
asymptotic coverage probability of the MHCP-MHCP network. Based on the works in [12–16],
we extend the ASAPPP method to analyze and obtain the coverage performance of MHCP-MHCP.
Unlike the work in [20], we adopt the maximum receiving power criterion instead of the nearest BS
criterion. In this paper, we approximate each MHCP tier to PPP tier, so we call this approximation
method as “each tier ASAPPP (ET-ASAPP)”. On the basis of the coverage analysis, we derive and
formulate the EE for the MHCP-MHCP network.

The main contributions of this paper are as follows. First, we derive the asymptotic SIR gain in the
MHCP model relative to that in the PPP model. Based on this, we derive the coverage probability of
the MHCP-MHCP network with the use of the “ET-ASAPPP” method. Then, we derive and formulate
the EE of the MHCP-MHCP network. Finally, we compare the coverage probability and EE of the
MHCP-MHCP network with that of the PPP-PPP network.

The remainder of this paper is organized as follows. Section 2 introduces the system model.
Section 3 gives the ASAPPP Approach for Single-Tier MHCP Network. The coverage probability and
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EE of the MHCP-MHCP network are derived in Sections 4 and 5, respectively. Simulation results are
discussed in Section 6 and the conclusion is given in Section 7.

2. System Model

MBSs and PBSs in the two-tier HCN are modelled as independent MHCP ΦMHCP
k (k = 1,2) in R2.

The density, transmit power, and target SIR for each tier of BS are denoted as λk−MHCP, PTk and βk,
respectively. We abbreviate the network based on this model as MHCP-MHCP. Moreover, mobile
user equipment (MUEs) are modelled as PPP in R2 with density λu. According to Slivnyak’s theorem
in random geometry, the MUE located at the represented origin is selected as the typical MUE [38].
The path loss and fast fading are taken into account when modelling the channel gain, the path loss
exponent is denoted as α and the fast fading experienced by the tagged UE and all the BSs are assumed
to be Rayleigh fading. Assuming that the serving BS is located at point xk ∈ ΦMHCP

k (k = 1, 2), then the
received power at the tagged MUE can be written as PTkhxk‖xk‖

−α, where α > 2 and hxk ∼ exp(1) stand
for the path-loss exponent and the Rayleigh fading, respectively.

In HCNs, if orthogonal frequency division multiple access (OFDMA) is adopted, there is only
inter cell interference but no intra cell interference in the network. The intercell interference will
dominate noise in HCNs of even modest density [4]. As a result, the noise power has no effect on the
SINR values. However, if the latest non-orthogonal multiple access techniques are adopted, HCN may
not be an interference limited network [42,43]. Considering the mathematical tractability, we assume
universal frequency reuse. As such, except the serving BS of the typical MUE, all the other BSs in the
HCN are potential interferers. Therefore, in this paper, we analyze SIR instead of SINR. SIR of the
tagged MUE is

SIR(xk) =
PTkhxk‖xk‖

−α

Ixk

=
PTkhxk‖xk‖

−α

2∑
k=1

∑
x′∈ΦPHCP

k \{xk}

PTkhx′‖x′‖−α
, xk ∈ ΦPHCP

k (k = 1, 2) (1)

where hx′ represents the Rayleigh fading between tagged UE and other base stations except the serving
BS. Then, the coverage of tagged MUE can be given by

Pc({λk},
{
βk

}
, {PTk}) = P

 ∪
k=1,2;xk∈ΦPHCP

k

SIR(xk) > βk

, xk ∈ ΦPHCP
k (k = 1, 2) (2)

The single-tier MHCP can be obtained as follows. First, we create an initial PPP ΦPPP with
intensity λPPP and give each point x (x ∈ ΦPPP) an independent mark m(x). m(x) is a random variable
uniformly distributed among [0, 1]. We find all the points that have neighbours within the exclusion
radius and have smaller m (x), then flag these points. Last, we remove all flagged points. Formally,
Φ ,

{
x ∈ ΦPPP : m(x) < m(y) f or all y ∈ ΦPPP

∩ b(x, r)\{x}
}
. Where b(x,r) denotes a ball centred at x

with radius r, Φ represents the set of all removed points. Following the steps above, the remaining
points form a MHCP ΦMHCP. The BSs distribution modelled by PPP with density 10−4 m−2 is shown
in Figure 1a. The relevant BSs distribution modelled by MHCP with repulsion radius 50 m is shown in
Figure 1b.
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Figure 1. Base stations distribution modelled by the Poisson point process (PPP) and Matérn hard-core
process (MHCP).

The density of ΦMHCP can be calculated as [9]

λMHCP =
1− exp(−λPPPπr2)

πr2 (3)

Where λMHCP represents the density of ΦMHCP, r represents the repulsion radius, and λPPP is the
density of ΦPPP before removing points.

3. The ASAPPP Approach for Single-Tier MHCP Network

In interference-limited networks, the coverage probability is equivalent to the complementary
cumulative distribution function (ccdf) of SIR. Recently, it has been observed that the coverage of
cellular networks based on non-PPP models can be approximated by adjusting the SIR threshold of
the corresponding network based on a PPP model with the same density. The adjusting coefficient is
called SIR gain and the method is called ASAPPP [13–20]. Using this method, the SIR gain for the
MHCP modelled network can be expressed as

GMHCP =
MISRPPP

MISRMHCP
(4)

where MISR is mean interference-to-signal ratio (MISR), MISRPPP represents the MISR for PPP-modelled
network, and MISRMHCP represents the MISR for MHCP-modelled network. For a network with BSs
located at Φ and the serving BS located at x0, the MISR at the typical user is defined as [13–16]

MISR , E
{

I
Eh(S)

}
= E


∑

x∈Φ\{x0}
Px‖x‖−α

Px0‖x0‖
−α

 (5)

where I is the sum of all interference powers, and Eh(S) is the signal power average over the fading.
In the case of equal transmit powers, the MISR of PPP is derived as [15–17]

MISRPPP = 2/(α− 2) (6)

In addition, MISRMHCP can be obtained by simulation and data fitting. Then, we can get the value
of GMHCP.
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4. Coverage Probability of MHCP-MHCP Network

We assume the open access strategy, i.e., the tagged MUE, choose to access the BS which can
deliver the maximum received SIR. That is to say, the tagged MUE at the origin is in coverage if:
max
x∈Φk

SIR(x) > βk (k = 1, 2), where βk is the SIR threshold for the k-th tier. It has been proved that,

in the PPP-modelled network, if βk > 1 (0 dB), the tagged MUE can only access one base station at
most [4]. On the basis of these existing conclusions, the coverage probability for tagged MUE in the
MHCP-MHCP network in open access can be derived as follows:

Pc({λk−MHCP},
{
βk

}
, {PTk}) = P

 ∪
k=1,2;xk∈ΦPHCP

k

SIR(xk) > βk

 = E

1

 ∪
k=1,2;xk∈ΦMHCP

k

SIR(xk) > βk




(a)
≈ E

1

 ∪
k=1,2;xk∈ΦPPP

k

SIR(xk) > βk/Gk


 (b)
=

2∑
k=1

E

 ∑
xk∈ΦPPP

k

[1(SIR(xk) > βk/Gk)]


(c)
=

2∑
k=1

λk−MHCP
∫
R2 P

(
PTkhxk ‖xk‖

−α

Ixk
> βk/Gk

)
dxk

(d)
=

2∑
k=1

λk−MHCP
∫
R2 LIxk

(
βk/Gk

PTk‖xk‖
−α

)
dxk

(7)

In step (a), ASAPPP method is used, by scaling the SIR threshold of networks based on PPP
models, we can get the approximate SIR distribution based on the MHCP model, where Gk is the
SIR scaling factor of the k-th tier based on the MHCP model. However, due to the mutual exclusion
between BSs in the MHCP modelled network, such processing will lead to increased interference
and reduce the coverage of the results. Thus, the interference from ΦMHCP

k is upper bounded by the
interference from a PPP with the same density. So, the coverage provided by step (a) will be slightly
lower than the actual coverage. Step (b) follows from the assumption that βk/Gk > 1∀k [4]. Step (c)
follows from the Campbell theorem [44]. The derivation of Step (d) is based on the Rayleigh fading
channel. Here LIxk

(·) is the Laplace transform of the cumulative interference from all the tiers when
the tagged MUE access to a BS in k-th tier. Due to the stability of the point process, the interference is
independent of the location xk. Therefore, we denote LIxk

(·) by LI(·). In the PPP-PPP network, LI(s)
is derived as [4]

LI(s) = exp

−s2/αC(α)
2∑

i=1

λiP
2/α
Ti

 (8)

where C(α) = 2π2 csc(2π/α)α−1, λi represents the density of the BSs in k-th tier in PPP-PPP network.
Since we use the ASAPPP method, each tier of the MHCP network is approximated to the PPP network
with the same density by SIR threshold scaling. λk is numerically equal to λk-MHCP. Substituting (8)
into (7), the coverage probability of a tagged MUE in the MHCP-MHCP network can be derived as

Pc({λk−MHCP},
{
βk

}
, {PTk})

=
2∑

k=1
λk−MHCP

∫
R2 exp

(
−

(
βk/Gk

PTk‖xk‖
−α

)2/α
C(α)

2∑
k=1

λkP2/α
Tk

)
dxk

(a)
=

2∑
k=1

λk−MHCP · 2π
∫

r exp
(
−C(α)

(
βk/Gk

PTk

)2/α
r2

2∑
k=1

λkP2/α
Tk

)
rdr

=
2∑

k=1
λk−MHCP · 2π

∫
r r · exp

((
−C(α)

(
βk/Gk

PTk

)2/α 2∑
k=1

λkP2/α
Tk

)
r2

)
dr

(b)
= π

C(α)

∑2
k=1 λk−MHCPP2/α

Tk (βk/Gk)
−2/α∑2

k=1 λk−MHCPP2/α
Tk

, βk/Gk > 1

(9)

Step (a) follows from the transformation from Cartesian coordinate to polar coordinate. Step (b) follows
from

∫
xecx2

= 1
2c ecx2

. In the above derivation, we approximate each MHCP tier to PPP tier, so we call
this approximation method “ET-ASAPPP”.
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5. Energy Efficiency of the MHCP-MHCP Network

In this paper, the energy efficiency is defined as the ratio of total downlink channel capacity to
total power consumption in the MHCP-MHCP network, that is

ηEE =
Ctotal
Ptotal

(10)

where Ctotal is the total downlink channel capacity, Ptotal is the total power consumed by all the BSs in
the MHCP-MHCP network. Firstly, we characterize the total downlink channel capacity, then analyze
the total power consumption of all BSs and model the network EE.

5.1. Downlink Channel Capacity

In this paper, the total downlink channel capacity is defined as

Ctotal =
∑2

k=1
AλuPC−kCk (11)

where A is the area of the MHCP-MHCP network, PC−k is the probability of the tagged MUE accesses
to the BS in k-th tier, Ck is the downlink channel capacity between a k-th tier BS and the tagged MUE.
For simplicity without loss of generality, we assume that each BS allocates bandwidth equally to all
MUEs accessing it. Thus, Ck can be expressed as

Ck = E
[

B
Uk

log2(1 + βk)

]
(a)
=

B
E[Uk]

log2(1 + βk) (12)

where step (a) follows from the assumption that βk and Uk are independent, B is the bandwidth that
each BS can allocate to users, and Uk represents the number of UEs accessing the tagged BS in the k-th
tier. According to [25,45], E[Uk] is given as

E[Uk] = 1 + 1.28ρkλu/λk−MHCP (13)

where ρk is the proportion of the MUE coverage contributed by the BS in k-th tier. In open access mode,
ρk in PPP-modelled two-tier HCN can be expressed as [4]

ρk−PPP =
λkP2/α

Tk β
−2/α
k∑2

k=1 λkP2/α
Tk β

−2/α
k

(14)

Since the ASAPPP method is adopted in this paper, each tier of the MHCP network is approximated to
the PPP network with the same density by SIR threshold scaling. Thus, ρk in MHCP-MHCP networks
can be written as

ρk =
λk−MHCPP2/α

Tk (βk/Gk)
−2/α∑2

k=1 λk−MHCPP2/α
Tk (βk/Gk)

−2/α
(15)

Substituting (15) into (13) and then (13) to (12), Rk can be obtained. Moreover, the probability of the
tagged MUEs accessing the BSs in the k-th tier can be written as

PC−k = PC({λk−MHCP},
{
βk

}
, {PTk}) · ρk

= π
C(α)

∑2
k=1 λk−MHCPP2/α

Tk (βk/Gk)
−2/α∑2

k=1 λk−MHCPP2/α
Tk

·
λk−MHCPP2/α

Tk (βk/Gk)
−2/α∑2

k=1 λk−MHCPP2/α
Tk (βk/Gk)

−2/α = π
C(α)

λk−MHCPP2/α
Tk (βk/Gk)

−2/α∑2
k=1 λk−MHCPP2/α

Tk

(16)
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According to (16) and (12), we can obtain the total downlink minimum achievable data rate of the
MHCP-MHCP network as

TPtotal =
2∑

k=1

AλuPC−kCk =
ABπλu

C(α)

2∑
k=1

λk−MHCPP2/α
Tk (βk/Gk)

−2/α log2(1 + βk)(
2∑

k=1
λk−MHCPP2/α

Tk

)(
1 + 1.28

λuP2/α
Tk (βk/Gk)

−2/α∑2
k=1 λk−MHCPP2/α

Tk (βk/Gk)
−2/α

) (17)

5.2. Total Power Consumption

In this paper, the total power consumption of all the BSs in the MHCP-MHCP network is defined as

Ptotal =
∑2

k=1
Aλk−MHCPPk (18)

where Pk represents the power consumption of a BS in the k-th tier. In general, the BS consists of static
power consumption and transmit power consumption [46,47]. In this paper, we use the linear power
consumption model given in [42], which is

Pk = NTRk · PCk + θkPTk (19)

where NTRk is number of the transmit antenna elements of a BS in k-th tier, PCk is the static power
expenditure, and θk is the slope of power consumption related to load. Combining BS density and area
of the MHCP-MHCP network, the total power consumption of all BSs in the MHCP-MHCP network
can be written as

Ptotal = Aλ1−MHCP(NTR1 · PC1 + θ1PT1) + Aλ2−MHCP(NTR2 · PC2 + θ2PT2) (20)

Substituting (17) and (20) into (10), the energy efficiency of the MHCP-MHCP network can be
expressed as

ηEE =
Rtotal
Psum

=

Bπλu
C(α)

2∑
k=1

λk−MHCPP2/α
Tk (βk/Gk)

−2/α log2(1+βk)(
2∑

k=1
λk−MHCPP2/α

Tk

)1+1.28
λuP2/α

Tk (βk/Gk)
−2/α∑2

k=1
λk−MHCPP2/α

Tk (βk/Gk)
−2/α


λ1−MHCP(NTR1 · PC1 + θ1PT1) + λ2−MHCP(NTR2 · PC2 + θ2PT2)

(21)

6. Data Fitting and Simulation Analysis

In this section, we first find the expression of the MISR for the MHCP network. It should be
noted that the theoretical derivation of the MISR expression for the non-PPP network is too complex
to implement. Thus, we use simulation and data fitting to get the expression of MISRMHCP. Then,
a series of numerical simulations are carried out to verify the accuracy of our derived coverage and
energy efficiency expressions. In order to keep the derivation tractable, we do not consider the MUEs’
QoS requirements and we assume that each BS equally allocates the frequency resource among its
associated MUEs. Furthermore, the downlink channel capacity is calculated based on the preset target
SIRs, and the target SIRs for MBSs and PBSs are set to be the same in the simulation. For the power
consumption model, we refer to the statistics proposed in [48]. The simulation parameters are shown
in Table 1.
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Table 1. Simulation parameters.

Parameters Name Values

Bandwidth 107 Hz
MHCP-MHCP network area 1000 × 1000 m2

density of MUs, λu 0.15 m−2

density of MBSs, λ1-MHCP 2 * 10−5 m−2

density of PBSs, λ2-MHCP 2 * 10−4 m−2

repulsion radius of MBSs 100 m
repulsion radius of PBSs 50 m

path-loss exponent, α [3, 5]
circuit power consumption of MBS, PC1 130 W

transmit power of MBS, PT1 20 W
number of transmit antenna elements of MBS, NTR1 6

slope of power consumption depends on load of MBS, θ1 4.7
circuit power consumption of PBS, PC2 6.8 W

transmit power of PBS, PT2 0.13 W
number of transmit antenna elements of PBS, NTR2 2

slope of power consumption depends on load of PBS, θ2 4.0

Figure 2 shows the relationship between MISRMHCP and path loss. We use the fitting toolbox
cftool in MATLAB to obtain the mathematical model of MISR about path loss as

MISRMHCP(α) = a · αb + c (22)
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The correlation coefficients fitted for each tier of the MHCP network are given in Table 2.

Table 2. Fitted correlation coefficients (with 95% confidence bounds).

Coefficients Name a b c

1-th tier network (MBSs) 5.917 (5.55, 6.285) −1.551 (−1.641, −1.461) 0.001449 (−0.04122, 0.04412)

2-th tier network (PBSs) 18.09 (16.82, 19.36) −2.602 (−2.678, −2.527) 0.1721 (0.1558, 0.1883)

Then we can use MISRMHCP to calculate GMHCP according to Equation (4), and then substitute
GMHCP into Equation (9) to obtain the approximate coverage of the two-tier MHCP-MHCP network.
It should be noted that the fitting results in Table 2 are related to the repulsion radius.
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Figure 3 compares the coverage probabilities of the MHCP-MHCP network with that of the
PPP-PPP network, and both simulation and theoretical approximations of coverage are given. The target
SIRs for MBSs and PBSs are set to be the same. It can be seen from Figure 3 that the theoretical results
are in good agreement with the simulation results, which further verifies the effectiveness of the
proposed ET-ASAPPP method.
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It can also be seen that the approximate coverage of MHCP-MHCP is the lower bound of
simulation coverage. What is more, the coverage performance of the MHCP-MHCP network is
significantly better than that of the PPP-PPP network. This is because there are repulsion radiuses
between BSs in MHCP-modelled networks, BSs are not completely randomly distributed, while the
BSs in PPP-modelled networks are completely randomly distributed. Therefore, the interference
between BSs in PPP-modelled networks is larger than that in MHCP-modelled networks, and the
coverage performance of MHCP-MHCP networks is significantly higher than that of PPP-PPP networks.
It should be noted that, since the ASAPP method is used to derive the coverage of the MHCP-MHCP
network, we assume that the equivalent SIR threshold is greater than 1, i.e., βk/Gk > 1 (0 dB). So,
when the SIR threshold is relatively small, there is a certain gap between the theoretical approximation
and simulation value. When the SIR threshold rises to make the equivalent SIR threshold greater than
0 dB, the theoretical approximation values are consistent with the simulation values.

Figure 4 compares the EE of the MHCP-MHCP network with that of the PPP-PPP network.
We observe the relationship between the EE and the transmit power of the PBS. The transmit power of
the MBS is fixed to 20 W, and the transmit power of the PBS is variable. Both the target SIR for the
MBSs and the target SIR for PBSs are set to 10 dB. It can be seen that in the whole PBS transmit power
region, there are only subtle differences between simulation values and theoretical approximated
values, which proves the correctness of our theoretical derivation.

From Figure 4, we can see that the EE of the MHCP-MHCP network is about 1.2 × 106 to 1.3 × 106

bits/Joule higher than that of the PPP-PPP network under the same parameters, which means that the
EE of the MHCP-MHCP network is much higher than that of the PPP-PPP network. This is due to the
relative regularity of base station deployment in the MHCP-MHCP network, which greatly reduces the
mutual interference between BSs. Compared with the PPP-PPP network, the MHCP-MHCP network
can improve downlink minimum achievable data rates with the same power consumption. It can also
be seen that EE shows a trend of rising first and then declining. This is because, with the increase of
the transmit power of the PBS, more users choose to access PBS, so EE is on the rise. However, with the
further increase of the transmit power of PBS, the interference between the BSs is also increased,
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which leads to the decline of the MUE’s downlink rate, so the EE is gradually reduced. Therefore,
EE is a convex function of the transmit power of the PBS and there exists an optimal transmit power
of PBS which can maximize the EE. Furthermore, it has been pointed out that EE can be improved
by optimizing BS density [29]. We also compare EE of the MHCP-MHCP network with that of the
PPP-PPP network which uses the optimization algorithms proposed in [29]. It can be seen from
Figure 4 that even if the fixed BS density is adopted, the EE of the MHCP-MHCP network is still higher
than that of the PPP-PPP network adopting the optimal BS density.
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Figure 5 shows the relationship between the EE and the transmit power of the MBS. The transmit
power of the PBS is fixed to 0.13 W, and the transmit power of the MBS is variable. It can be seen that
the EE of the MHCP-MHCP network is about 1.2 × 106 to 1.3 × 106 bits/Joule higher than that of the
PPP-PPP network under the same parameters. Similar to Figure 4, the EE shows a trend of rising first
and then declining, so it is a convex function of the transmit power of the MBS. Therefore, there exists
an optimal transmit power of MBS which can maximize the EE.
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7. Conclusions

In this paper, we studied the coverage performance and EE of the two-tier MHCP-MHCP
network. MISR gain for the MHCP-modelled network is given through simulation and data fitting.
The approximate coverage expression of the MHCP-MHCP network was derived with the use of
the ET-ASAPPP method. Furthermore, we derived and formulated the expression of the EE of the
MHCP-MHCP network. Simulation results verified the correctness of the theoretical analysis and
prove the effectiveness of the proposed ET-ASAPPP method. We found that the coverage and EE of the
MHCP-MHCP network is much better than that of the PPP-PPP network, which means that MHCP is
more suitable for modeling the actual BS deployment with mutual exclusion. Furthermore, when the
BS densities and MBS transmit power are fixed, there exists an optimal PBS transmit power which can
maximize the EE. Similarly, when the BS densities and PBS transmit power are fixed, there exists an
optimal MBS transmit power which can maximize the EE. Therefore, we can improve the EE through
the joint optimization of the MBS transmit power and PBS transmit power.
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