Ea future internet ﬁw\p\py

Article
A Framework for the Detection of Search and Rescue
Patterns Using Shapelet Classification

Konstantinos Kapadais, Iraklis Varlamis *'/, Christos Sardianos ‘ and Konstantinos Tserpes

Department of Informatics & Telematics, Harokopio University of Athens, 17778 Athens, Greece;
itp17110@hua.gr (K.K.); sardianos@hua.gr (C.S.); tserpes@hua.gr (K.T.)
* Correspondence: varlamis@hua.gr; Tel.: +30-21-0954-9405

check for
Received: 20 June 2019; Accepted: 2 September 2019; Published: 4 September 2019 updates

Abstract: The problem of unmanned supervision of maritime areas has attracted the interest of
researchers for the last few years, mainly thanks to the advances in vessel monitoring that the
Automatic Identification System (AIS) has brought. Several frameworks and algorithms have
been proposed for the management of vessel trajectory data, which focus on data compression,
data clustering, classification and visualization, offering a wide variety of solutions from vessel
monitoring to automatic detection of complex events. This work builds on our previous work in the
topic of automatic detection of Search and Rescue (SAR) missions, by developing and evaluating
a methodology for classifying the trajectories of vessels that possibly participate in such missions.
The proposed solution takes advantage of a synthetic trajectory generator and a classifier that
combines a genetic algorithm (GENDIS) for the extraction of informative shapelets from training data
and a transformation to the shapelets’ feature space. Using the generator and several SAR patterns
that are formally described in naval operations bibliography, it generates a synthetic dataset that is
used to train the classifier. Evaluation on both synthetic and real data has very promising results and
helped us to identify vessel SAR maneuvers without putting any effort into manual annotation.

Keywords: shapelets; SAR maneuvers; trajectory generator; classification; pattern mining

1. Introduction

The compulsory use of Automatic Identification System (AIS) for many vessel types, which has
been enforced by naval regulations, has opened new opportunities for maritime surveillance
(according to the Regulation 19 of SOLAS Chapter V (http://solasv.mcga.gov.uk/regulations/
regulation19.htm), since 2002 all vessels over 300 Gross Tonnage and all passenger vessels
must carry an AIS transmitter). As a result, vessels become rich sources of AIS information
that everyone can collect using an RF receiver. The collection, processing and visualisation
of AIS data from multiple vessels has been the main business for many companies, such as
MarineTraffic (https://www.marinetraffic.com/), VesselTracker (https://www.vesseltracker.com/),
MariWeb (https://imisglobal.com/mariweb/) and others that have develop and maintain their
own world-wide networks of shore-based stations and regional data aggregators. Such platforms
provide real-time information on ship’s position and information on arrivals and departures from
ports, using a network of shore stations that collect and pre-process AIS signals (for missing values,
errors and redundancies) and forward the result to a centralized processing server for further cleaning,
post-processing and visualization.

Motivated by the abundance of AIS data and the rich information that they contain, a lot of data
mining applications have been developed by researchers on top of historic AIS data, ranging from the
automatic detection of events [1,2] to the prediction of future vessel position [3] and estimation of the
time of arrival at the port [4]. In a parallel line of research, several works on trajectory data analytics
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have contributed platforms for the visualisation of vessel trajectories [5,6], efficient handling of large
volumes of such spatio-temporal data streams [7,8] and methodologies for the abstraction of AIS data
collected for a period and a region [9].

Maritime surveillance has been a topic that has attracted a lot of research and commercial interest
over the last few years. The primary reason for this is that surveillance systems have significantly
contributed to increasing the efficiency and safety of operations at sea. However, the analysis of
AIS data collected for a region is a hard task to be performed manually, especially when it has to
be performed for thousands of vessels that periodically transmit their position with high rates. It is
therefore of utmost importance to support the maritime authorities with tools and methods that
automatically process AIS data and provide automatic alerts that require human intervention [10,11].
A critical requirement for such tools is that they exhibit the ability to foresee unfolding cautious and
potentially hazardous situations, so as to propose measures of danger avoidance.

Search and Rescue (SAR) missions constitute a typical example that requires an automatic awareness
system, in order to be detected directly from AIS data. Search and Rescue (SAR) missions are taking
place in the context of the refugee crisis in the Central and Eastern Mediterranean since 2015 [12].
The unnecessary loss of so many human lives indicates that SAR operations can benefit from situational
awareness information either with the intention to identify them on time and to assist in the coordination
of rescue ships but also in order to clarify the role of the involved vessels. At the macroscopic level, this
knowledge can be even used to assess the impact of related policies. The problem of detecting SAR
missions becomes particularly challenging since the trajectory of a vessel in a mission is decomposed
into multiple smaller operations, such as patrolling, rushing to the event, directly collecting people at
sea, collecting people by other means such as floating devices or smaller boats, safely returning the
collected people to the port and so forth. Recognizing a vessel performing any of those operations is
critical into timely understanding incidents, their details and how the complete SAR operation evolves.

In our previous work [13], we proposed an unsupervised method for detecting vessels potentially
engaged in SAR missions, which was mainly based on the fact that when the vessel is performing
a search or a rescue maneuver it is expected to change its course several times within a spatial and
temporal distance. In that work, a trajectory simplification algorithm allowed to limit the trajectory
points only to those representing major changes in the vessel’s course over ground and a density based
clustering algorithm allowed to locate the segments of the trajectory that contain many turn points at
a close distance (the two parameters of the DBScan density based clustering algorithm, MinPts and
eps actually define how many points at least must appear in a small radius around any point in order
for it to be considered as core cluster point).

In this paper, we revisit the problem of SAR mission identification with an emphasis on the
detection of the specific type of maneuvers performed by a vessel. For this reason, we train a classifier
that is able to process certain features of the vessel trajectory and distinguish between the different
maneuver types. Since it is hard to find and manually annotate lots of SAR trajectory data, we develop
a synthetic trajectory generator, which is configured to generate various maneuver patterns and also
introduces noise to them in order to simulate real world examples. Using synthetic trajectories only,
we train and evaluate our classifier and evaluate it on synthetic and real data. The classifier builds on
a shapelet transformation of the original AIS data, which comprise vessels’ latitude and longitude for
consecutive timestamps and on the extraction of useful features from the resulting time-series data,
with the use of a genetic algorithm.

The current work focuses on the classification of SAR maneuvers that may happen during
a vessel’s trip and thus cannot be directly compared to methods that classify the whole voyage as
a SAR mission or not (e.g., References [14,15]) or methods that search for more composite naval events
that examine more than one vessels in tandem (e.g., References [1,2]). However, it proposes a new
classification approach for documented maneuvers such as the SAR ones, in the absence of annotated
data. The contributions of this work can be summarized as follows:
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¢ A method for the classification of composite vessel maneuvers to different types of SAR patterns.
The method is supervised but is trained using synthetic data and is based on shapelet features
extracted using a genetic algorithm.

* A synthetic trajectory generator.

* A sampling technique for trajectory data that selects only a few interesting points from a long
vessel trajectory, that are still capable of representing the maneuvers contained in it.

The following section, highlights some key research works in the field of maritime surveillance
and briefly describes the key algorithms that we extend in our work. In Section 3 we give an overview
of the proposed framework and in its subsections we provide the details of our work. In Section 4 we
illustrate some first results on synthetic and real data and in Section 5, we discuss the next steps of
this work.

2. Related Work

The identification and management of SAR operations’ patterns is a well-known research topic
that has attracted a lot of interest [13-15]. The task of automating the surveillance of vessel trajectories
in a region to detect when SAR patterns occur can be valuable for identifying when vessels perform
a SAR mission or they may behave suspiciously.

The general patterns followed by vessels involved in a search-and-rescue mission are generally
pre-defined as “Norms”, in terms of Maritime Safety /Safety Regulations, although in many cases these
patterns need to be modified based on the needs and the area of each SAR mission. Based on the idea
of adjusting the SAR pattern to fit the area to be searched, Reference [16] examined a heuristic method
to implement a tool for automatic search pattern generation.

As part of this work, the problem of vessel pattern identification can be treated as a task of
classifying time-series shapelets. The main drawbacks of this task is the computational cost for
measuring the accuracy of all possible shapelet candidates as well as the fact that this is a time consuming
process. In this context, the authors of Reference [17] proposed an algorithm for shapelet discovery
by transforming the raw real-valued and high-dimensional data into a discrete and low-dimensional
representation which allows hashing of the data and the use of collision history for searching.

In a similar context, the authors of Reference [18] introduced the idea of a shapelet transformation
in order to disconnect the task of identifying shapelets from the classification algorithm. To do so, they
propose the extraction of the k best shapelets from a dataset in one pass and use the identified shapelets
to transform the data using the distance calculation from a series to each shapelet. Another approach
to overcome the time complexity of shapelets classification, as described in Reference [19], which
introduces FSS algorithm (Fast Shapelet Selection), is to start by sampling the time series of a training
dataset, identify the Local Farthest Deviation Points (LFDPs) and select the subsequences between
two non-adjacent points. In Sections 2.1-2.3, which follow, we elaborate more on the details of SAR
maneuvers and shapelets used in our experiments and other works that are related to these methods.

2.1. SAR Maneuvers

This work presumes a list of SAR patterns as described in the “U.S. Coast Guard addendum to the
United States National Search and Rescue supplement NSS” [20] which is extended with the patterns
detected in Reference [13]. The list comprises the following SAR patterns:

®  Creeping line (and parallel track): A creeping line pattern is constructed with the sequence
of two turn left and two turn right (or two turn right and two left) with fixed size of 3 loops.
The creeping line and the parallel track have very similar shapes with the only different that in
the former case, the search legs are at right angles to the major axis of the search area, whereas in
the latter search legs are parallel to the major axis of the search area.

®  Sector: A Sector Search aims to cover a limited area, with the first leg usually orientated in the
probable direction of the target drift. Once the length of the search legs exceed 3x the sweep
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width, ‘gaps’ start to appear in the pattern. The pattern is constructed with a random choice of
loop value between 2 to 4 and with the constant sequence of a go-straight, turn left, turn left
(or go-straight, turn right, turn right) movements with a random turning value between 110 to
130 degrees. This is the most difficult SAR pattern to be constructed and the geometry, as well
as the full completion of pattern is loosely achieved, without change the extensively the noise
parameters and thus not succeed of making a solid randomly real sector pattern trajectory.

¢  Box or Expanding square: An expanding square pattern is a complicated movement to carry out
due to the constant changes in distance and times for the search legs. Unlike the Sector Search
it is not limited in the area it can cover. It is constructed with the use of turn left (or turn right)
movements with incremental value of loops from 1 to 6 at most, with step 1 at every iteration.
This kind of pattern has certain number of turns and a fixed turning value in order to succeed the
geometry required, just like the real SAR patterns has.

e  Spiral movement: Visually, it resembles the expanding square pattern but with a decreasing
radius at each step and without performing almost orthogonal turns. The spiral movement
pattern is constructed with the use of a constant turn left (or turn right) movement with a random
value of turning between 45 to 80 degrees.

*  Steps: A steps maneuver usually follows a presumed track but with orthogonal changes in
direction and its main purpose is to patrol/scan a large are in the sea. The step up pattern
is constructed with the use of a turn left movement with a turn right movement that follows.
This pattern is better described as “step up left”. In order to create a “step up right” pattern the
sequence of turns is change to a turn right and then a turn left movement.

A visualization of the aforementioned patterns is presented in Figure 1.

Creeping line/Parallel track . Box/Expanding square

Sector Steps Spiral

Figure 1. The different types of search and rescue maneuvers.

In addition to the above patterns, we assume a random movement, which simulates the random
trajectory of a vessel, with small or no changes at all in course and speed. It’s a straight line trajectory,
with small distortions because of bearing noise that simulates the trajectory of a vessel heading to its
destination. It is important to clarify here that this random movement corresponds to the trajectory
of a vessel in the open sea, on the move to its destination and not on the trajectory of the vessel near
a port, where many bearing and speed changes may occur.
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2.2. Shapelets

According to the pioneering work of Ye and Keogh [21] shapelets are time series subsequences
that are identified in any time-series or 1-D series generated from image outlines. The shapelet
identification process can be disconnected from the classification algorithm by performing a shapelet
transformation. The result of this separation is that the k best shapelets extracted in a single pass
can be used as features in the time-series classification tasks as representatives of class membership.
The transformation into the new feature space can improve classification accuracy whilst still retaining
the explanatory power provided by shapelets [18].

The concept of shapelets has recently been introduced in the domain of trajectory classification,
by the Movelets method [22], which discovers relevant sub-trajectories for trajectory classification,
without a pre-defined criteria for trajectory partition. In that work, authors generalise the basic concept
of Shapelet Analysis, which is defined for only one variable over time, to the multi-dimensional
(actually 2-D position over time) Movelet Analysis. The Movelet method is based on the computation
of distances between trajectory points, which is then generalised to the distance between points and
trajectories, or sub-trajectories and trajectories.

In our work, we build on the two step process of the original Shapelet Analysis for 1-D
series. We apply different shapelet transformations to the various features of a vessel trajectory
(e.g., course over ground, bearing, speed, etc.) and concatenate the resulting feature vectors in
an ensemble vector that contains all the respective shapelet features. Then we train a classifier to
distinguish between SAR maneuvers and random movements.

2.3. GENetic DIscovery of Shapelets

As described in the previous paragraphs, in the case of time series classification, shapelets can
be considered as subseries that are discriminative for a certain class. Similarly, in vessel trajectories
classification, shapelets are important sub-trajectories within a trajectory and in our case are the parts
of trajectory that can be used for discriminating between the various SAR maneuvers. The projection
of a dataset comprising normal and SAR trajectories to a new feature space, where each feature
corresponds to the distance from a certain shapelet, allows any classifier to be used for this task.

GENDIS (GENDIS is available as an open source Python project at https://github.com/
IBCNServices/GENDIS) is an implementation of a genetic algorithm for extracting the most
discriminating shapelets from a dataset comprising time-series from two or more classes. According
to its author “The algorithm is insensitive to its parameters (such as population size, crossover and mutation
probability, ...) and can quickly extract a small set of shapelets that is able to achieve predictive performances
similar (or better) to that of other shapelet techniques.”

More specifically, GENDIS takes as input the training data, which comprises one set of time-series
for each class and applies a genetic algorithm that extracts the representative shapelets per class.
The genetic extractor starts with creating an initial population comprising randomly selected shapelets
(i.e., sub-series) from the input time-series sets. The shapelets are then evaluated on their ability
to separate instances from different classes using the cross-entropy loss fitness function. The best
shapelets survive to the next generation, where cross-over and mutation is applied to fill the remaining
places. Random shapelets are added and removed at each iteration and Gaussian noise is added to
the randomly inserted shapelets in order to increase population variety. At the end of this training
process (i.e., if the best fitness score remains the same for several iterations or if the maximum number
of iterations has been met) the extracted model comprises the representative shapelets (for all classes)
for the specific classification task.

By applying the extracted model (shapelet feature set) on unknown time-series, GENDIS produces
a distance matrix of size N x M, where N is the number of classes in the classification task and M is
the number of the extracted shapelets. The matrix comprises the distances (using Euclidian distance)
of every time series from every shapelet. Although the way this distance is calculated is not the
subject of this research, it gives a strong evidence that modern and more sophisticated algorithms
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for this calculation can produce better results. The produced matrices are the representations of the
time-series in the shapelet feature space and can be fitted into a plethora classifications machine
learning algorithms. As discussed at Section 4 even with a simple classifier such as Logistic Regression,
high accuracy scores can be achieved in a cross validation experiment on the training trajectory dataset.
However, the use of more sophisticated classifiers will probably lead to even better classification
models and will produce better results.

An advantage of GENDIS over other algorithms that are used for time-series classification
(a long list of algorithms and implementations can be found at the Timeseries Classification website:
http:/ /timeseriesclassification.com/code.php) is that it seems more appropriate for handling noisy
time-series and time-series in which the same patterns is repeated at a different scale in time, as is the
case with SAR maneuvers, which can vary in scale depending on the vessel type. The former can be
handled using the Learned Shapelets variation described in Reference [23] whereas scale variations can
be handled using Dynamic Time Warping [24] approaches. The genetic approach of GENDIS seems to
cover them both, by generating/learning shapelets and shapelet combinations as features, which are
then fed to a classification algorithm. However, an in depth experimental study that compares GENDIS
against shapelets algorithm or other time-series classifiers is needed in order to validate this.

3. Proposed Methodology

The detection of SAR maneuvers in AIS data can easily be considered as a time-series classification
task. In this case, the position of the vessel at consecutive timestamps and/or other navigation features,
such as speed, bearing or bearing change are the input to a time-series classifier, that distinguishes
between a normal trajectory and a SAR trajectory. The main pre-requisite of any classification task is
the existence of a training dataset, that will be used to create the appropriate model that will later be
used for the classification of an unknown instance to a class.

The main problem concerning the classification of vessel trajectories, either to SAR maneuver
types, or to normal or outlying patters, is the lack of labeled trajectory instances that can be used for
the training and validation of a classifier. In order to tackle this problem, in this work, we developed
a trajectory generator, which is employed in the first step of the training process, as depicted in Figure 2.
The details of the trajectory generator are explained in Section 3.1.

Hyperparameter
tuning

Models Creation

Trajectory Generator Phase Data ion Phase GENDIS Model Creation Logistic Regression Model Creation Model Saving

N
Tune Genetic
Extractor Mixed
_< Type of model
Bedring
Fit Data to Genetic
Extractor
(Model training)

Tune Data
Extraction

Set the SAR pattern that
must be classified

Tune trajectory
generator

Trajectory
Generator
Synthetic Data

Data Extraction

Beari t
earing rate =l Model

Fit the Logistic Regression
Classifier to the
Transform Data distance matrix of tralning

t:

Model Creation

Yes Angle data
Angle difference i
Bearing Model
Difference computation ¢ ° )
Vode,
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Regression Classifier to
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Normalization and distance matrix of
|| Standardization of ‘Compute the distance training data
data matrix for training L (Bearing Rate Model)

data
(Bearing Model)

it the Logistic Regression
Classifier to the

concatenation of the two
distance matrices

Compute the distance
matrix for training data
(Bearing rate Model)

(Mixed Model)

Figure 2. The workflow of the model creation process.

The second step of the training process comprises some data pre-processing tasks, that are
necessary for formatting the data to the format required by GENDIS. The AIS data comprises latitude
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and longitude information as well as course over ground and bearing at different timestamps, which are
not always at equal distances. Additionally, it contains a lot of redundant information in the form
of consecutive positions in which the vessel have the same speed, bearing and so forth. So, it is
necessary to pre-process trajectories in order to keep only the useful information, correct any missing
or wrong values, or even calculate more features (such as bearing change). Another problem that has
to be handled at this step, is the complexity of the GENDIS shapelet transformation, which makes
it impossible to train using very long time series without enough hardware resources. A vessel’s
trajectory can have several thousand samples and a meaningful and fully recognizable pattern can
be observed to trajectories with hundreds of samples. So several techniques are used and a certain
original scale down technique is introduced, which even if it’s not optimal, produced undoubtedly
good results. The details of this preprocessing process are explained in Section 3.3.

The third step, comprises the shapelet extraction using the Genetic extractor and is strongly
connected to the last step, that trains a Logistic Regression classifier using the trajectories transformed
into the shapelet feature space. The output of this process comprises two models: (i) the time-series
transformer, which has been fitted to the training data and can take any time-series and map it to the
shapelet feature space, (ii) the Logistic Regression classifier that can take any time-series represented
in the shapelet feature space and assign it a class label. The details of this step are given in Section 3.2.

More than one time-series transformers (shapelet models) can be trained, using different features
of the labeled trajectories (e.g., speed, bearing, bearing change, etc.) so that they can map a trajectory
to vectors in the respective shapelet feature spaces. The concatenated vectors can then be used as
input to the trained classification model in order to improve the classifier performance, through the
introduction of more shapelet features. The whole process is depicted in Figure 3. The shaded boxes
represent the models trained in this process (both the shapelet transformation models and the classifier).
Dashed arrows represent the use of the trained models for the transformation of time-series to vectors
in the shapelet space and for the classification of unknown shapelet vectors respectively (pointed by
thick arrows that connect the model to the transformation or classification action).

_ pre-processing X = iransform
Synthetic Speed _. Speed shapelsts ( Speed shapelet )
| trajectory | \\ | time-series | L (model) ) \vector ]
AN GENDIS
\\ \training (fit)

Bearing __| Bearing shapelets
time-series T (model)-

pre-processing /

Real ) o ,‘ Speed } __________ GENDIS _{ Speed shapelet
trajectory \\ \t|me-senes J transform \veclor
. —
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N N
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time-series

L

P

P
Common
shapelet vector
— J
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(fit)

Concatenate
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__GENDIS [ —_—
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trajectory
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[~ Predicted )
shapelet vector trajectory .<
N J

GENDIS | Bearing

transform | shapelet vector
(AR

Figure 3. Training the classifier with multiple time-series data from the same trajectory.

In the case of synthetic time-series data, the genetic algorithm of GENDIS is applied to learn
the important shapelets, which are then used to extract the shapelet feature representation of the
time-series. The same extracted shapelets (model) are used to transform the real time-series to feature
vectors. Any classifier can be trained using transformed annotated data (either manually annotated
real data or synthetic data) and applied on the vector representations of real trajectories.

All the code that implements the aforementioned workflow, as well as our synthetic datasets and
all other data used in the experiment are publicly available on GitHub (https://github.com/gustrip/
hua-thesis/). The "tools” folder contains the core code for our experiments, comprising: (i) code for
generating synthetic trajectories (trajectory_generator.py), (ii) code for reading csv files that contain
multiple vessel points and convert them to time-series (data_extraction), (iii) a library of utilities for
down-sampling a real dataset, for converting, standardizing and fitting the data (utils.py), (iv) code
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for setting up and running the experiments on synthetic data (experiments.py) and so forth. The
‘notebooks’ folder contains a series of Jupyter notebooks that demonstrate the usage of the developed
code and visualize some plots, which can be found at the 'notebooks/figures” subfolder.

3.1. Generation of Synthetic Datasets

The limitations in annotated vessel trajectory data makes the application of supervised machine
learning techniques really difficult [25]. However, the generation of synthetic trajectories can be
a solution for the cases that the movement patterns are well defined, as is the case of SAR maneuvers.
In this work, we developed a trajectory generator that is able to produce realistic AIS datasets that
contain SAR maneuvers, with a certain amount of noise and random movements. For the moment,
the trajectory generator produces values only for the features that are essential for the trajectory
classification process. More specifically, it generates trajectories that contain the following 6 features:

Timestamp: It is used for the temporal ordering of the trajectory points.
Latitude: The vessel’s latitude at that timestamp.
Longitude: The vessel’s longitude at that timestamp.

Ll e

Bearing: The vessel’s bearing (i.e., the angle in degrees between North and the vessel’s course)
at the same moment. It's important to state that bearing, is more preferred than heading,
which demonstrates the direction that the vessel is pointing and changes more frequently.

o1

Speed: The actual vessel speed over ground in knots.
6.  Distance: The distance covered since the previous position reported by the AIS.

The last two features have not been used in our experiments but will be integrated into future
versions of the classifier.

The trajectory generator has several parameters that allow to generate trajectories with less
or more noise at bearing, speed and sampling frequency, in order to better simulate real datasets.
The starting timestamp has been arbitrary set to be 1 February 2015 12:00:00 and the starting longitude
and latitude values are set to be in the center of the Aegean sea, in Greece. However, any values can be
used in place.

The trajectory generator can produce datasets with information about SAR patterns and random
trajectories. The SAR patterns that are supported comprise: (i) Step up, (i) Spiral movement,
(iii) Expanding square, (iv) Creeping line, (v) Sector. These patterns are composed from the following
simple vessel movements:

®  Left turn: A left (anti-clockwise) turn is defined as a change (subtraction) in the vessel’s bearing
by a desired number of degrees. The default value is 90 degrees.

¢ Right turn: A right (clockwise) turn is defined as the addition of a number of degrees to the
current vessel’s bearing. The default value is 90 degrees.

e  U-turn: A u-turn is the subtraction of 180 degrees from the current vessel’s bearing.

¢  Straight-forward: This refers to a vessel that continues its course with no change in its bearing.

The resulting bearing values at any moment are expressed in degrees and cannot be lesser than
0 degrees and greater than 360 degrees. These four movements are combined in a specific order
in order to synthesize the respective maneuver and are repeated depending on a given loop value.
The loop value represents the times that this kind of movement must be performed. If it’s mentioned
otherwise, the loop value is a random integer between 2 to 6 (in the experiments, values 2, 3, 4 have
a higher probability). Every simple movement can have speed, frequency and bearing noise. Limits for
these kind of noise are +2-60 m/s, £3-15 min, +0-3 degrees respectively. Figure 4 presents an example
of the resulting synthetic pattern for an expanding square maneuver (left) and the respective plot for
the bearing (right).
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Figure 4. A synthetic expanding square maneuver in the 2-D space (left) and the respective shapelet of
the vessel bearing (right).

3.2. Fine Tuning of GENDIS and Classification Models

This stage refers to the training phase of GENDIS and the Logistic Regression classifier using the
synthetic data. The trajectory generator is used to create enough and meaningful data for the tuning of
the models’ parameters and the cross-validation evaluation of the resulting models. Since we have
five different maneuver types, we choose to train five different binary classifiers instead of a single
multi-class classifier. Each classifier is trained using a different synthetic dataset comprising trajectories
that contain a certain maneuver and trajectories containing a random movement. As already depicted
in Figure 2 the synthetic trajectories are converted to time-series, are normalised and standardised
and used to fit the GENDIS shapelet model. We train our models using: (i) only the vessel bearing
time-series, (ii) only the vessel bearing change time-series and, (iii) both time-series (mixed). This last
case, supports the multi-timeseries model depicted in Figure 3.

The GENDIS algorithm has several parameters that allow to set the number of individuals in
the population, the number of generations to use, the existence of noise in the generation of shapelets
and so forth. The optimal values for all these parameters are subject of a hyperparameter tuning
process. In order to improve the discriminating power of our classification model, we experiment with
several parameters of the trajectory generator, the GENDIS algorithm, as well as with parameters of
the Logistic Regression classifier. This hyper-parameter tuning process, allowed us to better simulate
the real-trajectories that comprise SAR maneuvers and consequently to adapt the extracted shapelet
features to the characteristics of each pattern.

GENDIS fits the training data to its genetic extractor and finds the best shapelets that constitute
its model. The training data are then transformed to distance matrices (one for each class) containing
the distances of each training sample from the selected best shapelets. A similar distance matrix is
generated for any trajectory in the test dataset during the shapelet transformation step. The resulting
matrices can be fitted to a plethora of classifications algorithms. As shown in the experimental
evaluation section, even with a simple classifier, such as Logistic Regression, high accuracy scores can
be achieved in a cross validation setup that comprises synthetic trajectories only.

3.3. Pre-Processing of Real Trajectories

The synthetic trajectory data and so the time-series that are fed to the GENDIS algorithm, comprise
only a few values that correspond to the major points in a vessel trajectory that define the pattern.
In a real trajectory, the length of the time-series is much bigger and thus it is important to properly
pre-process it in order to capture the sub-segment that contains the pattern and extract the shapelets
that can assist in its correct classification. For example, the creeping line pattern in the real dataset has
been recorded in a trajectory of more than 500 points, whereas the GENDIS algorithm has been trained
with time-series of length 25. In order to scale down real data trajectories (or large segments of these
trajectories) to the time series of appropriate length without loosing useful information, we propose
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a scale down algorithm that focuses on the interesting points of the trajectory. More specifically,
the algorithm considers as interesting points:

¢ those that have a bearing change above a threshold (a predefined parameter). In our experiments,
the bearing change threshold is set to 30 degrees, expressing that a point is kept when the
difference in bearing from its previous step is larger than this threshold.

¢ those that have a distance from their previous point greater than the half of the mean distance
value so far. For this purpose the distance covered between every two consecutive points is
calculated and the mean distance is updated every time a new point is examined. With this
technique all the points that are spatially close are ignored (especially, when the vessel is stopped).

* the points that can be of interest for any of the two previous reasons but have not been recorded
right after (or a few recordings after) point already marked as interesting.

When a trajectory comprises points in a straight route, without any stops or turns, then there is
a chance that it will be scaled down to a time-series with only a few interesting points. In this case,
the algorithm tries to fit more points between the selected points, at equal distance, so that the final
time series is more representative of real data and adjusts perfectly to the target length. Even in that
case, when the final time series does not have the proper length it is rejected from the classification
process. In other words, the scale down algorithm, not only acts as a mean to reduce the size of real
data trajectories, without losing meaningful information but also as a filter that can separate interesting
trajectories from trajectories that have too few or too many values to be predicted as SAR patterns.

Other alternatives tried in this work, was the Ramer-Douglas-Peucker trajectory simplification
algorithm [26] and a simple segmentation to smaller trajectories, as well as combinations of the
scale-down and simplification techniques. More specifically, we evaluated four different techniques,
as depicted in Figure 5. In the “Scale-down” technique, the whole time-series of a vessel’s trajectory is
first extracted and then our proposed method is applied to select only the most representative values
(values of high change). In the “RDP & Scale-down” strategy, the RDP algorithm is first applied to
remove redundant trajectory points and then the scale down technique is applied to further reduce
the time series length. In the “Trajectory segmentation & Scale-down” technique, the large trajectory
is split to subtrajectories of smaller size and then the Scale-down technique is applied. In the “RDP
only” technique, the RDP algorithm is applied, with a parameter that results in a time-series of the
apropriate length, so the scale-down is not necessary.

Experiments on the real trajectory dataset
Real trajectory il

Case 1: Scale down } [ Case 2: RDP & Scale down

[Cass 3: Segmentation & Scale down

‘ Case 4: RDP only ’

Trajectory Cl

NO Assign the

SAR pattern to
the segment

Keep segments that
are classified as
patterns with a
probability score

>=0.75

[s the segment
positively classified
to more than
one patterns?.

Assign the
most probable
SAR pattern to
the segment

Classify every segment using
all the pattern classifiers
(binary classifiers)

Plotting

Save Plots Plot
i =

Evaluate every plot for
proper classification

Figure 5. The different strategies of pre-processing real trajectories, the classification and evaluation
of results.
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The complexity of the shapelet discovery algorithms, is upper bounded by the number of
candidates in a dataset (the authors of Reference [23] say that it is O(NM?), where N is the number of
training series and M is their length). This complexity is evident at training time, when many synthetic
trajectories and hundreds of interesting points are employed. However, at test time the shapelet feature
extraction can be easily parallelized for the trajectories of different vessels and is quite fast when only
the important points of the trajectory are processed (after scale-down is applied). As far as it concerns
the training of the classifiers on synthetic data and their application on real trajectories at test time, the
classifier complexity (in our case the logistic regression) is not a bottleneck.

4. Experimental Evaluation & Results

The unsupervised approaches that already exist in the literature, show that using some simplistic
rules [2] that seek for repetitive changes in speed and orientation or using a spatial clustering of
important trajectory points [13] is enough for distinguishing between a normal movement and
a potential SAR maneuver. However, when we need to detect the type of maneuver and decide
whether it is a Search one (e.g., a step-up pattern) or a Rescue one (e.g., a spiral) it is necessary to
classify the maneuver to the nearest document pattern. Since there is no previous work that focuses on
this level of detail and there is no manually annotated dataset that contains information about the type
of maneuvers performed be the vessels, we evaluated our approach mainly on synthetic data and we
demonstrate its use of a real dataset that comprises trajectories of vessels that have been engaged in
SAR missions.

In our experiments, we worked on three different scenarios:

e  Optimization scenarios on synthetic data of a single pattern. At this type of scenarios, the best
accuracy score it’s evaluated for the cross validation of test data with different settings of trajectory
generator and GENDIS module. There are 8 different scenarios.

e  Binary classification scenarios on synthetic data: For these scenarios the best values from the above
optimization have been used and different binary classification tasks (one per SAR pattern) have
been evaluated. The classes are balanced in all synthetic data scenarios both in training and test
datasets. The scenarios just give accuracy scores between the different kind of movement. We run
two binary classification scenarios for eacg pattern. In the first type of scenario the classifier
had to decide between the pattern and the random movement, whereas in the second, had to
decide between the pattern and the step up pattern. The aim of the second type of experiments
was to evaluate the ability of the classifier, which uses the shapelet feature representation,
to distinguish between two SAR patterns. The step up pattern was selected as the basis for
this type of experiments, because it is the most general and simple pattern of all.

e  Multi-class classification scenarios on real data: For these experiments we evaluated all the
pre-processing techniques described in Section 3.3 and manually examined the identified
SAR patterns.

The invariable setting of the optimization scenarios are:

¢  Kind of movement: with a Steps vs Random movement.

e Time-series length: this setting was always 25 due to hardware restriction and due to the
complexity of the GENDIS algorithm.

e  Sampling frequency: using 1 sample per 3 min

e  Trajectory feature: Bearing was the only feature used.

*  Population size: It was selected to be 20 because of hardware limitations.

. add_noise_prob, add_shapelet_prob, crossover_prob, remove_shapelet_prob (of GENDIS
module) with values 20, 0.3, 0.3, 0.66, 0.3 respectively, which are the proposed default settings of
the GENDIS algorithm.

The varying parameters in the optimization scenarios are:
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®  The number of time series to produce (using the trajectory generator), with values of 100 and 150
e  The number of GENDIS iterations, with values of 5, 10, 15 and 20.

4.1. Optimization on Synthetic Data

For evaluating and optimising the parameters of our setup, we used the “Steps” vs. “Random”
pattern case in all the optimisation scenarios. As explained above, there are eight different scenarios,
for different numbers of input time series (training samples) and a different number of iterations for
the genetic extractor. Every scenario has been repeated 100 times and the 800 accuracy results (using
10-fold cross validation in each experiment) have been recorded. In order to summarize our results,
we measured the average accuracy for all the experiments, which was 86.76% and used the following
labels to annotate the performance of each experiment:

*  Bad: results with prediction’s accuracy score smaller than 80%.

*  Acceptable: results with prediction’s accuracy score from range 80% to 90%.
e Excellent: results with prediction’s accuracy score from range 90% to 99%.

®  Perfect: results with perfect prediction’s accuracy score with value 100%.

Table 1 summarizes the results of our optimization experiments. In most of the experiments
(83.5%) the accuracy is above the level of 80%.

Table 1. A summary of the classifier accuracy performance on the “Steps vs. Random” scenario.

Accuracy Level Number of Experiments Percentage of Experiments

Bad 132 16.5

Acceptable 276 34.5
Excellent 379 47.375
Perfect 13 1.625

Table 2 shows the best performance achieved for each scenario, the times it has been achieved
(in the 100 repetitions) and the average execution time. It can be observed the scenarios that have
been trained with more time-series (scenarios 5-8) have better results than the others and among them,
the scenario that performed the maximum number of iterations in the GENDIS algorithm (20 iterations)
is signifficantly better that all the scenarios 1-4. The execution time, which comprises both the shapelet
fit and extraction and the training and testing of the classifier, is less than 5 min per scenario, which is
considered acceptable for this task. The parameters training samples and number of GENDIS iterations
have been set to 150 and 20 after this experiment.

Table 2. Results for the “Steps vs. Random” scenarios. The average accuracy scores are reported in the
95% confidence interval.

Scenario Time-Series Created GENDIS Iterations Time Passed Average Accuracy

1 100 5 1.20 83.33 £2.01
2 100 10 2 85.53 +1.88
3 100 15 2.40 84.73 = 2.06
4 100 20 3.10 86.77 £ 1.61
5 150 5 1.5 85.10 £ 1.76
6 150 10 2.25 88.77 £1.3
7 150 15 35 89.48 £1.35
8 150 20 6.5 90.40 +1.23

4.2. Binary Classification on Synthetic Data

After setting up the parameters for the GENDIS algorithm and the synthetic data generator in the
first experiment (i.e., Steps vs. Random classification), we perform additional experiments for better
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understanding the nature of every pattern. We evaluated (100 repetitions each) two types of scenarios:
(i) binary classification scenarios (scenarios 9-12), where we have to distinguish between a certain
SAR maneuver and a Random movement and (ii) binary classification scenarios (scenarios 13-16),
where the aim is to distinguish between the Step maneuver and other types of SAR maneuvers. The
results in all experiments are very promising as depicted in Table 3, with more than 87% of the runs to
have an accuracy score above 90%.

Table 3. A summary of the classifier accuracy performance for binary classification scenarios on
synthetic data.

Scenarios 9-12

Accuracy Level Number of Experiments Percentage of Experiments

Bad 15 3.75%
Acceptable 34 8.5%
Excellent 220 55%
Perfect 131 32.75%

Scenarios 13-16

Accuracy Level Number of Experiments Percentage of Experiments

Bad 1 0.25%
Acceptable 6 1.5%

Excellent 197 49.25%
Perfect 196 49%

The detailed results per experiment, as depicted in Table 4, show an impressive classification
performance (above 97%) in distinguishing the spiral and expanding square patterns from the random
movement and an average accuracy above 90% in distinguishing the Creeping line and Sector patterns
from random movement. The results are even better in the binary classification tasks that refer to the
Steps pattern and distinguish it from other SAR patterns, which are more complicated and thus easier
to detect. This performance can be explained by the major differences that the various SAR patterns
have in the bearing and bearing change which result to totally different shapelets being extracted.
However, the results in the real trajectories dataset show that there is still place for improvement as
explained in the following paragraph.

Table 4. Results for the binary classification scenarios for complex patterns. The average accuracy
scores are reported in the 95% confidence interval.

Scenario Class A Class B Average Accuracy
9 Spiral Random 99.38 £0.25
10 Expanding square  Random 97.38 £ 0.62
11 Creeping line Random 91.62 £ 2.08
12 Sector Random 9225+1.2
13 Spiral Steps 99.63 £ 0.2
14 Expanding square Steps 99.38 £ 0.26
15 Creeping line Steps 96.5 £ 0.69
16 Sector Steps 95.5 4 0.67

4.3. Classification on Real Data

After the models have been trained on the synthetic data they can be used for identifying SAR
patterns in real vessel trajectories. In our experiments we employed the trajectory data from 5 vessels,
for the period between 1 July 2015 and 29 July 2015 and focused on the special case of the vessel
SIEM PILOT (this vessel is a cargo vessel that has been hired by European NGOs to patrol in the
Mediterranean sea and rescue immigrants who are in danger), which in our previous study, was found
to exhibit a clear creeping line pattern at its trajectory.
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To test our classification approach in real data, we selected 5 cargo vessels (BOURBON ARGOS-BA,
DIGNITY I-DGN, PHOENIX-PHO, SIEM PILOT-SP, VOS HESTIA-VH) that have been reported in the
news as vessels that took part in SAR missions. The trajectories of these vessels had a size between
10,000 to 22,000 samples, which is too large even for the Scale-down algorithm to fit to the required
time series length (of 25). So we decided to segment the trajectories to chunks of 500 points, which are
considered enough for a SAR maneuver to occur (since for every vessel we had one point every 3 min,
500 points correspond to an approximate duration of the trajectory of one day).

After the creation of each chunk, we evaluated the different pre-processing strategies to scale
them down to time series of length 25 and classified them using all the binary classifiers defined in
the previous section. As depicted in Figure 5 when more than one pattern have been matched with
probability higher than 0.75 the pattern with the higher probability has been selected.

Figure 6 depicts an example from a trajectory of the SIEM PILOT vessel, which has been
pre-processed with the four different methods. The plot on the left (Figure 6a) shows how the
Scale-down and RDP methods compare to the original trajectory (of 500 points length), whereas the
plot on the right (Figure 6b) shows the result from the application of the trajectory segmentation
method to small chunks (of 180 points length). The RDP & scale down method had the same result as
the Scale down method and thus has been omitted from the plot. In the first case the classification
method detected the creeping line pattern, whereas in the second case a steps pattern has been detected
in the smaller chunk. It is worth mentioning that all other chunks have not been classified as any
SAR pattern.

Vessel:SIEM PILOT
Vessel:SIEM PILOT CHUNK NO: 2
CHUNK NO: 0 2015-07-07 09:33:45----2015-07-07 15:59:15
2015-07-06 17:01:06----2015-07-07 15:59:15

36.95 &
!
36.90 T 36.68
36.85 i § 36.66
36.80 i"i
Q — -
g e 1664 .
£ 36.75 = = !
K ~ . i
36.70 / i 36.62 ~ .
36.65 — P 26.60 S
36.60 T —— h
183 184 185 186 1835 1840 1845 1850 1855 1860 18.65
Longitude Longitude
(a) Scale-down and RDP (b) Trajectory segmentation & Scale-down

Figure 6. An example of a real trajectory and its pre-processing, using the Scaled down, RDP and
trajectory segmentation techniques.

The classifier we applied in all experiments was the logistic regression classifier trained on the
synthetic data. In Table 5, we report on the number of trajectory chunks in which a SAR maneuver has
been detected, using only the bearing (left part) and using both bearing and bearing change features
(right part) as input. We report the numbers for the 5 cargo vessels that we processed. The table
contains pairs of rows referring to the right (clockwise) and left (anti-clockwise) movement of the
vessel during the maneuver. In the plots that we provide, this difference is not obvious but is clearly
depicted in the bearing and bearing change patterns.
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Table 5. Number of trajectory segments where SAR patterns have been detected, using bearing only
and bearing together with bearing change (mixed).

Bearing Mixed (Bearing & Bearing Change)
SAR Pattern BA DGN PHO SP VH BA DGN PHO SP VH

Steps (L) 2 5 4 8 0 1 8 4 8 2

Steps (R) 4 8 8 2 10 3 6 2 6 2
Spiral (L) 0 0 0 0 0 0 1 4 0 1
Spiral (R) 0 0 0 0 0 0 0 0 0 0
Expanding square (L) 1 2 3 4 1 0 2 0 2 2
Expanding square (R) 1 3 1 4 1 0 0 0 0 0
Creeping line (L) 2 1 0 3 1 0 0 0 0 0
Creeping line (R) 1 0 0 0 1 0 0 0 0 0
Sector (L) 3 0 1 4 1 0 0 0 3 0
Sector (R) 5 3 3 4 2 0 0 0 0 0

The first message conveyed from the results is that the Spiral movement pattern was never
detected in the trajectories of these vessels. Furthermore, the Sector and Steps patterns are the most
frequently detected in the dataset. A careful examination of the detected cases reveals several false
positives, which is mainly due to the simplicity of the Steps maneuver. The result of this simplicity
is that even when a vessel is performing a random maneuver that contains a step at some point,
the classifier matches the respective shapelets and recognizes a Steps pattern. On the contrary, in the
case of the Sector and Spiral movements, the SAR pattern is too complex and probably in the real
case hard to perform perfectly. A last but most important fact is that when bearing change is used
together with bearing, the ensemble of shapelets allows to capture more features of the pattern and
reduce the number of detected cases, thus reducing recall but increasing the precision of the pattern
detection task.

Finally, it is interesting to show some patterns that have been detected by our classifiers and
comprise SAR maneuvers. The plots of Figure 7 show chunks (of 500 points length) of the vessels’
trajectories and in some cases, they zoom on the area, where the patterns have been detected.
Among the most characteristic patterns that have been detected are the creeping line of the vessel
SIEM PILOT, which is displayed in Figure 7a and the double sector pattern of the vessel VOS HESTIA,
which is displayed in Figure 7b.

Vessel:VOS HESTIA
Vessel:SIEM PILOT Class:normai sector_pattern_left
Class:normal creeping_line_left

CH 1
CHUNK NO: 4 2015-08-11 14:31:39----2015-08-13 15:56:41
2015-07-07 01:21:35----2015-07-07 21:34:47
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36.75
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36.65
44.1

36.60 Trajectory

— Real Trajectory
—— Scaled Trajectory

—— Scaled Trajectory
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(a) A creeping line pattern (b) A sector pattern

Figure 7. Selected plots from real trajectories that have been classified to SAR patterns.

Two more interesting plots that demonstrate the ability of the scale down algorithm to compress
the trajectory without loosing information and to capture the part of the trajectory that contains the
actual pattern are depicted in Figure 8. The left plot shows a chunk from the trajectory of SIEM PILOT
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that has been classified as creeping line. The zoom on the right plot, actually reveal that at the detect
trajectory segment the vessel was actually performing some SAR maneuvers. Although there is enough
distortion, probably because of the weather and the sea currents in the area, the creeping line pattern
is still visible.

Vessel:SIEM PILOT
Class:normal creeping_line_left
Vessel:SIEM PILOT

CHUNK NO: 35
2015-09-23 13:19:45----2015-09-28 11:13:51

Cli : 35
2015-09-24 02:53:17----2015-09-26 12:03:28
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Figure 8. A creeping line pattern detected in a small section of a long trajectory (left) and a zoom on
the selected section (right).

Figures 7 and 8 demonstrate some correct predictions of the proposed technique. However, the
evaluation also returned a few false positives. The examination of these false positives will allow
us to understand the reasons that evoked classifiers errors and we are currently in the process of
examining more features that can be added to the model to increase its accuracy in real data. A typical
mis-classification error that has been found in this process is depicted in Figure 9 where the creeping
line pattern of SIEM PILOT has falsely detected as Steps with a higher probability. A reason behind
this error, and in general behind the confusion of the Steps pattern with all other patterns, is probably
hidden in the shapelet transformation step. In that step, the time-series is converted to a vector in
the shapelets” space using the distance of the time-series from each shapelet. This transformation
ignores the number or frequency of occurrence of simple shapelets (e.g., step) in the time-series and
keeps only the minimum distance (i.e., from the part of the time-series that mostly resembles to the
shapelet). If GENDIS fails to extract more complex shapelets (e.g., consecutive steps, or U-turns) then
the transformation will fail. In order to avoid this, either more and longer training samples (time-series)
must be used or the transformation method has to be redesigned and this is part of our future work.

Vessel:SIEM PILOT
Class:normal step_up_right
CHUNK NO: 5
2015-07-07 21:38:06----2015-07-08 18:06:46

36.9
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Latitude

36.4

Trajectory
—  Real Trajectory
36.3 — SceledTrajectory

17.8 18.0 18.2 18.4 18.6 18.8 19.0
Longitude

Figure 9. An example of a mis-classification of a creeping line pattern as steps.
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5. Conclusions & Future Work

In this work, we presented a methodology for detecting specific SAR patterns in vessel trajectories,
using shapelet transformation and classification and a trajectory generator for creating our training
data. The methodology introduces several techniques that handle the segmentation and sampling
of trajectories, that optimize the shapelet feature selection process in order to improve classification
performance and take advantage of multiple trajectory features that change during a SAR maneuver
in order to achieve better results. The results on synthetic data are excellent, and the application of the
learned models on real data, is very promising since it reveals and correctly classifies SAR patterns in
a real vessel trajectory dataset.

Since GENDIS is a genetic-based algorithm it does not guarantee to extracts the best shapelets,
especially with few iterations. It is on our plans to compare it with shaplets extracted using the
original shapelets algorithm or one of its optimizations as Fast Shapelets, that assure the correct
result. Also, since the final result relies both on the quality of the extracted shapelets and the classifier
performance, we will experiment with more classification algorithms. It is on our next steps to
extract shapelets from more trajectory parameters and examine how they contribute to the predictive
capabilities of the classification models. We also plan to evaluate the proposed approach in a multi-class
classification task, using additional classifiers and classifier ensembles.

Another extension of this work is towards the direction of pattern extraction from real trajectory
data. The application of a trajectory clustering algorithm on the sub-trajectories that contain maneuvers
will allow to extract unknown or undocumented patterns that take place in the real world but are not
necessarily described in a naval manual. This will allow the shapelet methodology to be extended to
more trajectory classification and trajectory annotation problems.
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