
future internet

Article

RLXSS: Optimizing XSS Detection Model to Defend
Against Adversarial Attacks Based on Reinforcement
Learning

Yong Fang 1, Cheng Huang 1,* , Yijia Xu 1 and Yang Li 2

1 College of Cybersecurity, Sichuan University, Chengdu 610065, Sichuan, China
2 College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, Sichuan, China
* Correspondence: opcodesec@gmail.com

Received: 18 July 2019; Accepted: 12 August 2019; Published: 14 August 2019

Abstract: With the development of artificial intelligence, machine learning algorithms and deep
learning algorithms are widely applied to attack detection models. Adversarial attacks against
artificial intelligence models become inevitable problems when there is a lack of research on the
cross-site scripting (XSS) attack detection model for defense against attacks. It is extremely important
to design a method that can effectively improve the detection model against attack. In this paper,
we present a method based on reinforcement learning (called RLXSS), which aims to optimize
the XSS detection model to defend against adversarial attacks. First, the adversarial samples of
the detection model are mined by the adversarial attack model based on reinforcement learning.
Secondly, the detection model and the adversarial model are alternately trained. After each round, the
newly-excavated adversarial samples are marked as a malicious sample and are used to retrain the
detection model. Experimental results show that the proposed RLXSS model can successfully mine
adversarial samples that escape black-box and white-box detection and retain aggressive features.
What is more, by alternately training the detection model and the confrontation attack model, the
escape rate of the detection model is continuously reduced, which indicates that the model can
improve the ability of the detection model to defend against attacks.

Keywords: reinforcement learning; cross-site scripting; adversarial attacks; double deep Q network

1. Introduction

With the increasing popularity of the Internet and the continuous enrichment of web application
services, various network security problems have emerged gradually. The endless web attacks have
a serious impact on people’s daily work and life. Common web attacks include Structured Query
Language (SQL) injection, file upload, XSS, Cross Site Request Forgery (CSRF), etc. Web attackers
often target sensitive data or direct control of the website. Most web vulnerabilities rely on website
functionality, such as SQL injection, which depends on database services, file upload vulnerabilities,
which depend on upload services, and so on. In this part, the XSS vulnerability relies on a browser,
which can be attacked by XSS as long as you use it. Therefore, the attacks, often being the first step of
other advanced attacks, directly threaten user privacy and server security, resulting in information
disclosure, command execution, and so on [1,2]. There have already been many research teams that
have introduced machine learning and deep learning algorithms into XSS attack detection [3].

With the development of attack detection technology, adversarial attack technologies have
emerged for detection models based on AI algorithms. Attackers attempt to attack the detection
models by generating confusing and aggressive countermeasure samples, misleading models to
classify malicious attack types into benign ones, so as to escape attack detection of the detection
models. Generative Adversarial Networks (GAN) add inconspicuous noise to a panda image, and

Future Internet 2019, 11, 177; doi:10.3390/fi11080177 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
https://orcid.org/0000-0002-5871-946X
http://dx.doi.org/10.3390/fi11080177
http://www.mdpi.com/journal/futureinternet

Future Internet 2019, 11, 177 2 of 13

the image is still visible as a panda by the human eye. However, the GoogleLeNet classification
model judges the modified image as a gibbon with 99.3% confidence [4]. The one-pixel attack changes
the classification result of deep neural networks in an extreme-limit scenario where only one pixel
can be modified [5]. What is more, there are some studies on the adversarial attack of cybersecurity
detection models, which aim at malware detection research. Rosenberg et al. [6] proposed a black-box
adversarial attack based on the Application Programming Interface (API) for calling machine-based
malware classifiers, which was based on generating adversarial sequences of combined API calls and
static features, thus misleading classifiers and not affecting the malware functions.

Reinforcement learning has developed rapidly in recent years, and its powerful ability for
self-evolution is well known. Wu C et al. [7] proposed Gym-plus, which is a model for generating
malware based on reinforcement learning. It retrains the detection model with newly-generated
adversarial malware samples to improve its ability to detect unknown malware threats.

Researchers have made some achievements in applying GAN and reinforcement learning to
malware detection. However, there are few studies on how to use it in XSS detection to improve the
model. It is of great significance to design a method that can effectively improve the defensive ability
of the detection model against adversarial attack.

In this paper, we propose an XSS adversarial attack model based on reinforcement learning. By
marking the countermeasure samples as XSS malicious samples alternating the training detection
model and adversarial attack model, we can continuously enhance the ability of the detection model
to defend against attack. Our major contributions are as follows:

• We propose a model of XSS adversarial attack based on reinforcement learning (called RLXSS),
which converts the XSS escape attack into the choice of escape strategy and the best escape
strategy according to the state of the environment.

• We propose four types of XSS attack escape techniques, including encoding obfuscation, sensitive
word replacement, position morphology transformation, and special character adding. RLXSS
chooses the best escape strategy according to the environment state to mine the adversarial sample
that escapes black-box and white-box detection and retain aggressive features. We have found
common XSS escape strategies for SafeDog and XSSchop, which are widely-used real security
protection software packages.

• We use RLXSS to mine the adversarial samples, by marking the adversarial samples as malicious
samples and retraining the detection model. We alternately train the detection model and
adversarial attack model, so as to improve the ability of the detection model to defend against
adversarial attacks continuously.

The rest of the paper is organized as follows. Related work is presented in Section 2. In Section 3,
we give a detailed description of the XSS adversarial attack model based on reinforcement learning.
In Section 4, we conduct the experiments and evaluation results. Finally, we summarize our work and
discuss further work in Section 5.

2. Related Work

At present, there are many research works on cross-site scripting, which are mainly divided
into cross-site scripting attack detection and cross-site scripting vulnerability discovery. These two
main research directions have been developed in recent years with many new research results. Many
researchers have developed efficient XSS detection models or XSS discoverers. When referring to their
research, we also think about how to optimize them.

In terms of cross-site scripting attack detection, Vishnu B A et al. [8] proposed a method of
detecting XSS attacks using machine learning algorithms, extracting the characteristics of URLs and
JavaScript code and using three machine learning algorithms (naive Bayes, SVM, and J48 decision
trees) to detect XSS. Similarly, Rathore S et al. [9] proposed a method for XSS attack detection on a
social networking services (SNS) website based on machine learning algorithms. The method extracts

Future Internet 2019, 11, 177 3 of 13

three characteristics of the URL, web page, and SNS website and classifies the dataset into XSS and
non-XSS by using 10 different machine learning classification algorithms. What is more, with the
development of deep learning, we published the “DeepXSS: Cross Site Scripting Detection Based on
Deep Learning” in the 2018 International Conference on Computing and Artificial Intelligence [10],
which proposed to extract word vectors with semantic information based on Word2Vec, and Long
Short-Term Memory (LSTM) algorithm based deep learning technology was used to extract the deep
features of cross-site scripting attacks automatically.

In terms of cross-site scripting vulnerability discovery, the research on XSS vulnerability discovery
focuses on how to generate XSS attack vectors. Due to improper data encoding, Mohammadi M [11]
proposed a grammar-based attack generator that automatically generates an XSS test case to evaluate
cross-site scripting vulnerabilities in the target page. Duchene F et al. [12] proposed a black-box fuzzy
tester based on the genetic algorithm to generate malicious input detection XSS automatically, which
was named KameleonFuzz. Guo et al. [13] proposed a method for mining XSS vulnerabilities based on
the optimized XSS attack vector library, which constructs the XSS attack vector grammar, and built
the attack vector pattern library, resource library, and mutation rule library based on the attack vector
grammar to generate the XSS attack vector library.

Due to the complex and varied web application environment, it is difficult to exploit fully the
vulnerability of XSS vulnerabilities based on attack vector generation and automated testing. More
importantly, most of the current research focuses on attack detection or vulnerability discovery, but the
research on the security of the XSS detection model itself is lacking. Therefore, how to optimize the
XSS detection model’s ability to defend against adversarial attacks through reinforcement learning
will be the focus of this paper.

3. Proposed Approach

In this section, we introduce the overview of the method based on reinforcement learning, which
optimizes the XSS detection model to defend against adversarial attacks, how to mine the adversarial
sample of the black-box and white-box XSS detection model through reinforcement learning, and how
to optimize the detection model’s ability to defend against adversarial attacks.

3.1. Overview

RLXSS consists of an adversarial model and a retraining mode. Figure 1 shows the steps followed
by RLXSS to mine the adversarial sample and optimize the detection model’s ability to defend against
adversarial attacks. It proceeds as follows:

(a) The adversarial model is designed to mine the adversarial samples that retain the XSS attack
function and successfully escape the black- and white-box model detection. Firstly, the training
sample data and test sample data are input into the black- and white-box detection environment,
and the state information is transmitted to the agent based on DDQN (dueling deep Q networks)
according to the sample of the detection model. Secondly, the agent chooses the corresponding
escape technology, and the modifier modifies the sample according to the selected action. Then,
it will be transferred to the detection environment for detection again. The environment obtains
the state of the detection results, and the corresponding reward value is fed back.

(b) The retaining model is designed to optimize the detection model’s ability to defend against
adversarial attacks. The adversarial samples are marked as malicious samples. When the detection
model (XSS classifier) is retrained, the adversarial model and detection model are alternately
trained to improve the ability of the detection model to defend against attacks continuously.

Future Internet 2019, 11, 177 4 of 13

Figure 1. Architecture of reinforcement learning cross-site scripting (RLXSS).

3.2. Mining XSS Adversarial Samples through Reinforcement Learning

3.2.1. Preprocessing

The preprocessing inputs the initial malicious samples into the black-box and the white-box
detection model for filtering. For the black-box detection tool, it saves the feedback intercepted
samples as a malicious sample set, which is used ass the adversarial attack black-box tool. For the
white-box detection model, it saves samples with attack detection confidence greater than the threshold
as a set of malicious samples, which is used as the adversarial attack white-box model. Finally, it takes
the malicious sample block in the two datasets as malicious samples of RLXSS adversarial attack for
the black- and white-box XSS detection software.

3.2.2. Black- and White-Box Detection Environment

In order to implement a convenient interface to call different environments, the module
encapsulates the black-box detection tool API and the white-box detection model API. The black-box
detection tool interface uses the web crawler to carry the detection sample to request the detection
web page, and the web page has the black-box detection tool installed to protect against the XSS attack.
According to whether the request is blocked, the result is fed back. While the white-box detection
model interface pre-process the detection samples, it will input them in the white-box detection model
for detection. Besides, it obtains the confidence of the detection samples classified as XSS attacks and
feeds back the results.

The reward function is defined according to the difference between the black- and white-box
detection model. The reward of the black-box model mainly depends on whether or not it escapes
detection. The reward of the white-box model mainly depends on the extent of confidence reduction.
The specific definition of the reward function is shown in formula:

rt =

{
result ∗ score, i f is_blackbox = True

1−result
1−threshold ∗ score, i f is_blackbox = False

(1)

In the formula, the isblackbox parameter indicates whether the environment is a black-box
detection model; the result parameter is the feedback value of the black-box and white-box detection
API; the threshold parameter is the confidence threshold of the white-box detection model; and the
score parameter is the reward for a successful escape.

Future Internet 2019, 11, 177 5 of 13

When the modified malicious samples are classified as benign samples and the reward value eis
not lower than the set threshold, the malicious samples are stored as adversarial samples; otherwise,
they will be transmitted to the agent based on DDQN to continue to try the adversarial attacks.

3.2.3. Agent Based on DDQN

In the agent module, the detection samples are processed by word segmentation and vectorization.
The word vector and environment state are input into the DDQN algorithm model. According to the
output prediction of DDQN, the escape action selector chooses the optimal escape action. Finally, the
modifier converts XSS samples based on the selected actions.

A. DDQN

In reinforcement learning, the decision maker or learner is called the Agent. The sum of all other
interactions with them is called the Environment, and the environment generated such as game scores
is called the Reward. DeepMind’s VMnih first proposed the deep Q-networks (DQN) network in 2013.
DQN uses end-to-end reinforcement learning to learn strategies from high-dimensional input and
achieves comparable results to professional players in the many challenges of the Atari2600 game [14].
DQN is a deep Q network based on the Q-learning algorithm. The main improvements are as follows:

(1) Limit the reward value and the error term to a limited range and define the Q value and the
gradient to be within a valid limited range to improve the stability of the model.

(2) Adopt the experience replay training mechanism. The training of deep neural network requires
that the samples be independent and identically distributed. However, the data acquired by
reinforcement learning have a strong correlation. Direct training will lead to the problem of
training instability. DQN stores the transferred samples of each step into memory D based on
the experience replay mechanism, and each time, a mini-batch transfer sample is randomly
extracted from D. The parameters are updated according to the gradient descent and randomized
by introducing the experience replay sampling, which weakens the correlation between the data,
thereby improving the stability of the model.

(3) Use a deep neural network to approximate the current value function. In addition, use another
network to generate a target value function. Every Cround, the target value function is updated
with the current value function, and the other rounds keep the target value function unchanged.

There is an overestimation problem in the DQN algorithm, which may lead to overestimation
of a non-optimal action, such that the Q value exceeds the Q value of the optimal action. Finally, the
model cannot obtain the optimal action. In order to solve the problem of overestimation of the DQN
algorithm, Van Hasselt et al. [15] proposed the double DQN algorithm (DDQN), which decomposes
the target value function into the action selection value function and action evaluation value function.
It can solve the problem of overestimation by decoupling action selection and action evaluation.

The neural network part of DQN can be seen as a new neural network with an old neural network.
They have the same structure, but their internal parameter updates are delayed. The idea of DDQN is
to use another neural network to eliminate some effects of maximum error. Therefore, DDQN uses the
Q-estimated neural network to estimate the maximum action value of Qmax(s’, a’) in Q reality. Then,
we use this action estimated by Q to select Q(s’) in Q reality. The basic operating principle of DDQN is
shown in Figure 2.

Future Internet 2019, 11, 177 6 of 13

Figure 2. DDQN technical principle framework.

The time and space complexity of RLXSS depends mainly on the DDQN algorithm:

YDoubleDQN
t ≡ Rt+1 + γQ(St+1, argmax

a
Q(St+1, a; θt)θ

−
t) (2)

In the algorithm, the parameter t represents the current step of the algorithm; the parameter a
represents the action selected by the algorithm; St+1 represents the new state of DDQN; θ represents the
weight in the new neural network. We can see from the algorithm that DDQN is the time complexity
of recursion, and its spatial complexity is twice that of the neural network.

B. XSS escape technology and action space

Figure 3 shows a schematic diagram of the structure of common XSS attack vectors, including
tags, attribute expressions, event expressions, content, and other components.

Figure 3. XSS attack vector structure diagram.

According to the characteristics of XSS attack, we present four types of XSS attack escape
technologies proposed in this paper, including encoding obfuscation, sensitive word substitution,
position morphology transformation, and adding special characters. The attack vectors are generated
based on the escape strategy, which is used for adversarial attack the detection tools or models to mine
adversarial samples that escape detection and retain aggressive features. On the basis of four types of
escape techniques, the escape action space of the XSS attack is defined as follows:

• Add an assignment expression before the event
• Replace the alert function with another function
• Use the top function to modify the alert function

Future Internet 2019, 11, 177 7 of 13

• Add a random string at the end of the label
• Add a random string at the end of the sample
• General the event replacement tag for any character
• Add a comment between the function and the parameter
• Add a calculation expression before the function
• Replace the brackets
• Replace the space
• Replace the event
• Add blank characters after the event
• Randomly convert the uppercase and lowercase letters of the label and event character words
• Attribute expression and event expression positional transformation
• Unicode encoding
• HTML entity encoding

Regular XSS statements are often killed by detection software, but these action spaces provide
escape methods for XSS attack. These action spaces will be used by the Agent to mutate the XSS code,
which can produce a valid XSS payload.

3.2.4. Mining XSS Adversarial Samples

The XSS adversarial attack model is constructed based on the DDQN reinforcement learning
algorithm. The malicious samples are input into the black-box or white-box XSS detection tool, and
the corresponding detection results are obtained. When the inspection result and the current sample
are input into the Agent, the adversarial model selects the optimal escape action in the action space
based on the environmental state. After transforming the malicious samples, they are re-input into
the black-box or white-box XSS detection tool for detection. Feedback rewards are given according to
whether the escaping results are successful or exceed the maximum number of attempts. Otherwise, it
continues to find the optimal escape strategy. What is more, the samples of successful escape detection
are saved as XSS adversarial samples.

3.3. Optimizing the Ability of XSS Detection Models to Defend against Adversarial Attacks through Retraining

Based on the DDQN reinforcement learning algorithm, we built the adversarial attack of the
black-box and white-box detection model. We mined the adversarial attack samples with successful
escape detection and retaining attack function, thus verifying the effectiveness of the attack model.
However, the purpose of our research is to optimize the detection model rather than implement
the attack. Therefore, this paper proposes a retraining model, marking the adversarial sample as a
malicious sample and then retraining the detection model. By continuously training the adversarial
model and the detection model, the ability of the detection model to defend against adversarial attack
is improved. In summary, we try to improve the DeepXSS model’s ability to defend against adversarial
attacks through the RLXSS model.

4. Experiments and Evaluations

4.1. Dataset

The XSSed project was created in early February 2007. It provides information on all things related
to cross-site scripting vulnerabilities and is the largest online archive of XSS vulnerable websites. In the
experiment, we used 33,426 samples from the XSSed database (http://www.xssed.com/) as XSS
malicious samples and as the initial dataset for adversarial attacks. The data we used are real and
valid attack samples collected by www.xssed.com over the past 10 years. Therefore, we believe that
we can generate samples more suitable for the real environment by training on this dataset.

http://www.xssed.com/

Future Internet 2019, 11, 177 8 of 13

4.2. Experimental Environment

RLXSS was programmed based on Python3, Keras-rl, and OpanAIGym. Keras-rl [16] is an
open-source toolkit for deep reinforcement learning based on Keras. OpanAIGym [17] is an open-source
toolkit for developing and comparing reinforcement learning algorithms, which is usually used to
provide an environment for reinforcement learning. We chose two common website security software
packages, SafeDog [18] (Apache Version V4.0) and XSSChop [19] (version: b6d98f6; update date:
35 January 2019) as the black-box model for the adversarial attacks’ target. We chose DeepXSS as the
target of the white-box model for the adversarial attack and as the final target model of optimizing
defense capability. The detail experiment environment is listed in Table 1.

Table 1. Experiment environment.

System Ubuntu 16.04.4 LTS
RAM 16G
CPU i7-7700 CPU @ 3.60 GHz
GPU NVIDIA GeForce GTX 1060 6 GB

Versions of Python and
Extension Library

Python 3.6.7 keras-rl==0.4.2
gym==0.9.5 requests==2.18.4
tensorflow==1.13.1 keras==2.0.9
gensim==3.2.0 h5py==2.9.0
sklearn==0.20.3

4.3. Evaluation Method

4.3.1. Evaluation Criteria

In order to evaluate the experiment objectively, the DR (detection rate) and ER (escape rate) were
used. Their definitions are shown in the formulas below.

DR =
Number o f malicious samples detected

Total number o f malicious samples
(3)

ER =
Number o f escaping Success

Total number o f malicious samples
= 1 − DR (4)

The ER (escape rate) reflects the proportion of the target detection model or tool classifying
malicious samples into benign samples after escape transformation. The higher the proportion, the
more vectors represent escape, which indicates that the defection of the model of defense adversarial
attack is greater. The DR (detection rate), which reflects the escape detection model or tool, can still
detect the proportion of malicious attack samples. The higher the detection rate, the stronger the
ability of the model or tool to defend against attacks. The DR reflects the proportion of malicious
attack samples after escape confusion, and the detection model or tool can still detect malicious attack
samples. For example, the higher the detection rate, the stronger the ability of the model or tool to
defend against the adversarial attack.

4.3.2. Evaluation Model

In order to test the detection rate and escape rate of the adversarial model, we not only used
the most popular XSS detection software (SafeDog and XSSChop), but also trained the LSTM model
for evaluation. To get a better LSTM model, the paper tuned the Size, Iter, Window, and Negative
parameters in Word2Vec. Through the control variable method, only one parameter was modified at a
time, and the effects of different parameters on the recall rate, accuracy, accuracy, and F1 value of the
LSTM detection model were compared. The experimental results of the Word2Vec parameter tuning
are shown in Figure 4.

Future Internet 2019, 11, 177 9 of 13

Figure 4. Word2Vec parameter tuning relationship diagram for LSTM.

The experiment comprehensively considered the recall, precision, accuracy, F1 value, and training
time to adjust the parameters. Finally, we decided to set the training parameters of Word2Vec as
follows: “size” to 60; “windows” to 10; “negative” to 20, and “iter” to 70.

To evaluate the LSTM model trained in the experiment objectively, we compared the model with
the traditional machine learning algorithm based on ADTree and AdaBoost proposed by WangRui.
Their method used the same XSS malicious sample dataset as this paper. The paper also selected the
SafeDog and XSSChop for comparative experiments. The comparing results are shown in Table 2.

Table 2. Comparative experiment of the XSS detection model for LSTM.

Model Precision Recall F1 Value

LSTM 0.995 0.979 0.987
ADTree 0.938 0.936 0.936

AdaBoost 0.941 0.939 0.939
SafeDog 0.997 0.902 0.948
XSSChop 1.0 0.616 0.762

From the result, the accuracy of the LSTM-based XSS attack detection model was 99.5%; the recall
rate was 97.9%; and the F1 value was 98.7%. The performance in terms of accuracy, recall, and F1 was
superior to the traditional machine learning algorithms ADTree and AdaBoost. The accuracy of the
LSTM model in this paper was slightly lower than SafeDog and XSSChop, but the accuracy rates of
the three were all more than 99.5%. Besides, the LSTM detection model trained in the experiment was
superior to the website SafeDog and XSSChop in terms of recall rate and F1 value. In summary, the
LSTM-based detection model trained in the experiment had obvious advantages in accuracy, recall
rate, and F1 value, which proves that the model can effectively detect cross-site scripting attacks.

4.4. Adversarial Attack Experiment Results

We entered the XSS dataset into the adversarial model and got a batch of XSS adversarial samples
after training. We organized these samples and named them the “adversarial dataset”. The adversarial

Future Internet 2019, 11, 177 10 of 13

dataset was used to test various XSS detection software and calculate the escape rate and detection
rate. Comparing the results of SafeDog, XSSChop, and the LSTM model (we named it DeepXSS), the
details are shown in Table 3.

Table 3. Adversarial result. DR, detection rate; ER, escape rate.

Model DR ER

SafeDog 0.859 0.141
XSSChop 0.907 0.093
Deepxss 0.9175 0.0825

The results of the adversarial attack showed that the escape rate of SafeDog was 14.1%, XSSChop
was 9.3%, and DeepXSS was 8.25%. The XSS adversarial attack model based on reinforcement learning
proposed in this paper can effectively mine the adversarial samples of the white-box and black-box
detection model to escape detection. According to the results of the adversarial attack experiment, we
successfully mined the general XSS escape strategy for SafeDog and the general XSS escape strategy
for XSSChop, which are analyzed in the following.

(a) The general XSS escape strategies for SafeDog and the adversarial samples for SafeDog
generated according to the generic escape strategy are shown in Figure 5.

Figure 5. Examples of generic XSS escape strategies for SafeDog.

For the filtered tags of <source>, <svg>, , <iframe>, we added useless characters according
to the escape action so that the number of characters between the “<” character and the “>” characters
was greater than a certain threshold to bypass SafeDog’s detection and retained the attack function of
attack vectors.

(b) The general XSS escape strategies for XSSChop and the adversarial samples for XSSChop
generated according to the generic escape strategy are shown in Figure 6.

Next, we will further enhance the ability of the DeepXSS model to defend against adversarial
attacks through the retraining model.

Future Internet 2019, 11, 177 11 of 13

Figure 6. Examples of generic XSS escape strategies for XSSChop.

On the one hand, Strategy A is as follows. A string was added before the attack vector, and its
structure satisfied: “<” + ”space” + ”any length of letters or numbers” + ”=”; at the same time, if the
attack vector contained events such as onload, onerror, and so on, we needed to ensure that there
was no “space” before the corresponding event. Finally, we could change the position of the event
expression in the attack vector and replace the space with “/”. An attack vector bypassing XSSChop
detection was constructed. On the other hand, Bypass Strategy B was as follows. According to the
escape action, we added an arbitrary assignment expression before onload, ontoggle, onerror, onclick,
and other events of the attack vector, so that its structure satisfied “any length of letters or numbers” +
“<=” + “single or double quotes” + “any length of letters or numbers” + “single or double quotes (need
to be same as the previous ones)”. The constructed attack vectors maintained the attack function of the
constructed vector, and the attack vectors bypassed XSSChop detection.

4.5. Optimizing the Experimental Results

The adversarial samples were marked as malicious samples of XSS attacks, and the DeepXSS
model was retrained. The experimental results of 10 rounds of alternate training between the detection
model and the adversarial model are shown in Figure 7.

Figure 7. Optimizing experiment results.

The experimental results showed that the detection rate of DeepXSS was continuously increased,
and the escape rate was continuously reduced. Finally, the escape rate of the DeepXSS model was
reduced to less than 1%. This proved that the ability of the defense adversarial attack of the detection
model can be improved by alternate training of the detection model and adversarial model.

Future Internet 2019, 11, 177 12 of 13

In summary, RLXSS can effectively mine adversarial samples. By marking adversarial samples as
malicious samples, the detection model was retrained. The adversarial sample space of the detection
model was compressed, so that the detection rate was improved and the escape rate reduced. Thus,
the ability of the detection model to defend against adversarial attack was effectively optimized.

5. Conclusions and Future Work

Aiming at the risk of escaping adversarial attack in current detection models and tools, this paper
proposed an XSS adversarial attack model based on reinforcement learning, called RLXSS. In the
RLXSS, the adversarial model generates XSS adversarial samples, and the retraining model uses these
samples to optimize the XSS classifier. In this paper, the problem of escaping attack was transformed
into the problem of choosing the optimal escaping strategy. We mined the adversarial samples of the
black-box and white-box detection model by RLXSS, which can successfully escape detection and
retain the attack function. What is more, by marking the adversarial samples as malicious samples,
it retrained the detection model and alternately trained the detection model and adversarial attack
model, so that the detection model kept excellent detection ability while continuously improving its
ability to defend against the adversarial attack. Finally, the experimental results showed that the RLXSS
successfully excavated the general XSS escape strategy for SafeDog and the general XSS escape strategy
for XSSChop. Through the retraining model, the ability of DeepXSS to defend against adversarial
attacks was continuously improved.

In the future, we plan to apply the reinforcement learning-based adversarial attack model to other
areas of cybersecurity, such as SQL adversarial attack research work and Distributed Denial of Service
(DDoS) adversarial attack research work.

Author Contributions: Conceptualization, Y.F., Y.L. and C.H.; methodology, software, Y.X.; validation, Y.F., Y.X.;
formal analysis, Y.F., C.H.; investigation, Y.X.; resources, Y.F., C.H.; data curation, Y.L., Y.X.; writing—original
draft preparation, Y.L.; writing—review and editing, Y.X., C.H.; supervision, Y.F.; project administration, C.H.

Funding: This work was supported in part by the National Key Research and Development Program of China
under Grant 2017YFB0802900, the Fundamental Research Funds for the Central Universities, and the Sichuan
University Postdoc Research Foundation under Grant 19XJ0002.

Acknowledgments: We thank anonymous reviewers and editors for provided helpful comments on earlier drafts
of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nirmal, K.; Janet, B.; Kumar, R. Web Application Vulnerabilities-The Hacker’s Treasure. In Proceedings of
the 2018 International Conference on Inventive Research in Computing Applications, Coimbatore, India,
11–12 July 2018; pp. 58–62.

2. Nithya, V.; Pandian, S.L.; Malarvizhi, C. A survey on detection and prevention of cross-site scripting attack.
IJNSA 2015, 9, 139–152. [CrossRef]

3. Sarmah, U.; Bhattacharyya, D.K.; Kalita, J.K. A survey of detection methods for XSS attacks. J. Netw. Comput.
Appl. 2018, 118, 113–143. [CrossRef]

4. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M. Generative adversarial nets. In Advances in Neural Information
Processing Systems; The MIT Press: Cambridge, MA, USA, 2014; pp. 2672–2680.

5. Su, J.; Vargas, D.V.; Sakurai, K. One pixel attack for fooling deep neural networks. IEEE T. Evolut. Comput.
2019. [CrossRef]

6. Rosenberg, I.; Shabtai, A.; Rokach, L. Generic black-box end-to-end attack against state of the art API call
based malware classifiers. In Proceedings of the 21st International Symposium on Research in Attacks,
Intrusions and Defenses, Heraklion, Greece, 10–12 September 2018; pp. 490–510.

7. Wu, C.; Shi, J.; Yang, Y. Enhancing Machine Learning Based Malware Detection Model by Reinforcement
Learning. In Proceedings of the 8th International Conference on Communication and Network Security,
Qingdao, China, 2–4 November 2018; pp. 74–78.

http://dx.doi.org/10.14257/ijsia.2015.9.3.14
http://dx.doi.org/10.1016/j.jnca.2018.06.004
http://dx.doi.org/10.1109/TEVC.2019.2890858

Future Internet 2019, 11, 177 13 of 13

8. Vishnu, B.A.; Jevitha, K.P. Prediction of cross-site scripting attack using machine learning algorithms.
In Proceedings of the 2014 International Conference on Interdisciplinary Advances in Applied Computing,
Amritapuri, India, 10–11 October 2014; p. 55.

9. Rathore, S.; Sharma, P.K.; Park, J.H. XSSClassifier: An Efficient XSS Attack Detection Approach Based on
Machine Learning Classifier on SNSs. JIPS 2017, 13, 1014–1028. [CrossRef]

10. Fang, Y.; Li, Y.; Liu, L. Deepxss: Cross site scripting detection based on deep learning. In Proceedings of the
2018 International Conference on Computing and Artificial Intelligence, Chengdu, China, 12–14 March 2018;
pp. 47–51.

11. Mohammadi, M.; Chu, B.; Lipford, H.R. Detecting cross-site scripting vulnerabilities through automated
unit testing. In Proceedings of the 2017 IEEE International Conference on Software Quality, Reliability and
Security, Prague, Czech Republic, 25–29 July 2017; pp. 364–373.

12. Duchene, F.; Rawat, S.; Richier, J.L. KameleonFuzz: evolutionary fuzzing for black-box XSS detection.
In Proceedings of the 4th ACM conference on Data and application security and privacy, San Antonio, TX,
USA, 3–5 March 2014; pp. 37–48.

13. Guo, X.; Jin, S.; Zhang, Y. XSS vulnerability detection using optimized attack vector repertory. In Proceedings
of the 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery,
Xi’an, China, 17–19 September 2015; pp. 29–36.

14. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari
with deep reinforcement learning. arXiv 2013, arXiv:1312.5602.

15. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016.

16. Matthias Plappert. keras-rl. Available online: https://github.com/keras-rl/keras-rl (accessed on 10 May
2019).

17. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. Openai gym.
arXiv 2016, arXiv:1606.01540.

18. Safedog. Website Safedog. Available online: http://free.safedog.cn/website_safedog.html (accessed on 10
May 2019).

19. Chaitin. XSSChop. Available online: https://xsschop.chaitin.cn/demo/ (accessed on 10 May 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3745/JIPS.03.0079
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposed Approach
	Overview
	Mining XSS Adversarial Samples through Reinforcement Learning
	Preprocessing
	Black- and White-Box Detection Environment
	Agent Based on DDQN
	Mining XSS Adversarial Samples

	Optimizing the Ability of XSS Detection Models to Defend against Adversarial Attacks through Retraining

	Experiments and Evaluations
	Dataset
	Experimental Environment
	Evaluation Method
	Evaluation Criteria
	Evaluation Model

	Adversarial Attack Experiment Results
	Optimizing the Experimental Results

	Conclusions and Future Work
	References

