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Abstract: The exorbitant increase in the computational complexity of modern video coding standards,
such as High Efficiency Video Coding (HEVC), is a compelling challenge for resource-constrained
consumer electronic devices. For instance, the brute force evaluation of all possible combinations of
available coding modes and quadtree-based coding structure in HEVC to determine the optimum set
of coding parameters for a given content demand a substantial amount of computational and energy
resources. Thus, the resource requirements for real time operation of HEVC has become a contributing
factor towards the Quality of Experience (QoE) of the end users of emerging multimedia and future
internet applications. In this context, this paper proposes a content-adaptive Coding Unit (CU)
size selection algorithm for HEVC intra-prediction. The proposed algorithm builds content-specific
weighted Support Vector Machine (SVM) models in real time during the encoding process, to provide
an early estimate of CU size for a given content, avoiding the brute force evaluation of all possible
coding mode combinations in HEVC. The experimental results demonstrate an average encoding time
reduction of 52.38%, with an average Bjøntegaard Delta Bit Rate (BDBR) increase of 1.19% compared
to the HM16.1 reference encoder. Furthermore, the perceptual visual quality assessments conducted
through Video Quality Metric (VQM) show minimal visual quality impact on the reconstructed
videos of the proposed algorithm compared to state-of-the-art approaches.

Keywords: HEVC; video coding; encoding complexity; Support Vector Machines; intra-prediction;
Quality of Experience; VQM

1. Introduction

The recent advancements in multimedia technologies that span across content capturing,
transmission, and display have made video applications ubiquitous in daily life, leading to
explosive growth in demand for communication bandwidth and storage. The proliferation of
mobile consumption of High Definition (HD) and Ultra High Definition (UHD) video content has
made multimedia the most frequently exchanged type of content over the modern communication
networks and is forecast to reach over 82% of the overall internet data traffic by 2021 [1]. However,
the estimated 1.9-fold growth in network bandwidth from 2017–2022 is deemed insufficient to cater
to the upcoming user demands. In addition, the requirements of video content for emerging future
internet applications such as Augmented Reality (AR), Virtual Reality (VR), autonomous navigation
systems, and over-the-top (OTT) multimedia consumption demand continuous improvements in video
coding technologies to make these applications successful [2].

In this context, the High Efficiency Video Coding (HEVC) standard [3] introduced in 2013 provides
greater compression efficiency compared to its predecessor, H.264/AVC. Experimental results of HEVC
that incorporate subjective quality assessment, demonstrate ~50% improvement in its compression
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efficiency [4] compared to H.264/AVC due to its vastly superior coding tools and modes. For instance,
HEVC follows a hybrid block-based encoding architecture similar to that of its predecessor. However,
HEVC constitutes of an assortment of novel coding features and modes including prediction modes,
filtering modes, parallelisation tools, and flexible coding structures [3]. In this case, a picture is
partitioned into Coding Tree Units (CTU) of size 64 × 64. Each CTU is further partitioned into
Coding Units (CU) that can possess sizes ranging from 8× 8 to 64× 64. This hierarchical quadtree
partitioning structure is one of the significant contributors to HEVC’s improved coding efficiency
performance. However, at the same time, it is also one of the major sources of encoding complexity
in the HEVC coding architecture [5,6]. The brute-force Rate-Distortion (RD) optimisation followed
by the encoder to determine the best coding configuration (that includes coding structure, prediction
modes, filtering options, etc.) for a given content dramatically increases the encoding complexity
of HEVC. For instance, a mere increase of maximum CU size from 16× 16 to 64× 64 results in an
average encoding time increase of 43% [4,7]. In addition, the increased complexity of prediction modes
(i.e., 35 intra-prediction modes, Advanced Motion Vector Prediction based inter-prediction) and use of
16-bit data formats in HEVC Test Model (HM) [5] result in utilising more memory bandwidth leading
to high computational demand.

Therefore, it is often identified that the complexity of the coding tools introduced in HEVC requires
significant improvements to make the algorithms operate in real time. This is further highlighted in the
recent efforts in Motion Pictures Expert Group (MPEG) to standardise approaches for low-complexity
video coding [8]. In addition, recent literature has predominantly proposed algorithms to reduce the
complexity of the RD optimisation that selects the optimum coding modes and structure to reduce
the overall encoding complexity of HEVC. The state-of-the-art fast encoding methods for both intra-
and inter-prediction can be broadly categorised into three main approaches—statistical rule-based
approaches, texture properties-based approaches, and machine learning-based approaches. Having
said that, focusing on the encoding complexity reduction in HEVC intra-prediction frames (predicted
with minimal available information) with minimal impact on the user’s perceived quality is important
due to the significance of intra-predicted frames for high-quality random access encoding requirements.
Furthermore, maintaining a minimal complexity overhead of any proposed fast CU size prediction
is a compelling challenge for HEVC intra-prediction, due to its lower overall encoding complexity
compared to HEVC inter-prediction.

In this context, the recent literature is composed of numerous statistical inference-based
methods [6,9], texture properties [10,11], and machine learning-based algorithms [12–14] that focus
on reducing the encoding complexity of HEVC intra-predicted frames. However, rigid decision trees
and pre-trained static prediction models make these algorithms less adaptable to the dynamic changes
of the video content characteristics. Therefore, it is highly beneficial to investigate implementation
of friendly and flexible encoding algorithms that can effectively trade-off the encoding efficiency to
the computational complexity while maintaining the user’s Quality of Experience (QoE) on the visual
quality of the video content intact.

To this end, this paper proposes a content-adaptive CU size selection algorithm for HEVC
intra-prediction utilising weighted Support Vector Machine (SVM) models. The proposed algorithm
performs an online model formation and training during the encoding process to determine the CU
sizes for a given content early on. The experimental results reveal that the proposed algorithm achieves
a significant encoding time reduction compared to HM16.1 [15] implementation and state-of-the-art
algorithms, with minimal impact on coding efficiency and perceived visual quality of the video content.

The remainder of this paper is organised as follows. Section 2 provides an overview of the HEVC
block partitioning, CU size selection process, and the existing work in the literature on computational
complexity reduction for HEVC intra-prediction. The CU split likelihood modelling using Weighted
SVMs and the proposed fast CU size selection algorithm are presented in Sections 3 and 4, respectively.
Next, the experimental results are discussed in Section 5 and, finally, Section 6 concludes with potential
for future improvements.
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2. Background and Related Work

This section first describes the hierarchical quadtree partitioning structure employed in the HEVC
encoding architecture followed by an elaboration of the state-of-the-art methods available in the
literature that focus on reducing the encoding complexity.

2.1. Background

The block-based structure employed in HEVC initially partitions a given frame into CTUs, which
have the size 64× 64. Each CTU can then be recursively subdivided into CUs, ranging from 8× 8
to 64× 64. For example, Figure 1 illustrates a typical partitioning structure for an encoded frame.
Figure 2a shows a CTU which is recursively partitioned into multiple CUs, while Figure 2b depicts
the corresponding hierarchical quadtree structure. In addition, a CU can be further partitioned into
multiple Prediction Units (PU) and Transform Units (TU) to hold prediction and transform information,
respectively [6]. The increased number of partitioning combinations available for a CTU in the HEVC
standard requires the HEVC compatible encoders to determine the optimal partitioning structures
for a given content. A typical encoder in this case follows a brute-force approach of evaluating all
possible coding parameter combinations using RD optimisation to determine the optimum set of
coding parameter combination for a given content.

Figure 1. Coding Unit (CU) partitioning structure for a typical intra-predicted frame in “Kristen and
Sara” sequence.

RD optimisation utilises a Lagrangian cost function to evaluate the RD cost of each coding mode;
and a partitioning structure to select the coding parameter combination that results in the minimum
cost. This cost function can be expressed as

minimise
p

{
D(p) + λR(p)

}
, p ∈ P, (1)

where λ ≥ 0 is the Lagrange multiplier, p is a coding parameter combination from the set of all the
possible coding options P, and D(p), R(p) are the distortion and rate associated with the selected
set of coding parameters, respectively [4]. Although this process enables identifying the highest
attainable coding efficiency, it is one of the main sources of encoding complexity in the encoder. Thus,
recent literature has focused on algorithms to minimise the computational complexity involved in the
brute-force RD computation cost while keeping the coding performance intact. As part of this, more
attention is given to the fast selection of CU structure since a large portion of the encoding time is
devoted to the computations that take place at CU level [5].
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Figure 2. (a) Sample Partitioning structure of a typical CTU and (b) the corresponding quadtree structure.

2.2. Related Work

The state-of-the-art encoding algorithms that focus on fast CU size selection can be broadly
categorised into three main categories—statistical rule-based approaches, texture properties-based
algorithms, and machine learning-based approaches. The fast encoding algorithms proposed in the
literature for intra-prediction typically focus on fast CU size selection or early estimation of optimal
prediction mode (out of 35 intra-prediction modes [16]). The following subsections provide a summary
of the existing work in each of these categories, primarily focusing on fast CU size selection algorithms
available in the literature.

2.2.1. Statistical Rule-Based Methods

Rule-based models typically make use of statistical models generated from the content and data
collected during the encoding loop. For example, Cho et al. and Kim et al. [9] applied a Bayesian
decision rule to early prune the recursive CU evaluation process. Data accumulated during the
encoding process such as RD costs, prediction residuals, distribution of RD cost in neighbouring
blocks, and CU structures in neighbouring blocks are often treated as important features when
determining the early termination of the current CU evaluation. For example, RD cost of the current
CU is compared with a predetermined threshold to early terminate the encoding process of a CU
in [17]. However, fixed thresholds and less flexible decision trees of these algorithms make the encoding
decisions less content-adaptive. Most probable CU depth is determined using the spatial correlation
among neighbouring CUs in [18,19]. A similar correlation analysis is carried out between Base and
Enhancement Layers of Scalable HEVC (SHVC) to achieve fast intra-coding in [20]. Statistical properties
of neighbouring PUs are considered to avoid evaluation of all 35 intra-prediction modes in [21]. In the
meantime, Zhang et al. [22] introduce a combined use of statistical properties and Hadamard cost
in Rough Mode Decision (RMD) to select both CU size and prediction mode for the PU. In addition,
RMD costs are also utilised in [23] to make subsequent CU split decisions. Following a similar
approach by Kim et al. [17], the CU is split to the next depth level straight away without processing
the current level if the RMD cost exceeds a predefined threshold. However, diversity of content and
large numbers of prediction modes and CU size combinations make the estimation of accurate CU
sizes a compelling challenge with a small number of features and rigid thresholds. Further to that,
unnecessary evaluation of the current CU depth level, rigid less flexible decision trees, and limited
encoding time reduction achieved are identified as common drawbacks in these approaches. The use
of CU information from the parent CU is often seen in methods that focus on improving the complexity
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reduction of inter-prediction. For example, Pan et al. [24] propose a complexity reduction algorithm for
Versatile Video Coding (VVC), by adaptively determining the search range for CUs and the reference
frame directions, based on the parent CU information. Furthermore, a complexity reduction algorithm
is proposed in [25], where fractional pixel motion estimation of sub-PUs are skipped based on the
motion estimation result of the parent CU. However, these methods utilise the features extracted from
the inter-picture prediction process. Therefore, these methods cannot be applied in the context of
intra-picture prediction complexity reduction.

2.2.2. Texture Properties-Based Methods

There is a clear correlation between the CU size selected and the texture complexity of the video
frame. For example, there is a tendency to use larger CUs in homogeneous regions of a video frame;
whereas less homogeneous regions tend to use smaller CUs (e.g., Figure 1). Following a similar
principle, Lokkoju et al. [26] propose to use gradient information computed using horizontal and
vertical Sobel kernels to compute the CU split decision. Further to that, texture complexity computed
from directional gradients is compared with a QP dependent adaptive threshold to determine the
partitioning structure for a given content in [27]. A similar content-adaptive threshold determination
is followed in [28] when determining the early termination of the recursive CU partitioning process.
Shen et al. in [29] and Min et al. in [30] follow similar approaches that consider texture homogeneity
and directional edge complexities, respectively, to determine the CU size. Texture features of the
spatial CUs and co-located CU are used in [31] for fast CU size decisions in 3D-HEVC. Furthermore,
texture edges identified using Sobel kernels are utilised to early predict the angular prediction direction
in HEVC intra-prediction in [32]. However, in general, kernel-based gradient computation used in
these algorithms is seen as a time-consuming operation resulting in a limited encoding time reduction.
Therefore, Mallikarachchi et al. in [33] propose to use local range as a texture complexity measurement
when determining the CU size for given video content. However, the predetermined threshold and
rigid decision trees make this algorithm less content-adaptive leading to inefficient CU size decisions
for arbitrary sequences.

2.2.3. Machine Learning-Based Methods

Machine learning-based methods, on the other hand, utilise supervised learning algorithms
to learn the model parameters using the data collected from encoded video sequences to provide
optimal discriminative solutions to the CU size selection problem. For instance, Convolutional
Neural Network (CNN) has been proposed in [34] to assist in the early CU size selection in HEVC
intra-coding. The algorithm proposed by Liu et al. does not rely on the spatial information, thereby
facilitating parallel execution of the algorithm. However, use of a CNN as an inference engine adds
up the complexity overhead of the decision-making process, which demands additional hardware
acceleration elements. Following a different approach, Hu et al. [35] and Chen et al. [36] formulated
CU size selection as a Bayesian classification problem. In this case, the former utilises Discrete
Cosine Transform (DCT) coefficients; while the latter extends the classification to two-stage cascading
classifiers. The three-class classifier used in the first stage in [36] groups the CUs into “split”,
“non-split”, and “undecided” categories based on the dynamics of the feature space. In addition,
the machine learning algorithms such as random forests and data mining techniques have been
used in [37,38], respectively, to address the complexity reduction problem in HEVC intra-prediction.
SVM classification is often considered as a popular machine learning algorithm for binary classification
problems that can also mediate the resulting overhead complexity on the encoding loop. In this
regard, [39] utilises two linear SVM models that employ the depth difference and HAD and RD cost
ratio as features to perform the decisions of early CU split and early CU termination. Following
a similar approach, Shen and Yu [14] propose an early termination algorithm for recursive CU
evaluation using Support Vector Machines (SVMs). In addition, Zhang et al. [10] propose an early
termination/early split mechanism where multiple SVMs are utilised. The two-stage approach
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proposed in [10] utilises offline trained models and weight parameters for the decision making
process. However, the offline computation of SVM weights and hyperplane and support vectors make
the CU split decisions obtained through the models less content-adaptive.

3. CU Split Likelihood Modelling Using SVMs

This section first introduces the concept of CU split decision in the HEVC quadtree partitioning
structure. Next, the usage of SVMs to model the CU split likelihood as a binary classification problem
is discussed, followed by an overview of SVMs and Weighted SVMs.

3.1. CU Split Likelihood Modelling

HEVC block-based encoding utilises a quadtree partitioning structure within a CTU. This enables the
encoder to capture the local characteristics of the content when determining the optimum coding modes
for a given content [3,6]. During this process, each CU is recursively partitioned into four equally-sized
sub-CUs. The size of a CU can range from 64× 64 to 8× 8, each layer of CU size representing a CU
depth level (0, 1, 2, and 3). During the RD optimisation process, each CU depth level is evaluated for all
corresponding PU modes and the best resultant RD cost is compared with the overall RD cost of the next
available CU depth level. In this case, if the RD cost of the current CU becomes greater than the RD cost
of the next CU depth level, a decision is made to split the current CU into four sub-CUs. On the other
hand, the current CU is considered to remain non-split if the RD cost evaluates to be less than overall RD
cost of its sub-CUs. This can be formulated as a binary classification problem to classify each CU into
two classes (i.e., split and non-split), during the encoding phase as

η =

+1(split) Cl
2N×2N >

n=4
∑

j=1
Cl+1

N×N,j

−1(non-split) otherwise
. (2)

Here, η ∈ {+1,−1} is the CU split decision, Cl
2N×2N is the RD cost of the parent CU, Cl+1

N×N is the RD
cost of the a sub-CU where N ∈ {32, 16, 8, 4} represents the CU size, and l ∈ {0, 1, 2} represents the
CU depth level.

The split likelihood of a CU can be modelled using probabilistic models [7,35,36] as well as
machine learning methods. In the case of the latter, recent literature typically uses supervised learning
algorithms such as decision trees [17,38], neural networks [34], logistic regression, and SVMs [10,14,39].
However, integrating an inference engine of machine learning models into the encoding loop such that
the time taken for decision making is minimal, is crucial a for fast CU size selection algorithms (such
as proposed in this work). Therefore, this work utilises SVMs to model the CU split likelihood due to
its ability to handle binary classification problems with significant computational advantages [40].

3.1.1. Support Vector Machines (SVMs)

SVM is a supervised machine learning method that is used in classification and regression
problems [41,42]. It is often used as a non-probabilistic binary classifier that predicts the class for a
given input vector. For example, let D be a training dataset of size n, where

D = {(xi, yi) | xi ∈ Rp, yi ∈ {−1, 1}}n
i=1. (3)

Here, xi is a p-dimensional input vector and yi is the corresponding class to which each xi belongs.
During the training phase, SVM constructs a hyperplane that represents the largest separation of
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the dataset D (known as the margin) in a higher-dimensional space, solving the primal optimisation
function defined as

min
w,b,ξ

1
2

wtw + C
N

∑
i=1

ξi

s.t. yi(wφ(xi + b)) + ξi − 1

ξ ≥ 0, i = 1, ..., n,

(4)

where w, ξ, and C > 0 are the normal vector to the hyperplane, slack variable, and regularisation
parameter, respectively. Here, φ(xi) acts as the Kernel function that maps xi into a higher-dimensional
space in the case of nonlinear classification. Once the hyperplane is determined, the classifications for
the new samples are obtained using the decision function given by,

sgn(wTφ(x) + b). (5)

A typical separation of a dataset and a hyperplane (line in blue colour) that achieves the maximum
possible hyperplane margin M1, where M1 > M2, is illustrated in the Figure 3.

M1

M2

Figure 3. An illustration of a hyperplane that is created using a standard Support Vector Machine
(SVM) for a sample dataset. Here, the green coloured hyperplane margin M2 is smaller than margin
M1, which corresponds to the hyperplane in colour blue.

3.1.2. Weighted Support Vector Machines (W-SVMs)

The empirical observations on the training data collected during the data collection phases in the
proposed algorithm (Sections 4.1.1 and 4.2.1) reveal that the dataset is often contaminated by noise.
The dynamic nature of the video contents, diversity of texture, and motion complexities of typical
video sequences result in certain data points being positioned on the wrong side in the feature space,
generating a significant number of outliers. In the standard SVM [43], the classification gets affected
when the outliers become support vectors in the decision boundary during the training phase (i.e.,
outlier sensitivity problem [44,45]).

In this context, Weighted Support Vector Machines (W-SVM) is seen as a potential solution which
assigns weights to the training samples based on their relative importance [45]. Thus, the effect of
less important points is reduced during the training phase. Following a similar approach, the training
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dataset utilised in the proposed method is trained with W-SVM using a modified constrained
optimisation function given by

min
1
2
||w||2 + C ·Wns

Nns

∑
i=1

ζi + C ·Ws

Ns

∑
i=1

ζi, (6)

where yi(w · xi + b) ≥ 1− ζi—where ζi ≥ 0, ∀xi. Here, xi = 1, 2, 3 . . . , N is the feature vector of the
training set, with ith sample being represented as {xi, yi}—where yi ∈ {+1(split),−1(non− split)}
is the class label. Furthermore, w, ζ, C, Wns and Ws are the hyperplane margin, slack variable,
and trade-off parameter for hyperplane margin width and misclassification, and weight parameters
for CU non-split and split classes, respectively.

The use of different weights for yi ∈ {+1(split),−1(non − split)} samples (i.e., Ws and Wns,
respectively) reduce the effect of less important data points (such as outliers and noise) when building
the hyperplanes during the training phase. Figure 4 depicts an illustration of two hyperplanes
generated for two SVM models by applying different weights for split and non-split samples in the
training dataset (refer Section 4).

split

non-split

undecided

S1

S2

Figure 4. An illustration of two SVM hyperplanes that are created using Weighted SVMs using noisy
sample data. The hyperplane S1 corresponds to a case where a larger weight is applied to “split”
samples. Similar, hyperplane S2 represent a case where larger weights are applied to “non-split”
samples of the training set.

4. Proposed Fast CU Size Selection Algorithm

The proposed method utilises SVM models at two levels in the HEVC coding architecture.
The SVM models at level 1(L-1) are generated and utilised before the encoding of the current CU depth
level (See Figure 5). The SVM model at level 2 (L-2) is generated and used after the evaluation of the
CU for the PU modes at the current CU depth level. The following section describes the data collection,
feature selection, and model parameter computations carried out in the proposed algorithm on both
these levels.



Future Internet 2019, 11, 175 9 of 18

Are L-1
SVMs

available

Predict with
L-1 SVMs

Is
Undecided?

Terminate at
current depth

Continue to
next depth

Is
within δ?

Is L-2
SVM

available?

Is
Split?

Encode with
RDO

Add item for
SVM training

Is max
number

predicted?

Discard the
SVM

Predict with
L-2 SVM

Terminate at
current depth

Is
Split?

Is max
number

predicted?

Discard the
SVM

yes

yes

yes

yes

yes
yes

no

no

no no

no

no

no
yes

yes

no

Figure 5. An activity diagram illustrating the proposed overall encoding algorithm
(RDO: Rate-Distortion optimisation).

4.1. Level 1(L-1) SVM Models: Features and Optimal Weight Calculation

As illustrated in Section 2, the typical machine learning approaches rely on large data sets of
coding information and CU split decisions for a selected number of training video sequences to build
and train generic offline models. However, the dynamic nature of the video contents and diversity of
required quality levels make these generic models less flexible and less effective when applying them
to estimate encoding decisions. Hence, the proposed method relies on coding, texture, and statistical
information accumulated online during the encoding process and dynamically generate SVM models
which are unique for a given content. The following subsections illustrate the feature selection and
SVM weight calculation utilised with the L-1 SVM models in the proposed method.

4.1.1. Data Collection

L-1 constitutes two weighted SVM models (Section 3.1.2) for each CU depth level using the data
collected during an initial training phase for each video sequence. During the initial training phase,
N data points are accumulated for each CU depth level (i.e., 0, 1, 2, 3). In this phase, CU/PU size
decisions are obtained through traditional RD optimisation.

Here, N is set at N = 2000, which gives the best trade-off between the encoding time reduction
and model accuracy based on the empirical observation.

The SVM models for a particular CU depth level are generated once the required N number of
data points are collected during the encoding process. This enables the models to be generated at
different times depending on the content, resolution, and Quantisation Parameter (QP). For example,
SVM models for lower CU depths (i.e., 0, 1) for certain sequences with low resolution (e.g., 416 × 240)
are typically generated after encoding several frames, whereas SVM models for higher CU depths
(i.e., 2, 3) typically become available much sooner.
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The ratio between the training and predicted samples is kept at 1:Γ. Once the number of
predictions per model (Γ) is exceeded, the model is expired and recreated following a similar data
collection approach. This process ensures the SVM models are kept relevant to the content being
encoded and are hence, content-adaptive. In this case, Γ is maintained as Γ = 400, which results in
a minimal BDBR increase for a set of test video sequences evaluated at QP ∈ {22, 27, 32, 37} for a
range of ratios where Γ ∈ {100, 200, 300, 400, 500}. Experimental results reveal that the models for
smaller CU sizes are retained for a longer period of time before they are discarded when encoding
less complex, high-resolution sequences using large QPs. This is due to the lower presence of smaller
CUs in such scenarios. Similar behaviour is observed for the SVM models corresponding to large CU
sizes when encoding complex sequences using smaller QPs. Retaining models for a longer period
impacts the content adaptiveness of the SVM models and results in coding efficiency losses. However,
the lower number of decisions made by such models facilitates the algorithm to maintain any adverse
impacts on the coding efficiency at a lower level. In this context, Γ remains a design parameter that
can trade-off the encoding time reduction to the coding efficiency, depending on the requirement.

4.1.2. Feature Selection

Let Fi
j be the set of features extracted for CU depth i in the j-th level. Therefore, at L-1, Fi

j=1 is
defined as

Fi
j=1 := {αi, βi, γi}, (7)

where, αi, βi, and γi correspond to the texture complexity, RD cost pre-analysis of current CU,
and context information, respectively, for the ith CU depth level [10]. In this case, the texture complexity
(αi) is calculated using the mean absolute difference (α1) of the current CU and the texture difference
between the current CU and its four sub CUs (α2). RD cost pre-analysis includes division between
the RD cost and QP (β1) and division between RD cost and distortion (β2). In this case, RD cost is
calculated by encoding the CU with planar intra mode. The RD cost (γ1), CU depth (γ2), and PU
depths (γ3) of the spatially neighbouring above and left CTUs are extracted as context information
features for the Fi

j=1 [10]. Different combinations of these features are utilised at different depth levels,
as depicted in Table 1.

Table 1. Features used for different CU depth levels [10].

Feature Category Feature Depth(s)

Texture Information α1 0, 1, 2, 3
α2 0, 1

Pre-analysis of current CU β1 0, 1, 2, 3
β2 0, 1

Context Information γ1 0, 1
γ2 0, 1
γ3 2, 3

4.1.3. Weight Calculation

The weight parameters for L-1 SVM models (that utilise the objective function in (6)) are defined
such that highest attainable precision is achieved for a particular decision. In this case, the precision χ

for the two SVMs (Sη(i)) for the ith CU depth level is defined as

max χ(Sη=+1(i)) =
Tp

Tp + Fp
(8)

and
max χ(Sη=−1(i)) =

Tn

Tn + Fn
. (9)
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Here, Tp, Tn are the “True Positive”, and “True Negative” samples, whereas Fp and Fn are the “False
Positive” and “False Negative” samples, respectively. In addition, Sη=+1 and Sη=−1 identify the
SVM decision models that carry more weight into CU “split” and “non-split” decisions, respectively,
with maximum confidence using the optimisation function defined in (6). Maximising the precision
for Sη=+1 model results in minimising the categorisation of “non-split” samples as “split”. At the
same time, maximising the precision for Sη=−1 minimises the categorisation of “split” samples as
“non-split”. The logical separation of the samples, SVM models, and corresponding hyperplanes for a
particular CU depth level are illustrated in Figure 4.

The optimal weight parameters (Ws and Wns in (6)) for each of the SVM models (Sη=+1 and
Sη=−1) are determined at run time after the data collection (described in Section 4.1.1) is complete for a
particular depth level. Here, weight value pairs ranging from 5:1 (Ws:Wns) and 1:5 (Wns:Ws) with a
step size of 0.5 are evaluated for Sη=+1 and Sη=−1 SVM models, respectively. Then, the weight pair
that achieves the highest precision in (8) and (9) for Sη=+1 and Sη=−1, respectively, is selected for
the corresponding optimisation function in (6). Here, the N = 2000 data points collected are equally
divided to form training and cross-validation sets. For optimal weight calculation for the SVMs,
cross-validation is done over predetermined weight value pairs to ensure that time consumed for the
process is minimised. The kernel function selected for the SVMs is Radial Basis Function (RBF), given
its ability to work efficiently with small numbers of features while performing well with nonlinear
decision boundaries [46]. In order to minimise the impact of model tuning time during the encoding
process, other hyper-parameters with RBF kernel, i.e., cost parameter, gamma parameter, and the
number of training samples, are predetermined and are not tuned during the model building process.
The cost parameter is set at 100, giving a large penalty for misclassification, when compared with the
default value of 1. The value for gamma is set at the default value, i.e., 1/numbero f f eatures for each model.

4.2. Level 2 SVMs (L-2): Features and Optimal Weight Calculation

The SVM model at L-2 is built and utilised after PU modes are evaluated for the current CU
depth level. In terms of the overall encoding algorithm (Figure 5), the CU split decisions that are not
classified by the L-1 SVMs are subjected to the L-2 SVM model. In this case, a single SVM is used at
each CU depth level.

4.2.1. Data Collection

The number of training samples collected for the L-2 is maintained at N = 1000 for each CU
depth level. In this case, the number of training samples to be used are determined empirically,
which achieves the best trade-off between the encoding time reduction and model accuracy. Similar to
L-1 models, L-2 models at each CU depth level are discarded once a certain number of predictions are
made. In this case, existing L-2 models are discarded and recreated with a new data set keeping the
ratio between the training and predicted samples at 1:200. This ensures that the models generated are
content-adaptive and CU size predictions are content relevant. Similar to the L-1, the ratio is selected
empirically, following the same process described in Section 4.1.1.

4.2.2. Feature Selection

Let Fi
j be the set of features extracted for the ith CU depth level in jth level. Thus, for level 2, Fi

j=2
is defined as

Fi
j=2 := {θi, πi, τi}, (10)

where θi, πi, and τi refer to texture information, context-information, and coding information,
respectively, for the ith CU depth level [10]. In this case, the texture complexity is calculated with the
mean absolute difference of the block (θ1). The context information for L-2 includes the sum of the
CU depths (π1) and the average of the sum of CU and PU depth levels (π2) from the left and above
neighbouring CTUs. The coding information for L-2 includes the RD cost (τ1) and the number of bits
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(τ2). Since the current depth level is already considered in the first level, data that is directly related to
the CU are available in the second level. Similar to L-1, different combinations of the features [10] are
used at the depth levels, as shown in the Table 2.

Table 2. Features used for different CU depth levels in Stage 2.

Feature Category Feature Depth(s)

Texture Information θ1 0, 1, 2, 3

Context Information π1 0, 1
π2 2, 3

Coding Information of Current CU τ1 0, 1, 2, 3
τ2 0, 1, 2, 3

4.2.3. Weight Calculation

The weight parameters for L-2 SVMs that utilise the objective function in (6) are obtained by
following a similar approach as defined in Section 4.1.3. In this case, a range of weights varying from
1:5 (Ws:Wns) and 5:1 (Wns:Ws), with 0.5 step size difference at each iteration, are tested during run-time.
Level 2 SVM models are used to classify CUs either as “non-split” or “split”. As only one SVM is
used at the second level, it is not possible to address only one case—either split or non-split. Therefore,
we calculate the F-score for the cross-validation set to determine the best weight parameters. Here,
training and cross-validation sets are derived following the same method explained in the first level
(Section 3.1). The F-score calculation is given by

Fscore =
2× (χ ∗ω)

(χ + ω)
, (11)

where χ and ω are precision and recall, respectively. Here, recall ω is calculated using

ω =
Tp

Tp + Fn
. (12)

The pair of weights that gives the highest possible F-score is chosen for the SVM at the
corresponding depth level. The kernel function used in the SVMs is RBF and similar to the
hyper-parameters in L-1, although the weights are fine-tuned to minimise the adverse impact on
the time gains by the model training during the encoding process. The cost and gamma parameters
are the same as those in L-1.

4.3. Overall Encoding Algorithm

The overall fast encoding algorithm proposed in this manuscript is illustrated in Figure 5.
As illustrated, the proposed method first builds the SVMs using RDO and operates in two
levels—before encoding the current depth; and after encoding the current depth.

The SVM models generated at L-1 predict the CU’s “split” (η = +1) and “non-split” (η = −1)
decisions for a given CU depth level i ∈ {0, 1, 2}. As illustrated in Figure 5, the CU size decisions
that cannot be predicted by the L-1 SVMs are subjected to the L-2 SVMs. For example, any CU that is
classified into the middle region identified in the Figure 4, is evaluated for all its PU modes and passed
on to L-2 model to determine whether to further split the CU or select the current CU size as it is.

Complexity Control Parameter (δ)

The proposed method introduces a complexity control parameter to allow δ% number of CUs
that reach L-2 models to go through traditional RD-optimisation, to determine their CU split decisions.
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Controlling δ in the proposed algorithm facilitates the flexibility to trade-off coding complexity to the
coding efficiency.

5. Experimental Results and Discussion

The following section presents the experimental results of the proposed fast CU size selection and
encoding algorithm for HEVC video encoding. The proposed algorithm is implemented in HM16.1 [15],
and the optimised SVM library libSVM [46] is used to implement the SVM models described in
Section 4. The RD and encoding time performance of the proposed algorithm are compared with
several state-of-the-art algorithms in the literature. These include HM16.1 [15], SVM-based CU size
selection algorithm proposed by Zhang et al. [10], and fast CU selection algorithms proposed by
Liu et al. [34].

5.1. Experimental Setup and Encoding Configurations

The algorithms are evaluated for a range of HD and UHD video sequences composed of content
ranging from simple to highly complex motion with diverse spatial and temporal characteristics.
The video sequences, encoding configurations, and QP values are selected as defined in the HEVC
common test configurations [47]. For instance, test sequences are encoded using All intra main
configuration for QP ∈ {22, 27, 32, 37}. All experiments are carried out in an AMD 64-Core CPU @
2.5 GHz system with 64 GB RAM and Ubuntu 14.04 64-bit operating system.

The average percentage encoding time reduction, ∆T, is evaluated for the proposed and
state-of-the-art algorithms by

∆T = 100×
THM − Tρ

THM
, (13)

where THM is the encoding time of HM reference software and Tρ is the encoding time required
for each fast encoding approach. For the proposed method, Tρ includes the time taken for the data
collection, feature extraction, computing weights, and online-SVM training.

The coding efficiency performance of the proposed and state-of-the-art algorithms is measured
against the HM reference encoder using Bjøntegaard Delta Bit Rate (BDBR) [48]. In this case, BDBR is
computed using two different quality metrics. First, Peak Signal to Noise Ratio (PSNR)—a widely used
objective quality metric—is used as the quality metric in the RD curve. Then, Video Quality Metric
(VQM) tools that estimate the perceived video quality of the users is utilised as the quality metric when
computing the BDBR [49]. The perception of visual media is influenced by the Human Visual System,
the brain, and the eye [50]. Typically, a human observer gives higher importance to certain parts of a
picture, as opposed to giving equal importance to every part. Objective quality metrics such as PSNR
fail to capture the perceived subjective quality in such scenarios. On the contrary, VQM is widely
considered as a calibrated model of subjective video quality measurement that closely correlates to the
user’s QoE when consuming video content [51].

5.2. Results and Performance Analysis

The experimental results presented in Tables 3 and 4 demonstrate coding performance and
encoding time reduction of the proposed and state-of-the-art methods against HEVC HM16.1
implementation when using PSNR and VQM as the quality metrics, respectively. The following section
discusses the overall performance and implications of using the proposed fast coding framework.
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Table 3. Coding efficiency and complexity reduction performance (All Intra main).

Sequence Proposed (δ =
100) vs. HM

Proposed (δ =
20) vs. HM

Zhang et al. [10]
vs. HM

Liu et al. [34] vs.
HM

∆T (%) BD-Rate ?
(%) ∆T (%) BD-Rate ?

(%) ∆T (%) BD-Rate ?
(%) ∆T (%) BD-Rate ?

(%)

Kimono 72.60 2.32 81.06 5.92 80.74 4.13 70.50 2.54
Basketball Pass 52.68 0.56 72.15 5.99 51.84 1.21 54.55 2.80
BQTerrace 56.17 0.91 72.94 7.52 52.03 0.80 56.78 1.95
Traffic 61.71 0.56 78.59 6.45 49.48 0.98 59.02 2.35
RaceHorses 40.92 0.47 62.75 4.82 49.07 1.04 53.98 2.36
BlowingBubbles 31.78 0.28 40.21 2.81 31.33 0.41 31.59 1.93
Johnny 56.61 2.22 70.46 6.02 71.99 2.94 71.35 4.28
KristenAndSara 59.41 1.68 66.74 4.89 62.14 2.21 68.78 3.18
PeopleOnStreet 49.59 2.36 75.61 13.65 44.42 1.17 56.49 2.25
PartyScene 42.37 0.58 52.91 3.40 29.68 0.30 44.72 2.23

Average 52.38 1.19 67.34 6.15 52.27 1.52 56.78 2.59

? BD-Rate computation is carried out using Peak Signal to Noise Ratio (PSNR) as the quality metric in the
RD curve.

Table 4. Coding efficiency and complexity reduction performance (All Intra main).

Sequence Proposed (δ =
100) vs. HM

Proposed (δ =
20) vs. HM

Zhang et al. [10]
vs. HM

Liu et al. [34] vs.
HM

∆ T (%) BD-Rate †
(%) ∆T (%) BD-Rate †

(%) ∆T (%) BD-Rate †
(%) ∆T (%) BD-Rate †

(%)

Kimono 72.60 1.53 81.06 4.27 80.74 4.24 70.50 2.60
Basketball Pass 52.68 0.45 72.15 4.01 51.84 -0.73 54.55 0.03
BQTerrace 56.17 2.58 72.94 7.28 52.03 1.68 56.78 2.03
Traffic 61.71 0.72 78.59 7.08 49.48 1.91 59.02 2.39
RaceHorses 40.92 0.76 62.75 5.34 49.07 0.78 53.98 1.75
BlowingBubbles 31.78 2.20 40.21 3.79 31.33 3.83 31.59 1.68
Johnny 56.61 2.09 70.46 3.71 71.99 3.08 71.35 4.57
KristenAndSara 59.41 1.94 66.74 6.87 62.14 2.33 68.78 3.40
PeopleOnStreet 49.59 2.13 75.61 10.46 44.42 1.29 56.49 1.25
PartyScene 42.37 0.89 52.91 3.61 29.68 0.08 44.72 1.65

Average 52.38 1.52 67.34 5.64 52.27 1.84 56.78 2.13

† BD-Rate computation is carried out using VQM as the quality metric in the RD curve.

5.2.1. Impact of Complexity Control Parameter

The ability of the proposed algorithm to trade-off the coding efficiency to the encoding complexity
by adjusting the complexity control parameter δ is a crucial advantage compared to the state-of-the-art
methods, which use fixed thresholds and rigid decision trees to derive the CU size decision. Increasing
δ allows the encoder to increase the coding efficiency, at the expense of increased encoding time and
vice-versa. Thus, δ becomes an engineering design parameter which is tuned depending on the user
requirement. In this case, the experimental results presented in this paper correspond to δ values
maintained at δ = 100% and δ = 20%.

5.2.2. Overall Performance Analysis

It can be observed from the Tables 3 and 4, that the proposed method at δ = 100 demonstrates
a significant encoding time complexity reduction with a lower impact on the measured objective and
subjective quality, compared to the implementation presented in [10]. The algorithm proposed by
Liu et al. [34] shows a slightly higher encoding time gain at a higher visual quality impact. The proposed
method with δ = 20 records the highest encoding complexity reduction, with an average ∆T of 67.34%.
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The high visual quality degradation and fixed time gains of [34] can be attributed to the rigid
models used in the approach. Similarly, the fixed time complexity reductions in [10] are a result of
the offline and fixed-threshold models, that do not continuously adapt to the changing nature of the
video content. The proposed method, on the contrary, makes use of content-adaptive models with
the complexity control parameter δ that can be tuned by the user. This allows higher time complexity
reductions, while also keeping the encoding quality intact. Furthermore, it gives the flexibility to the
user to trade-off the computational complexity with the encoding efficiency according to individual
application requirements. In addition, the RD performance graphs for the bit streams generated by the
proposed algorithm depicted in Figure 6 demonstrate similar coding efficiency performance to that of
the bit streams generated by the HM16.1 reference encoder implementation.
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Figure 6. RD performance of three sample video sequences. Top row corresponds to RD graphs drawn
with PSNR as the quality metric. Bottom row corresponds to the VQM as the quality metric. RD:
Rate-Distortion.

6. Conclusions

In this paper, we propose a fast content-adaptive CU size selection mechanism using weighted
SVMs. The proposed SVM models are utilised at two different levels in the HEVC encoding chain.
First, level-1 SVM models are used before the encoding of the current CU to determine whether to
skip the current level or to encode the current CU level. This early CU size decision eliminates the
evaluation of unnecessary CU sizes, thus, enabling the proposed algorithm to achieve significant
encoding time reductions. The CU size decisions that cannot be classified as “split” or “non-split” with
the level-1 SVM models are passed on to level-2 SVM model which operates once the current CU level
is evaluated for all the possible PU modes. The level 2 SVM model then decides whether to continue
the recursive splitting of the CU or move on to the next coding block.

The proposed method collects data and builds models in run-time during the encoding
process, which makes the CU split decisions derived using the proposed algorithm dynamic and
content-adaptive—a crucial advantage compared to the state-of-the-art methods that rely on large
amounts of past data. The complexity control parameter introduced in this work allows the proposed
algorithm to control the amount of decisions taken by the SVM models and traditional RD optimisation,
thereby effectively trading-off the computational complexity to the coding efficiency. The experimental
results reveal an average encoding time saving of up to 52.38%, with only 1.19% average BDBR
increase (i.e., increase in bitrate to a similar video quality by the proposed algorithm) compared to
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the HM16.1 encoded bit streams, when using PSNR as the quality measurement for the reconstructed
videos. Similarly, the proposed algorithm demonstrates 1.52% average BDBR increase compared to
HM encoded streams when measuring the users’ perceived video quality using VQM. Therefore,
the proposed algorithm provides an effective alternative compared to the state-of-the-art algorithms to
reduce the encoding time complexity of HEVC intra-coding in emerging multimedia applications.

The future works will focus on extending the framework for HEVC inter-prediction to facilitate
fast content-adaptive HEVC video coding.
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