
future internet

Article

Software Defined Wireless Mesh Network Flat
Distribution Control Plane

Hisham Elzainand Yang Wu *

College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China
* Correspondence: yangwu@hrbeu.edu.cn

Received: 5 May 2019; Accepted: 18 July 2019; Published: 25 July 2019
����������
�������

Abstract: Wireless Mesh Networks (WMNs), have a potential offering relatively stable Internet
broadband access. The rapid development and growth of WMNs attract ISPs to support users’
coverage anywhere anytime. To achieve this goal network architecture must be addressed carefully.
Software Defined Networking (SDN) proposes new network architecture for wired and wireless
networks. Software Defined Wireless Networking (SDWN) has a great potential to increase efficiency,
ease the complexity of control and management, and accelerate technology innovation rate of wireless
networking. An SDN controller is the core component of an SDN network. It needs to have updated
reports of the network status change, as in network topology and quality of service (QoS) in order to
effectively configure and manage the network it controls. In this paper, we propose Flat Distributed
Software Defined Wireless Mesh Network architecture where the controller aggregates entire topology
discovery and monitors QoS properties of extended WMN nodes using Link Layer Discovery Protocol
(LLDP) protocol, which is not possible in multi-hop ordinary architectures. The proposed architecture
has been implemented on top of POX controller and Advanced Message Queuing Protocol (AMQP)
protocol. The experiments were conducted in a Mininet-wifi emulator, the results present the
architecture control plane consistency and two application cases: topology discovery and QoS
monitoring. The current results push us to study QoS-routing for video streaming over WMN.

Keywords: SDWN; SDWMN; SDN distributed control plane; topology discovery; QoS monitoring

1. Introduction

Wireless Mesh Networks (WMNs)are multi-hop networks that are regarded as a wireless potential
key architecture providing wide Internet coverage for specific areas. They have a significant role in
various scenarios of applications such as public safety, transportation, enterprise networks, mining
fields and emergency response, etc. The deployment and use of WMNs is relatively quick and low-cost
due to there being no need for any wired network as a backbone [1]. A WMN consists of three types of
nodes: mesh clients (any end-user wireless device e.g., smart phone, laptop, etc.), mesh routers (to
build a wireless network backbone), and gateways (special routers that can connect to the Internet).
In infrastructure WMNs, mesh routers are static and can be equipped with several radio technologies,
such as WiFi (IEEE 802.11), ZigBee (IEEE 802.15.4) and WiMAX (IEEE 802.16) [2,3] fora high coverage
of the targeted area. Despite the steadily evolving wireless technology standards, there are structural
barriers that still prevent wireless networks’ infrastructure from being open to fulfilling technical
innovation requirements [4].

Software Defined Wireless Networks (SDWN) [5,6] is the technical term of applying Software
Defined Networking’s (SDN) concepts to wireless networks. SDWN attempts to inherit (wired) SDN
flexibility, it decouples radio control and radio data forward functions from each other, to assist
wireless networks in becoming more flexible by abstracting the underlying wireless infrastructure
from network services and applications through higher-level APIs. So, wireless networks under SDN

Future Internet 2019, 11, 166; doi:10.3390/fi11080166 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
http://dx.doi.org/10.3390/fi11080166
http://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/1999-5903/11/8/166?type=check_update&version=2

Future Internet 2019, 11, 166 2 of 17

architecture are becoming more innovative ecosystems and break down mentioned structural barriers.
As a consequence, wireless networks were faced with applied challenges such as boot-strapping [7]
(i.e., network control plane initialization), topology discovery, link quality specifications monitoring,
among others [8]. In this work, we propose solutions to these challenges in an SDN-based WMN
which is called the Software Defined Wireless Mesh Network (SDWMN) [9]. SDN can create resilient
network architectures. It can create a physically centralized network control architecture (a single
controller or controllers in a master/slave approach) or a physically distributed logically centralized
architecture that relies on distributed controllers organized either hierarchically or flatly, to control
multi-domains to achieve network reliability and scalability [10,11]. The distributed control plane
approach incurs different complexity to develop and manage SDN controllers. However, these solutions
are more responsive to network status changing and handling related events, because the controllers
distribute through the network closer to resources of events than in centralized architecture. Several
studies [12–14] distribute SDN controllers to handle the network control plane workload based on
topology. They follow topological structures on the controllers’ distribution in network architecture
in flat and hierarchical designs. An orchestration framework requires maintaining the topology of
all network domains [15]. So, an effective network topology discovery mechanism is essential for
managing the network and deploying end-to-end applications and services on top of the orchestration
architecture among multiple distributed domains. The network global view is a critical factor in
SDN architecture, and the controller provides such view by a topology discovery service. Thus,
the information offered by topology discovery is crucial for network applications such as routing,
network resources allocation and management, and fault recovery that reside on top of the SDN
controller. In this context, the topology discovery process time and load are fundamental for a timely
and lightweight response. Therefore, up-to-date network topology discovery must use efficient
mechanisms in SDN architecture, and it becomes one of the significant design metrics for SDN
scalability [16]. Keeping an overall view of a large network surely generates a huge amount of
information about the physical plane state. Furthermore, the massive volume of a control flow would
produce a heavy load to the SDN controller which could degrade the controller performance [17]. As a
consequence, network scalability problems are arising. The current SDN topology discovery scheme,
which is designed for wired networks, does not suffice for wireless networks requirements. Also,
it does not collect any quality of service (QoS) properties of underlying network elements.

This paper addresses distributed multiple-domain SDWMN, as presented in Figure 1, which can
be deployed for various applications of WMN. Generally, they are decomposed into geographical or
administrative interconnected domains, each domain can consist of mesh routers that are equipped
with various wireless interface standard technologies, generally any IEEE802.11 standard with at least
two frequency bands (one for the control plane and other for the data plane). The Ad-hoc On-Demand
Distance Vector Routing (AODV) is used as a QoS routing protocol and delay is used as the main metric,
but this work focuses on finding an appropriate architecture that allows using a state-of-art topology
discovery and QoS monitoring using Link Layer Discovery Protocol(LLDP) to offer topological and
QoS information for any QoS routing protocol that can reside as application on the application plane
of the SDN controller in WMN. Surely this is the heterogeneity and distributed nature that WMN calls
for to be more robust to failure and adaptable to user requirements. The state-of-the-art distributed
solutions of SDWN are not sufficient for WMN scalability, as it needs a fine-grain control plane that
depends on an efficient communication system for inter-controller exchange. We propose FD-SDWMN
architecture, a Flat Distributed SDWMN. It distributes the control plane among flat distributed SDN
controllers; we show how the control plane initializes dynamically to solve the SDN bootstrap problem.
After that, the architecture starts providing the main functionalities such as network traffic engineering
and disruption and attack survival.

Future Internet 2019, 11, 166 3 of 17

Future Internet 2019, 11, 166 3 of 17

Control plan

Local Domain A

Local Controller

Mesh Router

Local Domain B

Local Domain A
Figure 1. Flat Distributed-Software Defined Wireless Mesh Network (FD-SDWMN) flat architecture.

Contrary to currently distributed SDN architectures, WMN based on FD-SDWMN is resilient
enough to discriminate links with the best characteristics (bandwidth, latency, packet loss, etc.) for
data forwarding. FD-SDWMN is implemented on top of POX [18] OpenFlow controller, and
Advanced Message Queuing Protocol AMQP [19]. For FD-SDWMN architecture performance
evaluation, we present its functionalities on a Mininet-wifi [20] emulator for SDWN according to a
control plane consistency test and two application cases: the topology discovery mechanism for
multi-hop networks (the state-of-the-art topology discovery cannot be applied to a multi-hop
network such as WMN) and QoS monitoring.

The rest of the paper is organized as follows: Section 2 describes the FD-SDWMN architecture,
it presents the modules and agents that compose the controller. Section 3 presents the proposed
architecture implementation. A detail description of the topology discovery and QoS monitoring is
presented in Sections 4–6. In Section 7 this work evaluates the experimental results. Section 8
concludes the paper and presents our future work.

2. FD-SDWMN Architecture

A centralized controller in SDWMN manages all the switches (mesh routers) of the network
(controller–router connection is in a multi-hop). That means each router in the network needs to rely
on one controller for forwarding decisions. Thus, for every new flow, each router generates a request
to the controller, which responds with appropriate flow entry messages. Obviously, this scenario
costs the controller more load and decreases network performance. On the contrary, in FD-SDWMN
architecture, the network control has logically divided via network slicing into flat distributed
controllers, each of which controls a local domain (controller–router connection is in a single-hop).

2.1. Overall Architecture

FD-SDWMN is a distributed, multi-domain, SDWMN control plane that enables efficient
delivery of end-to-end network services. The FD-SDWMN control plane composes of distributed
controllers that are in charge of network domains, they communicate with each other to exchange
their local information to aggregate a network-wide view for efficient end-to-end management.
Figure 2 shows that the controller architecture is composed of two parts: the local level, where the
main functionalities of a local domain are gathered, and the global level, which aggregates other
domains’ control information such as topology state, QoS properties, etc. Also, southbound

Figure 1. Flat Distributed-Software Defined Wireless Mesh Network (FD-SDWMN) flat architecture.

Contrary to currently distributed SDN architectures, WMN based on FD-SDWMN is resilient
enough to discriminate links with the best characteristics (bandwidth, latency, packet loss, etc.) for
data forwarding. FD-SDWMN is implemented on top of POX [18] OpenFlow controller, and Advanced
Message Queuing Protocol AMQP [19]. For FD-SDWMN architecture performance evaluation,
we present its functionalities on a Mininet-wifi [20] emulator for SDWN according to a control plane
consistency test and two application cases: the topology discovery mechanism for multi-hop networks
(the state-of-the-art topology discovery cannot be applied to a multi-hop network such as WMN) and
QoS monitoring.

The rest of the paper is organized as follows: Section 2 describes the FD-SDWMN architecture,
it presents the modules and agents that compose the controller. Section 3 presents the proposed
architecture implementation. A detail description of the topology discovery and QoS monitoring is
presented in Sections 4–6. In Section 7 this work evaluates the experimental results. Section 8 concludes
the paper and presents our future work.

2. FD-SDWMN Architecture

A centralized controller in SDWMN manages all the switches (mesh routers) of the network
(controller–router connection is in a multi-hop). That means each router in the network needs to rely
on one controller for forwarding decisions. Thus, for every new flow, each router generates a request to
the controller, which responds with appropriate flow entry messages. Obviously, this scenario costs the
controller more load and decreases network performance. On the contrary, in FD-SDWMN architecture,
the network control has logically divided via network slicing into flat distributed controllers, each of
which controls a local domain (controller–router connection is in a single-hop).

2.1. Overall Architecture

FD-SDWMN is a distributed, multi-domain, SDWMN control plane that enables efficient delivery
of end-to-end network services. The FD-SDWMN control plane composes of distributed controllers that
are in charge of network domains, they communicate with each other to exchange their local information
to aggregate a network-wide view for efficient end-to-end management. Figure 2 shows that the
controller architecture is composed of two parts: the local level, where the main functionalities of a
local domain are gathered, and the global level, which aggregates other domains’ control information

Future Internet 2019, 11, 166 4 of 17

such as topology state, QoS properties, etc. Also, southbound interfaces are used to push forwarding
policies to data plane elements and gather their status. Finally, the northbound interfaces provide
controllers with applications’ management policies and requirements.

Future Internet 2019, 11, 166 4 of 17

interfaces are used to push forwarding policies to data plane elements and gather their status.
Finally, the northbound interfaces provide controllers with applications’ management policies and
requirements.

Service
Manager

Event
Processing

Path
Computation

Monitoring
Manager

Monitoring
Agent

Reachability
Agent

Connectivity
Agent

Reservation
Agent

Visual Manager Module(GUI)

Host
Manager

Switch
Manager

Link
Discovery

Core Component

Co
or

di
na

to
r

Co
m

m
.

Dr
ive

r2
Co

m
m

.
Dr

ive
r1

Co
m

m
.

Dr
ive

r3

OpenFlow
Driver

Open Proto.
Driver

Vendor
Spec. Driver

Aggregate- DB
- Device registry
- Location registry
- Link states
- Reservations

REST

OpenFlow

AMQP
Local part Global part

Figure 2. FD-SDWMN controller architecture. AMQP: Advanced Message Queuing Protocol.

Multiple modules compose the controller functionalities, they are managed (start, stop, update
and communicate) by the core component. FD-SDWMN architecture leverages from the existing
SDN controller’s modules, such as the OpenFlow driver for OpenFlow protocol implementation,
router and host managers for keeping track of network elements and link discovery that implements
LLDP (Link Layer Discovery Protocol) for topology discovery. Furthermore, new modules are
developed to enhance architecture functionality as displayed in Figure 2. Controllers must
communicate with each other to gather and accumulate overall network status information. In order
to accomplish this task, each controller uses two essential parts: (i) a coordinator module discovers
neighboring domain controllers to establish and maintain a reliable and secure distributed
publish/subscribe channel. Moreover, (ii) different agents that exchange needed information among
controllers via this channel.

2.2. Local Functionalities

The local modules in charge of network topology discovery, QoS monitoring, etc., manage flow
prioritization, so according to network parameters the controller computes routes for the priority
flow. Also, the modules react to network state (link broken, high latency, bandwidth degradation,
etc.) dynamically by stopping and/or redirecting traffic according to its criticality. This work is
different from our previous work [21] that presented a hierarchical architecture.

• The aggregated-DB: is a central database in which a controller stores its local domain and other
domains knowledge on topology, QoS monitoring and ongoing data flow. Other modules and
agents use this information to reach the ultimate goals, i.e., taking suitable action on flows
within a local domain and entire network.

Figure 2. FD-SDWMN controller architecture. AMQP: Advanced Message Queuing Protocol.

Multiple modules compose the controller functionalities, they are managed (start, stop, update
and communicate) by the core component. FD-SDWMN architecture leverages from the existing SDN
controller’s modules, such as the OpenFlow driver for OpenFlow protocol implementation, router
and host managers for keeping track of network elements and link discovery that implements LLDP
(Link Layer Discovery Protocol) for topology discovery. Furthermore, new modules are developed
to enhance architecture functionality as displayed in Figure 2. Controllers must communicate with
each other to gather and accumulate overall network status information. In order to accomplish this
task, each controller uses two essential parts: (i) a coordinator module discovers neighboring domain
controllers to establish and maintain a reliable and secure distributed publish/subscribe channel.
Moreover, (ii) different agents that exchange needed information among controllers via this channel.

2.2. Local Functionalities

The local modules in charge of network topology discovery, QoS monitoring, etc., manage flow
prioritization, so according to network parameters the controller computes routes for the priority
flow. Also, the modules react to network state (link broken, high latency, bandwidth degradation, etc.)
dynamically by stopping and/or redirecting traffic according to its criticality. This work is different
from our previous work [21] that presented a hierarchical architecture.

• The aggregated-DB: is a central database in which a controller stores its local domain and other
domains knowledge on topology, QoS monitoring and ongoing data flow. Other modules and
agents use this information to reach the ultimate goals, i.e., taking suitable action on flows within
a local domain and entire network.

• The QoS monitoring module: gathers QoS information such as bandwidth, delay, jitter and packet
loss of domain switches and links in between using customized LLDP packets, and other domains’
QoS information is aggregated.

Future Internet 2019, 11, 166 5 of 17

• The path computation module: computing routes from source to destination in the local domain
and entire network using the Dijkstra algorithm taking into account QoS metrics of links in between.
This module consults the aggregated-DB for network topology and QoS monitoring information.

• The service manager module: supports end-to-end provisioning by receiving requests from
northbound APIs for efficient network SLA (Service Level Agreement) management. It verifies
SLA feasibility and respect for consulting other modules.

• The virtual manager module: resides on top of the other modules. It offers a Graphical User
Interface (GUI) through network virtualization to interact with other modules. It gathers
information from many down modules and displays them to the network operator. Also,
it provides them with essential network parameters such as flow priorities, new routes, etc.

• The coordinator: this module establishes a control channel between controllers. It manages status
information that frequently exchanges (such as link state, host presence) and requests between
controllers. Hence, this communication channel should be reliable to guarantee the messaging
process. For delivery security and reliability, AMQP is used for Coordinator implementation
because it ensures Reliability of message deliveries, Rapid and ensured delivery of messages and
Message acknowledgements.

2.3. Global Functionality

To collect and maintain a global network view in each controller supporting network efficient
QoS routing and reservation functionalities, the following agents are defined and implemented.

• The connectivity agent: is in charge of maintaining peering links between the controllers. The work
of this agent is based on event-driven fashion, it only sends information if a new controller is
discovered or existing peering link between controllers is changed. This information is grouped
and maintained into the aggregated-DB, and like other information it is accumulated by all
neighboring connectivity agents. Eventually, the connectivity information is used to make global
routing decisions by the path computation module.

• The monitoring agent: periodically receives information (QoS properties) about available links
and their capabilities, in order to support traffic transmission among network domains.

• The Reachability agent: advertises the hosts presence on local domain margins so they become
reachable. It offers a roadmap between domain switches and hosts.

• The reservation agent: is concerned with overall network flow setup, e.g., link teardown,
and updates requests and application requirements such as QoS. It is like the Resource Reservation
Protocol (RSVP). Each controller handles these requests by the service manager, and the reservation
agents of these controllers along the path communicate to create and maintain the needed path.

In order to achieve FD-SDWMN control plane consistency, the agents publish and consume
messages managing the required topics. The aggregated information that concerns reachability
(reachable hosts listed in the network), connectivity (a list of peering controllers) and monitoring
(peering transit paths status, in terms of QoS metrics, etc.). This way, a controller can build a view of
the entire network. Thus, it has the capabilities to perform path reservation, routing and manage SLAs.

3. Architecture Implementation

We implemented FD-SDWMN architecture on top of the POX, an open source controller. There were
some modules taken from POX’s Python code with a little modification, other modules were developed
in Python to manage controllers’ communication. The agents located in each controller notify link
states, device location and requests of path reservation using this control channel.

3.1. Coordinator Implementation

The coordinator is implemented as any other POX application. It receives Packet-In messages
from the Core module after subscription, sends its Packet-Out messages, reads and writes

Future Internet 2019, 11, 166 6 of 17

information from/to the aggregated-DB and at startup it views the POX controller configuration file.
For coordinator operation, there are configurations parameters which should determine: agents_list,
messaging_server_type and messaging_server_listening_port. Also, other optional parameters can
be specified. An agent is a small class that manages inter-domain exchanges to/from a module to
handle intra-domain communication. Coordinator activates a specific agent from the agents_list
by specifying the port that it reaches by the messaging_server_listening_port. Moreover, from the
messaging_server_type parameter, the coordinator determines the messaging driver that it uses, for
current implementation the RabbitMQ driver [21] is used to implement the federation mode of AMQP,
but the FD-SDWMN architecture allows the use of other AMQP implementations such as Active MQ.

The coordinator implements an extended LLDP (Link Layer Discovery Protocol) version, which is
called Coordinator-LLDP (C-LLDP) that is used in discovery functionality. The C-LLDP message
contains an OpenFlow option added to the regular LLDP message. Moreover, IEEE has allocated
the Organizationally Unique Identifier (OUI) to OpenFlow. The coordinator sends these messages
announcing controller existence in order to discover other domains’ controllers. When it receives a
reply toa discovery message, it establishes a connection via AMQP to its peer in that controller and
stops sending discovery messages. Otherwise, the coordinator continues sending discovery messages
periodically. A C-LLDP message—as shown in Figure 3—contains the required information to reach
a controller.

Future Internet 2019, 11, 166 6 of 17

3.1. Coordinator Implementation

The coordinator is implemented as any other POX application. It receives Packet-In messages
from the Core module after subscription, sends its Packet-Out messages, reads and writes
information from/to the aggregated-DB and at startup it views the POX controller configuration file.
For coordinator operation, there are configurations parameters which should determine: agents_list,
messaging_server_type and messaging_server_listening_port. Also, other optional parameters can
be specified. An agent is a small class that manages inter-domain exchanges to/from a module to
handle intra-domain communication. Coordinator activates a specific agent from the agents_list by
specifying the port that it reaches by the messaging_server_listening_port. Moreover, from the
messaging_server_type parameter, the coordinator determines the messaging driver that it uses, for
current implementation the RabbitMQ driver [21] is used to implement the federation mode of
AMQP, but the FD-SDWMN architecture allows the use of other AMQP implementations such as
Active MQ.

The coordinator implements an extended LLDP (Link Layer Discovery Protocol) version, which
is called Coordinator-LLDP (C-LLDP) that is used in discovery functionality. The C-LLDP message
contains an OpenFlow option added to the regular LLDP message. Moreover, IEEE has allocated the
Organizationally Unique Identifier (OUI) to OpenFlow. The coordinator sends these messages
announcing controller existence in order to discover other domains’ controllers. When it receives a
reply toa discovery message, it establishes a connection via AMQP to its peer in that controller and
stops sending discovery messages. Otherwise, the coordinator continues sending discovery
messages periodically. A C-LLDP message—as shown in Figure 3—contains the required
information to reach a controller.

Figure 3. The discovery message. LLDP: Link Layer Discovery Protocol; OUI: Organizationally
Unique Identifier.

The coordinator offers a communication channel (publish/subscribe) for inter-domain
exchanges. It is essential the operation is done via two particular topics: C_ID.*.* topic, where C_ID
is a controller identifier. Via this topic, other controllers can directly send messages to this controller.
For instance, this is used for a local domain topology discovery update. The other topic is general.*.*,
which enables a controller to communicate to all other controllers in the network, such as when a
controller decides to leave its domain.

Figure 3. The discovery message. LLDP: Link Layer Discovery Protocol; OUI: Organizationally Unique
Identifier.

The coordinator offers a communication channel (publish/subscribe) for inter-domain exchanges.
It is essential the operation is done via two particular topics: C_ID.*.* topic, where C_ID is a controller
identifier. Via this topic, other controllers can directly send messages to this controller. For instance,
this is used for a local domain topology discovery update. The other topic is general.*.*, which enables
a controller to communicate to all other controllers in the network, such as when a controller decides
to leave its domain.

The coordinator communicates with AMQP implementation via drivers. An AMPQ driver should
support a set of functions:

(1) Subscribe (topic)/unsubscribe (topic): to add and remove a topic to/from the topic list.
(2) Send (topic, message): send to a particular topic a specific message.

Future Internet 2019, 11, 166 7 of 17

(3) Pair (C_ID) and unPair (C_ID): controller function to create a control channel to another controller
and the opposite function is to remove this channel when a controller fails and is not able to
receive information from neighbors.

The coordinator also maintains a controller existence by sending periodic Keep-Alive messages.
In the case that three contiguous Keep-Alive messages have no response, a controller infers that its
neighbor controller has failed and it triggers a mitigate procedure for this failure. The coordinator
application is flexible enough for an extension without altering the main classes of POX. Developers
can provide a new driver for the implementation of AMQP to extend the coordinator class, or by
adding a new agent function.

3.2. Agents Implementation

Agents use the coordinator to exchange information between distributed controllers
among neighboring domains. In this architecture, four agents were developed: Reachability,
Connectivity, Monitoring and Reservation (see Section 2.3). They publish on particular topics, e.g.,
monitoring.C_ID.bandwidth.2s where the monitoring agent at a controller that is identified by C_ID
advertises the remaining bandwidth it can offer for traffic transmission. Any received information from
neighboring domains’ agents is stored in the aggregated-DB of the local agent. Then this information
is used by the modules of the local controller to take a decision on flows over the network.

For end-to-end provisioning, the reservation agents implement a mechanism like RSVP reservation
protocol, they exchange reservation requests responding to flow descriptors. The development of
the coordinator and its assistants (drivers, agents, etc.) adds extra lines of code and their operation
consumes extra memory of the POX controller.

4. Topology Discovery

Topology discovery is critical for the efficient operation of SDN-based network services and
applications, which need to have updated information that describes the network state. An SDN
controller is responsible for offering this information using an efficient and reliable approach. There is
no standard topology discovery of OpenFlow devices. However, most of the current SDN controller
systems use the same approach implemented by the original SDN controller (i.e., NOX controller) [22].
This mechanism, named OpenFlow Discovery Protocol (OFDP) [23], is used as a topology discovery de
facto scheme. OFDP leverages the Link Layer Discovery Protocol (LLDP) [24], which allows switches
in LAN (IEEE 802 Local Area Network) to advertise their capabilities to each other. Figure 4 depicts a
simple scenario for topology discovery, the process detailed in [22]. Although the OFDP mechanism
was adopted by the majority of the current controller platforms, the controller suffers from the number
of messages loaded during the process. For one cycle of topology discovery, the controller sends a
Packet-Out message per every active port of the switches and receives two Packet-In messages for
each of links between them. Since topology discovery is a periodical process, the OFDP mechanism
affects controller performance because the number of packets in/out to/from a controller is dependent
on the number of network switches and their active ports. For that, the heavy load of the topology
discovery process in a controller is increased according to the network scale.

Future Internet 2019, 11, 166 8 of 17
Future Internet 2019, 11, 166 8 of 17

Figure 4. OpenFlow Discovery Protocol (OFDP) topology discovery simple scenario. SDN: Software
Defined Networking.

However, due to the operation mechanism of the LLDP protocol, it is not able to discover
multi-hop links between switches in pure or hybrid OpenFlow networks. Therefore, there are two
main problems of the current topology discovery approach, one is the controller overload and the
other is this approach only works in single-hop networks. To solve the first problem i.e., controller
overload, the authors in [22] proposed a new version of OFDP. They called it OpenFlow Discovery
Protocol version 2 (OFDPv2). It reduces the number of Packet-Out messages to one message per
switch, instead of one per each active port of the switch. The work proved that the modified version
is identical in discovery functionality to the original version. Furthermore, it achieves the aim with a
noticeable reduction messages exchanged and reduces the discovery induced CPU load of the
controller by around 45% without any consequent delay compared to OFDP.

To solve the second problem, i.e., the inability of applying OFDP or even OFDPv2 to multi-hop
networks, because both OFDP and OFDPv2 leverage LLDP packets as mentioned above, and LLDP
packets are a “bridge-filtered multicast address”, so they are a single hop and not forwarded across
switches [22]. In hybrid networks where there are one or more traditional switches (do not support
OpenFlow) between OpenFlow switches, they process the LLDP packets and drop them. Therefore,
the controller should use a combination of LLDP and BDDP (Broadcast Domain Discovery Protocol)
to discover indirect links between OpenFlow switches ports in the same broadcast domain [25].
However, this work does not present any solution for pure OF switches in multi-hop networks.

Adapting the OFDP topology discovery approach to SDN based wireless multi-hop networks is
a challenge. Due to its limitations in collecting wireless node and link characteristics, such as node
related attributes: localization and QoS properties, and link nature: not point-to-point and not fixed
connection capabilities like wired links, [26] proposed “A Generic and Configurable Topology
Discovery” to analyze the general topology discovery representation required by SDN applications
and how the SDN controllers offer it.

We consider our work as a direct adaptation of the state-of-the-art topology discovery in
wireless multi-hop networks.

4.1. Aggregated Topology Discovery Mechanism

Among the FD-SDWMN architecture, the aggregated topology discovery mechanism can have
the ability to apply the topology discovery protocol (OFDP) in multi-hop networks such as a

Figure 4. OpenFlow Discovery Protocol (OFDP) topology discovery simple scenario. SDN: Software
Defined Networking.

However, due to the operation mechanism of the LLDP protocol, it is not able to discover multi-hop
links between switches in pure or hybrid OpenFlow networks. Therefore, there are two main problems
of the current topology discovery approach, one is the controller overload and the other is this approach
only works in single-hop networks. To solve the first problem i.e., controller overload, the authors
in [22] proposed a new version of OFDP. They called it OpenFlow Discovery Protocol version 2
(OFDPv2). It reduces the number of Packet-Out messages to one message per switch, instead of one
per each active port of the switch. The work proved that the modified version is identical in discovery
functionality to the original version. Furthermore, it achieves the aim with a noticeable reduction
messages exchanged and reduces the discovery induced CPU load of the controller by around 45%
without any consequent delay compared to OFDP.

To solve the second problem, i.e., the inability of applying OFDP or even OFDPv2 to multi-hop
networks, because both OFDP and OFDPv2 leverage LLDP packets as mentioned above, and LLDP
packets are a “bridge-filtered multicast address”, so they are a single hop and not forwarded across
switches [22]. In hybrid networks where there are one or more traditional switches (do not support
OpenFlow) between OpenFlow switches, they process the LLDP packets and drop them. Therefore,
the controller should use a combination of LLDP and BDDP (Broadcast Domain Discovery Protocol) to
discover indirect links between OpenFlow switches ports in the same broadcast domain [25]. However,
this work does not present any solution for pure OF switches in multi-hop networks.

Adapting the OFDP topology discovery approach to SDN based wireless multi-hop networks
is a challenge. Due to its limitations in collecting wireless node and link characteristics, such as
node related attributes: localization and QoS properties, and link nature: not point-to-point and not
fixed connection capabilities like wired links, [26] proposed “A Generic and Configurable Topology
Discovery” to analyze the general topology discovery representation required by SDN applications
and how the SDN controllers offer it.

We consider our work as a direct adaptation of the state-of-the-art topology discovery in wireless
multi-hop networks.

Future Internet 2019, 11, 166 9 of 17

4.1. Aggregated Topology Discovery Mechanism

Among the FD-SDWMN architecture, the aggregated topology discovery mechanism can have
the ability to apply the topology discovery protocol (OFDP) in multi-hop networks such as a wireless
mesh network. The mechanism is based on OFDPv2 and benefited from the multi-hop control channel
breaking into a single-hop by dividing the process into two phases: local domain topology discovery
and global network topology aggregation, the proposed mechanism reduces the heavy load of topology
discovery in the controller.

4.1.1. A Local Domain Topology Discovery

Each controller starts topology discovery service using its Link discovery module to discover
local domains’ nodes. Precisely, in this process, the local controller is concerned with link discovery,
and it does not need to rediscover the domain nodes (switches) since they already have initiated a
connection to the controller. A controller sends an individual Packet-Out, each of which contains an
LLDP packet, with a rule to send the specific packet out on the corresponding interface. Then via
the Packet-In message, the LLDP packets send to the controller obeying to the pre-installed rule that
says, “Forward any received LLDP packet from any interface except CONTROLLER interface to the
controller”. The process is repeated for every router in the domain, to discover active links between
them. The entire domain topology discovery process is periodically performed every 5 s, the default
interval size of the NOX controller. Ultimately, each controller maintains up-to-date local domain
topology information in its aggregated-DB, and the connectivity agents exchange other domains’
topology information. To this end, this work proposes an initial appropriate SDN based architecture,
additional issues will be addressed such as channel sharing and propagation modes later.

4.1.2. Entire Network Topology Aggregation

Using the coordinator module each local controller can discover other neighboring domain’s
controllers and maintain a control channel to them, then the connectivity agents can exchange and
aggregate topology discovery information of the surrounding domain in each controller and aggregate
this information of entire network topology in its aggregated-DB. By using this hierarchically aggregated
mechanism over FD-SDWMN architecture, the heavy topology discovery computation burden on
a controller can reduce and the slow convergence time problem of the distributed nodes of high
scale WMNs can be addressed. Figure 5 depicts the control message flow of the aggregated topology
discovery mechanism.

Future Internet 2019, 11, 166 9 of 17

wireless mesh network. The mechanism is based on OFDPv2 and benefited from the multi-hop
control channel breaking into a single-hop by dividing the process into two phases: local domain
topology discovery and global network topology aggregation, the proposed mechanism reduces the
heavy load of topology discovery in the controller.

4.1.1. A Local Domain Topology Discovery

Each controller starts topology discovery service using its Link discovery module to discover
local domains’ nodes. Precisely, in this process, the local controller is concerned with link discovery,
and it does not need to rediscover the domain nodes (switches) since they already have initiated a
connection to the controller. A controller sends an individual Packet-Out, each of which contains an
LLDP packet, with a rule to send the specific packet out on the corresponding interface. Then via the
Packet-In message, the LLDP packets send to the controller obeying to the pre-installed rule that
says, “Forward any received LLDP packet from any interface except CONTROLLER interface to the
controller”. The process is repeated for every router in the domain, to discover active links between
them. The entire domain topology discovery process is periodically performed every 5 s, the default
interval size of the NOX controller. Ultimately, each controller maintains up-to-date local domain
topology information in its aggregated-DB, and the connectivity agents exchange other domains’
topology information. To this end, this work proposes an initial appropriate SDN based architecture,
additional issues will be addressed such as channel sharing and propagation modes later.

4.1.2. Entire Network Topology Aggregation

Using the coordinator module each local controller can discover other neighboring domain’s
controllers and maintain a control channel to them, then the connectivity agents can exchange and
aggregate topology discovery information of the surrounding domain in each controller and
aggregate this information of entire network topology in its aggregated-DB. By using this
hierarchically aggregated mechanism over FD-SDWMN architecture, the heavy topology discovery
computation burden on a controller can reduce and the slow convergence time problem of the
distributed nodes of high scale WMNs can be addressed. Figure 5 depicts the control message flow
of the aggregated topology discovery mechanism.

 Local domain
topology discovery

1. Packet_Out with
LLDP pak

Local Domain A Controller 1 Controller 2

Each controller
aggregates

Neighboring topology
information

AMQP

2. Packet_In with
LLDP pak

3. Update topology
information

 Local domain
topology discovery

1. Packet_Out with
LLDP pak

2. Packet_In with
LLDP pak

3. Update topology
information

Local Domain B

Figure 5. Messages flow for the aggregated topology discovery mechanism.

5. QoS Monitoring

Quality of service of network forwarding devices is particularly crucial for real-time
applications like video streaming. The current SDN topology discovery service does not monitor or

Figure 5. Messages flow for the aggregated topology discovery mechanism.

Future Internet 2019, 11, 166 10 of 17

5. QoS Monitoring

Quality of service of network forwarding devices is particularly crucial for real-time applications
like video streaming. The current SDN topology discovery service does not monitor or collect the QoS of
underlying network elements, in spite of the fact that it is based on the LLDP protocol, which can collect
QoS properties [27]. As shown in Figure 6a, additional to the mandatory TLVs (Type/Length/Value, i.e.,
key-value pair with length information) fields that are used in topology discovery, LLDP has optional
Type Length fields that can be customized to discover other features such as QoS properties. In [27]
four optional fields were identified to carry bandwidth, delay, jitter and packet loss, with an 8 byte size
of each property as shown in Figure 6b. Therefore, a customized LLDP packet for QoS collection is
longer than the original LLDP packet by 38 bytes. Since the aggregated mechanism allowed applying
LLDP-based topology discovery on FD-SDWMN, it also can monitor and collect QoS.

Future Internet 2019, 11, 166 10 of 17

collect the QoS of underlying network elements, in spite of the fact that it is based on the LLDP
protocol, which can collect QoS properties [27]. As shown in Figure 6a, additional to the mandatory
TLVs (Type/Length/Value, i.e., key-value pair with length information) fields that are used in
topology discovery, LLDP has optional Type Length fields that can be customized to discover other
features such as QoS properties. In [27] four optional fields were identified to carry bandwidth,
delay, jitter and packet loss, with an 8 byte size of each property as shown in Figure 6b. Therefore, a
customized LLDP packet for QoS collection is longer than the original LLDP packet by 38 bytes.
Since the aggregated mechanism allowed applying LLDP-based topology discovery on
FD-SDWMN, it also can monitor and collect QoS.

DESTIATION
MAC

SOURCE
MAC

DESTNATION
MACPREAMBLE ETHERTYPE CHASSID

TLV
PORT ID

TLV
TIME TO LIVE

TLV
OPTIONALS

TLV

END OF
LLDPDU

TLV

FRAME
CHECK

SEQUENCE

LLDP DATA UNIT (LLDPDU)

BANDWIDTH
8 byte

PACKET LOSS
8 byte

DELAY
8 byte

JITTER
8 byte

ORGNIZAIN CODE
3 bytes

SUB TYPE
1 byte

LENGTH = 36
9 bits

TYPE = 127
7 bits

(a) LLDP Frame Structure

QoS properties

(b) Customized QoS-aware Structure

QoS

 Customize

Figure 6. LLDP packet format for quality of service (QoS) monitoring.

6. The Controller Traffic Overhead

Controller load and performance is a critical factor of SDN scalability. Since the topology
discovery service in the SDN controller is running periodically, it is important to calculate and
know the load this service exploits the controller. As was mentioned above, the FD-SDWMN
architecture offers the appropriate environment for applying topology discovery based on LDDP.
Due to the current topology discovery mechanism, the controller load depends on the number of
Packet-Out messages that the controller should send addition to the number of Packet-In messages
received. Discovering a local domain topology is not different from the state-of-the-art mechanism.
In every discovery cycle, the amount of received LDDP Packet-In(PKT୍ ୒) messages by a controller
depends on the number of nodes a local domain has. Actually, it is twice the amount of active
inter-router links within the domain, a packet per each link direction. On the other hand, the total
amount of LLDP Packet-Out (PKT୓୙୘) messages sent by the controller every cycle is equal to the
total number of switches.

With N being the number of switches the domain has andL the number of inter-switch links,
similarly to a single controller single-hop architecture, the number of messages in/out of the
controller can be expressed as follows:

For the current mechanism (OFDPv2): PKT୍ ୒ = 2L (1) PKT୓୙୘ = N (2)

A significant reduction of the LLDP Packet-In and Packet-Out message numbers for the entire
network topology discovery can be achieved in every controller of the FD-SDWMN architecture
when discovering entire network topology using the aggregated topology discovery mechanism.
The controller load can be calculated in two stages: firstly, when discovering links between local
domain switches, depending on the number of domain members. Secondly, the load of aggregating
the other neighbors’ local domain’s topology information as an event-driven message for each
domain using connectivity agents of AMQP, depending on the performance of the AMQP system.

With N୐୭ୡୟ୪ being the number of local domain switches, L୐୭ୡୟ୪ the number of inter-local
domain links, M(AMQP) the number of messages exchanged by connectivity agents, the number
of messages in/out of the controller can be expressed as follows: PKT୍ ୒ = 2L୐୭ୡୟ୪ + M(AMQP) (L୐େ<L) (3)

Figure 6. LLDP packet format for quality of service (QoS) monitoring.

6. The Controller Traffic Overhead

Controller load and performance is a critical factor of SDN scalability. Since the topology discovery
service in the SDN controller is running periodically, it is important to calculate and know the load
this service exploits the controller. As was mentioned above, the FD-SDWMN architecture offers
the appropriate environment for applying topology discovery based on LDDP. Due to the current
topology discovery mechanism, the controller load depends on the number of Packet-Out messages
that the controller should send addition to the number of Packet-In messages received. Discovering a
local domain topology is not different from the state-of-the-art mechanism. In every discovery cycle,
the amount of received LDDP Packet-In (PKTIN) messages by a controller depends on the number
of nodes a local domain has. Actually, it is twice the amount of active inter-router links within the
domain, a packet per each link direction. On the other hand, the total amount of LLDP Packet-Out
(PKTOUT) messages sent by the controller every cycle is equal to the total number of switches.

With N being the number of switches the domain has and L the number of inter-switch links,
similarly to a single controller single-hop architecture, the number of messages in/out of the controller
can be expressed as follows:

For the current mechanism (OFDPv2):

PKTIN = 2L (1)

PKTOUT = N (2)

A significant reduction of the LLDP Packet-In and Packet-Out message numbers for the entire
network topology discovery can be achieved in every controller of the FD-SDWMN architecture
when discovering entire network topology using the aggregated topology discovery mechanism.
The controller load can be calculated in two stages: firstly, when discovering links between local
domain switches, depending on the number of domain members. Secondly, the load of aggregating
the other neighbors’ local domain’s topology information as an event-driven message for each domain
using connectivity agents of AMQP, depending on the performance of the AMQP system.

Future Internet 2019, 11, 166 11 of 17

With NLocal being the number of local domain switches, LLocal the number of inter-local domain
links, M(AMQP) the number of messages exchanged by connectivity agents, the number of messages
in/out of the controller can be expressed as follows:

PKTIN = 2LLocal + M(AMQP)(LLC < L) (3)

PKTOUT = NLocal + M(AMQP)(NLC < N) (4)

Together with the FD-SDWMN architecture, this adapts a suitable environment to apply current
topology discovery in WMN. Moreover, it reduces the load of the controller. It reduces the number
of the direct topology discovery message i.e., Packet-In and Packet-Out messages, and after AMQP
starts, the connectivity agents send the topological information messages on-demand. Then the load
calculation of direct discovery messages in the controller depends only on the number of the switches
of the domain it controls instead of the entire network’s switches, in addition to the load of messages
exchanged by the connectivity agents between a particular controller and peering controllers that are
distributed over WMN.

Since the number of switches and their ports is the key parameter that impacts the controller
load in OFDP [22], the aggregated mechanism can be compared with OFDPv2 to see how much it has
improved the topology discovery load on the controller. We calculate G the gained efficiency in terms
of reduction of the number of direct Packet-In and Packet-Out messages, for mesh network with N
switches, NLocal local domain switches and fi interface for a router as follows:

GPKT-IN =
PKTIN-OFDPv2−PKTIN-aggregated

PKTIN-OFDPv2

=
2L−2LLocal

2L = 1− 2LLocal
2L

(5)

GPKT-OUT =
PKTOUT-OFDPv2−PKTOUT-aggregated

PKTOUT-OFDPv2

=
N−NLocal

N = 1− NLocal
N

(6)

Notice that the reduction gained will be higher for WMNs with a large number of total switches
according to Equation (6), but the number of nodes within a same local domain that is sharing the
same broadcast must be addressed. We verified this with experiments using Packet-Out because its
calculation only depends on the number of mesh routers and local controllers.

On the other hand, notice that customizing and extending the LLDP packet for QoS monitoring
despite it extends LLDP packet size, but the traffic flow is slightly different as in the topology
discovery service.

7. Evaluation

This section presents how we assessed FD-SDWMN capabilities. The addition of main functions
to this architecture such as QoS routing and reservation, aims to be resilient to disruptions in the
control plane (controller failure, inter-controller communication failure) or the data plane (inter-switch
link failure). Thus, we present a control plane adaptation test and two use cases to evaluate
FD-SDWMN features.

7.1. Experimental Setup

For experimental evaluation, we used Mininet-wifi, the Software Defined Wireless Network
emulator, which creates a network of virtual SDN switches (routers), stations (hosts) and wireless
channels (links). We exactly used Open vSwitch [28], which is a software-based virtual SDN switch
with OpenFlow support, to create mesh routers that are equipped with two non-overlapped interfaces.
Mininet-wifi was run in VirtualBox as virtualization software, and Linux used as the hosting operating
system. As we mentioned previously, the POX controller was used as our experimental SDN controller

Future Internet 2019, 11, 166 12 of 17

platform and the programming coding to implement the proposed architecture was implemented in
python. All the software used for experiment prototype implementation are summarized in Table 1.

Table 1. Software used in experiment.

Software Purpose Version

Ubuntu Linux Hosting OS 16.04
Mininet-wifi SDWN Emulator 2.2.1d1

POX SDN Controller Dart branch
FlowVisor [29] Network slicing 1.2.0
Open vSwitch SDN Virtual Switch 2.0.2

Python Programming Language 2.7

All experiments were performed on a Dell Laptop (Inspiron15 5000 Series) with an i7-8550U Intel
CPU, running at 1.8 GHz, with 12 GB DDR4 2400 MHz RAM.

7.2. Control Plane Adaptation

This scenario shows how FD-SDWMN’s controllers exchange control information and control
self-adaptation to the network states. To mitigate any congestion in the control messages, exchange
links between controllers’ agents offload traffic of a weak direct control connection (via a dedicated
control channel (out-of-band)), by identifying alternative routes or reducing the control messages
frequency on it if no alternative route. For instance, the monitoring agents usually send information
every 3 s, and this period changes to 10 s in weak links. Also, connectivity and reachability agents can
send their information via alternative routes. However, they are event-driven agents contrary to the
monitoring agent.

Upon control plane bootstrapping and controller discovery, the C1 and C2 are connected to
C3 as depicted in Figure 7. In this scenario, the control-link between C1 and C2 is congested
(its latency = 50 ms). Thus, the monitoring agent is relaying control messages between C1 and C2 via
C3 to offload the congested link.

Future Internet 2019, 11, 166 12 of 17

Table 1. Software used in experiment.

Software Purpose Version
Ubuntu Linux Hosting OS 16.04
Mininet-wifi SDWN Emulator 2.2.1d1

POX SDN Controller Dart branch
FlowVisor [29] Network slicing 1.2.0
Open vSwitch SDN Virtual Switch 2.0.2

Python Programming Language 2.7

All experiments were performed on a Dell Laptop (Inspiron15 5000 Series) with an i7-8550U
Intel CPU, running at 1.8GHz, with 12GB DDR4 2400MHz RAM.

7.2. Control Plane Adaptation

This scenario shows how FD-SDWMN’s controllers exchange control information and control
self-adaptation to the network states. To mitigate any congestion in the control messages, exchange
links between controllers’ agents offload traffic of a weak direct control connection (via a dedicated
control channel (out-of-band)), by identifying alternative routes or reducing the control messages
frequency on it if no alternative route. For instance, the monitoring agents usually send information
every 3s, and this period changes to 10s in weak links. Also, connectivity and reachability agents can
send their information via alternative routes. However, they are event-driven agents contrary to the
monitoring agent.

Upon control plane bootstrapping and controller discovery, the C1 and C2 are connected to C3
as depicted in Figure 7. In this scenario, the control-link between C1 and C2 is congested (its latency
= 50ms). Thus, the monitoring agent is relaying control messages between C1 and C2 via C3 to
offload the congested link.

C2

C3C1C3

C2

C1

Congested Congested

Figure 7. The control plane adaptation: (Left) the congested situation: C1 and C3 use the forwarding
link via C2; (Right) link disruption: C1 and C3 use the congested control link with adapting
information exchange frequency.

Figure 8 presents the conducted evaluation to show FD-SDWMN control plane adaptation with
network conditions, e.g., the C2↔C3 link failure. The figures show the utilization of the link in both
directions, left after C3 discovers C1 and C2 and the AMQP system starts exchanging messages
between them. The TCP payload of received packets splits into three stages:

• Local controller discovery: takes the first 9 s where controllers exchange their capabilities to
advertise themselves. The AMPQ communication system is active during this period because
the brokers should establish the control channel and subscribe to available topics. During this
stage, the monitoring process has already started but not adapted to the weak link yet.

Figure 7. The control plane adaptation: (Left) the congested situation: C1 and C3 use the forwarding
link via C2; (Right) link disruption: C1 and C3 use the congested control link with adapting information
exchange frequency.

Figure 8 presents the conducted evaluation to show FD-SDWMN control plane adaptation with
network conditions, e.g., the C2↔C3 link failure. The figures show the utilization of the link in both
directions, left after C3 discovers C1 and C2 and the AMQP system starts exchanging messages between
them. The TCP payload of received packets splits into three stages:

Future Internet 2019, 11, 166 13 of 17

• Local controller discovery: takes the first 9 s where controllers exchange their capabilities to
advertise themselves. The AMPQ communication system is active during this period because the
brokers should establish the control channel and subscribe to available topics. During this stage,
the monitoring process has already started but not adapted to the weak link yet.

• Monitoring adaptation: after the end of the previous stage until t = 33 s. In this period the weak
link is discovered by monitoring agents and they start adaptation behavior. As observed in
Figure 8a,d, the monitoring stopped from t = 10 s because the C1↔C3 is congested (weak), at the
time in Figure 8b,e, the monitoring traffic is increased over the C1↔C2 and C2↔C3 links as in
Figure 8b,c,e,f.

• Failure recovery: starts right after the alternative link C2↔C3 is cut at t = 33. Thus, the monitoring
information is forwarded via the congested link C1↔C3 but in adapted frequency, as in Figure 8b.

Future Internet 2019, 11, 166 13 of 17

• Monitoring adaptation: after the end of the previous stage until t = 33s.In this period the weak
link is discovered by monitoring agents and they start adaptation behavior. As observed in
Figure 8a,d, the monitoring stopped from t = 10s because the C1↔C3 is congested (weak), at the
time in Figure 8b,e, the monitoring traffic is increased over the C1↔C2 and C2↔C3 links as in
Figure 8b,c,e,f.

• Failure recovery: starts right after the alternative link C2↔C3 is cut at t = 33. Thus, the
monitoring information is forwarded via the congested link C1↔C3 but in adapted frequency,
as in Figure 8b.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 8. Monitoring information exchange adaptation. Different agent messages’ packets, the
bootstrap and discovery stage at t = 9s. The link was cut off at t = 33s, C2↔C3 link is cut off. (a) C1 →
C2; (b) C1 → C3; (c) C2 → C3; (d) C2 → C1; (e) C3 → C1; (f) C3 → C2.

7.3. Aggregated Topology Discovery

We implemented the aggregated topology discovery mechanism after performing the necessary
modification on the POX Link discovery module (discovery.py) in python to apply the enhanced
version of OFDP (i.e., OFDPv2). Extensive tests were performed on the architecture to establish
OFDPv2 functionality. As expected, it was implemented in WMN as one of the multi-hop networks.
The main goal of our evaluation is to prove that using the FD-SDWMN architecture allows using the
same approach of the current SDN topology discovery, as in Section 4.1, there is no difference
between the current mechanism and the first phase of the aggregated mechanism in regard to the
topology discovery of the local domains. Our focus is on the entire network topology discovery load
produced by LLDP packets that the controller sends and receives. The advantage of the aggregated
mechanism in every controller is to gather the topology information from other controllers by
distributed connectivity agents of AMQP in dynamic event-driven communication.

Figure 8. Monitoring information exchange adaptation. Different agent messages’ packets, the bootstrap
and discovery stage at t = 9 s. The link was cut off at t = 33 s, C2↔C3 link is cut off. (a) C1→ C2; (b) C1
→ C3; (c) C2→ C3; (d) C2→ C1; (e) C3→ C1; (f) C3→ C2.

7.3. Aggregated Topology Discovery

We implemented the aggregated topology discovery mechanism after performing the necessary
modification on the POX Link discovery module (discovery.py) in python to apply the enhanced
version of OFDP (i.e., OFDPv2). Extensive tests were performed on the architecture to establish

Future Internet 2019, 11, 166 14 of 17

OFDPv2 functionality. As expected, it was implemented in WMN as one of the multi-hop networks.
The main goal of our evaluation is to prove that using the FD-SDWMN architecture allows using the
same approach of the current SDN topology discovery, as in Section 4.1, there is no difference between
the current mechanism and the first phase of the aggregated mechanism in regard to the topology
discovery of the local domains. Our focus is on the entire network topology discovery load produced
by LLDP packets that the controller sends and receives. The advantage of the aggregated mechanism in
every controller is to gather the topology information from other controllers by distributed connectivity
agents of AMQP in dynamic event-driven communication.

We created a wireless mesh network topology of 105 switches, and five controllers, each of them
controlling a local domain of 25 switches (NLocal = 25). We observed and collected the statistics of each
controller outflow (Packet-Out) per topology discovery cycle. The experiment wasreplicated 10 times
with similar outcomes as expected. If we take a particular controller, we find it sends five Packet-Out
messages to discover its local domain switches. Then the controller saves this information in its
aggregated-DB and sends requests via connectivity agent to collect neighboring domains’ topology
information, and it also replies to any other controllers’ requests. So, we can calculate the controller
load if we estimate the number of messages produced by AQMP but this is out of the scope of this
paper. Contrarily, if we suppose one controller manages the entire network (N = 125), we can calculate
the number of Packet-Out = 125 messages according to Equation (2). Also, we can calculate efficiency
gain G of the aggregated mechanism over OFDPv2 as in Equation (6). As we see the experimental
results corresponding to Equations (2) and (4) and the parameters of the topology.

The reduction of Packet-Out messages results in a direct enhancement of controller CPU
performance. Then the aggregated mechanism which achieves a reduction in the number of both
Packet-In and Packet-Out messages instead of only reduction of Packet-In in OFDPv2, will positively
impact the controller CPU load. However, such a reduction of the CPU load of the FD-SDWMN
architecture is a significant improvement compared to the state-of-the-art. There are additional
benefits of the aggregated mechanism, we mention some of them here without evaluation, such as the
traffic reduction on a controller-router channel by reducing Packet-In and Packet-Out message flow,
particularly in SDN architectures that adopt an in-band controller.

7.4. QoS Monitoring Scenario

Here, we have tested the capability of QoS monitoring over FD-SDWMN. Figure 9 depicts a
simple scenario of application of video streaming over two local domain’s architecture, where A.H1
is the server that streams a video (size = 400 MB and length = 10 min) to the client B.H2. Initially,
QoS properties of the switches’ ports were set as follows: 5 Mbit for bandwidth and 2500 µs for the delay.
During the video streaming, QoS properties (bandwidth, delay, jitter and packet loss) were changing
due to the consumption of resources. The properties gathered by monitoring agent at controller A
proves that the aggregated mechanism can also effectively monitor QoS changing over LLDP. Figure 10
shows fluctuations curves (QoS over LLDP frontend GUI snapshots) of the QoS properties changes.
The Figure 10a–d present the real-time statistics of QoS properties bandwidth, delay, jitter and packet
loss, respectively, of interface B.S4-eth2 as instance (i.e., the second Ethernet interface eth2 of router s4
in the local domain B) monitoring from the controller B, then the controller A controller aggregates this
information in its aggregated-DB, and the monitoring process continues for all switch interfaces of the
domain. Duration of 15 s was used as the default interval of LLDP.

Despite QoS monitoring over LLDP adding extra bytes to customize the optional TLVs of LLDP
packets for QoS properties collecting, it has no significant difference in network traffic compared to
that caused by original packets such as those used for topology discovery. To evaluate this increase
of network traffic, we compared between pure LLDP packets (used for topology discovery) and
customized LLDP packets (used for QoS monitoring). Both scenarios run separately during video
streaming in the topology stated in Figure 9. Network traffic was captured using Wireshark, to measure
the total network traffic and only LLDP packets (packet filter set to “LLDP”) for 15 min. The evaluation

Future Internet 2019, 11, 166 15 of 17

results showed slightly different network traffic caused by QoS monitoring. The results showed that
the percentage of QoS monitoring is about 80%of the total packet flow compared to 77% for topology
discovery. This proves that QoS monitoring over LLDP does not cause network traffic performance
deterioration, Table 2 shows the evolution results.

Future Internet 2019, 11, 166 14 of 17

We created a wireless mesh network topology of 105 switches, and five controllers, each of
them controlling a local domain of 25 switches (N୐୭ୡୟ୪ = 25). We observed and collected the statistics
of each controller outflow (Packet-Out) per topology discovery cycle. The experiment wasreplicated
10 times with similar outcomes as expected. If we take a particular controller, we find it sends five
Packet-Out messages to discover its local domain switches. Then the controller saves this
information in its aggregated-DB and sends requests via connectivity agent to collect neighboring
domains’ topology information, and it also replies to any other controllers’ requests. So, we can
calculate the controller load if we estimate the number of messages produced by AQMP but this is
out of the scope of this paper. Contrarily, if we suppose one controller manages the entire network
(N = 125), we can calculate the number of Packet-Out = 125 messages according to Equation (2). Also,
we can calculate efficiency gain G of the aggregated mechanism over OFDPv2 as in Equation (6). As
we see the experimental results corresponding to Equations (2) and (4) and the parameters of the
topology.

The reduction of Packet-Out messages results in a direct enhancement of controller CPU
performance. Then the aggregated mechanism which achieves a reduction in the number of both
Packet-In and Packet-Out messages instead of only reduction of Packet-In in OFDPv2, will
positively impact the controller CPU load. However, such a reduction of the CPU load of the
FD-SDWMN architecture is a significant improvement compared to the state-of-the-art. There are
additional benefits of the aggregated mechanism, we mention some of them here without
evaluation, such as the traffic reduction on a controller-router channel by reducing Packet-In and
Packet-Out message flow, particularly in SDN architectures that adopt an in-band controller.

7.4. QoS Monitoring Scenario

Here, we have tested the capability of QoS monitoring over FD-SDWMN. Figure 9 depicts a
simple scenario of application of video streaming over two local domain’s architecture, where A.H1
is the server that streams a video (size = 400 MB and length = 10 min) to the client B.H2. Initially, QoS
properties of the switches’ ports were set as follows: 5 Mbit for bandwidth and 2500 µs for the delay.
During the video streaming, QoS properties (bandwidth, delay, jitter and packet loss)were changing
due to the consumption of resources. The properties gathered by monitoring agent at controller A
proves that the aggregated mechanism can also effectively monitor QoS changing over LLDP.
Figure 10 shows fluctuations curves (QoS over LLDP frontend GUI snapshots) of the QoS properties
changes. The Figure 10a–d present the real-time statistics of QoS properties bandwidth, delay, jitter
and packet loss, respectively, of interface B.S4-eth2 as instance (i.e., the second Ethernet interface
eth2 of router s4 in the local domain B) monitoring from the controller B, then the controller A
controller aggregates this information in its aggregated-DB, and the monitoring process continues
for all switch interfaces of the domain. Duration of 15 s was used as the default interval of LLDP.

Local Domain1

H1
Server

S2S1

Controller A

Local
domain A

S4

S2S1

eth2

S3

Local
domain B

S3

Controller BRabbitMQ

eth2

Figure 9. QoS monitoring during video streaming scenario. Figure 9. QoS monitoring during video streaming scenario.Future Internet 2019, 11, 166 15 of 17

(a)

(b)

(c)

(d)

Figure 10. QoS monitoring over LLDP Frontend GUI at the controller A. (a) B.S4-eth2: Bandwidth;
(b) B.S4-eth2: Delay; (c) B.S4-eth2: Jitter; (d) B.S4-eth2: Packet loss.

Despite QoS monitoring over LLDP adding extra bytes to customize the optional TLVs of LLDP
packets for QoS properties collecting, it has no significant difference in network traffic compared to
that caused by original packets such as those used for topology discovery. To evaluate this increase
of network traffic, we compared between pure LLDP packets (used for topology discovery) and
customized LLDP packets (used for QoS monitoring). Both scenarios run separately during video
streaming in the topology stated in Figure 9. Network traffic was captured using Wireshark, to
measure the total network traffic and only LLDP packets (packet filter set to “LLDP”) for15 min. The
evaluation results showed slightly different network traffic caused by QoS monitoring. The results
showed that the percentage of QoS monitoring is about 80%of the total packet flow compared to 77%
for topology discovery. This proves that QoS monitoring over LLDP does not cause network traffic
performance deterioration, Table 2 shows the evolution results.

Table 2. (QoS monitoring vs. topology discovery) over LLDP.

LLDP Packets for
Network Traffic

Total Packets LLDP Packets Total Bytes LLDP Bytes
QoS monitoring 459,315 3720 (0.80%) 2,303,289,200 479,700(0.021%)

Topology discovery 459,250 3551 (0.77%) 2,319,671,750 401,500(0.017%)

8. Conclusions

In this paper, we have proposed FD-SDWMN, a Flat Distributed Software Defined Wireless
Mesh Network multi-domain architecture. Its organization relies on a peering domain; each domain
is managed by a local controller. The controllers establish a lightweight manageable control channel
in between domains and are for agents that developed to share and aggregate network-wide
information in order to enhance end-to-end network services. The distribution of the controllers
surrounding a considerable number of mesh devices that cover large geographical areas supports
WMN network scalability, and SDN controllers need to be closer network edges for collecting and
monitoring network status. We demonstrated how FD-SDWMN works and resiliently responds and

Figure 10. QoS monitoring over LLDP Frontend GUI at the controller A. (a) B.S4-eth2: Bandwidth;
(b) B.S4-eth2: Delay; (c) B.S4-eth2: Jitter; (d) B.S4-eth2: Packet loss.

Table 2. (QoS monitoring vs. topology discovery) over LLDP.

LLDP Packets for
Network Traffic

Total Packets LLDP Packets Total Bytes LLDP Bytes

QoS monitoring 459,315 3720 (0.80%) 2,303,289,200 479,700(0.021%)

Topology discovery 459,250 3551 (0.77%) 2,319,671,750 401,500(0.017%)

Future Internet 2019, 11, 166 16 of 17

8. Conclusions

In this paper, we have proposed FD-SDWMN, a Flat Distributed Software Defined Wireless Mesh
Network multi-domain architecture. Its organization relies on a peering domain; each domain is
managed by a local controller. The controllers establish a lightweight manageable control channel in
between domains and are for agents that developed to share and aggregate network-wide information
in order to enhance end-to-end network services. The distribution of the controllers surrounding a
considerable number of mesh devices that cover large geographical areas supports WMN network
scalability, and SDN controllers need to be closer network edges for collecting and monitoring network
status. We demonstrated how FD-SDWMN works and resiliently responds and survives when network
disruption occurs. FD-SDWMN is a suitable architecture for multi-hop networks such as WMN in
order to benefit from SDN controller services, which are only applicable for single-hop networks,
e.g., topology discovery and QoS monitoring. We have implemented FD-SDWMN architecture on
top of the POX OpenFlow controller and the AMQP protocol. The architecture functionalities were
evaluated according to control plane adaptation test and two use cases: aggregated topology discovery
and QoS monitoring mechanisms. As a future work, we decided to enrich FD-SDWMN architecture
with additional self-healing and resilient recovery mechanisms to be more reliable for supporting QoS
routing for video streaming over WMN.

Author Contributions: Conceptualization, H.E.; Data curation, H.E.; Formal analysis, H.E.; Methodology, H.E.;
Resources, H.E.; Software, H.E.; Supervision, Y.W.; Validation, H.E.; Visualization, H.E.; Writing—original draft,
H.E.; Writing—review & editing, H.E.

Funding: The International Exchange Program of Harbin Engineering University funds this paper, for Innovation-
oriented Talents Cultivation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pakzad, F. Towards Software Defined Wireless Mesh Networks. Ph.D. Thesis, The University of Queensland,
Brisbane, Australia, 2017.

2. Akyildiz, I.F.; Wang, X.; Wang, W. Wireless mesh networks: A survey. Comput. Netw. 2005, 47, 445–487. [CrossRef]
3. Bertsekas, D.P. Network Optimization: Continuous and Discrete Models; Athena Scientific: Belmont, MA, USA, 1998.
4. Yap, K.-K.; Sherwood, R.; Kobayashi, M.; Huang, T.-Y.; Chan, M.; Handigol, N.; McKeown, N.; Parulkar, G.

Blueprint for introducing innovation into wireless mobile networks. In Proceedings of the Second ACM
SIGCOMM Workshop on Virtualized Infrastructure Systems and Architectures, New Delhi, India, 3 September
2010; pp. 25–32.

5. Jagadeesan, N.A.; Krishnamachari, B. Software-defined networking paradigms in wireless networks: A survey.
ACM Comput. Surv. 2014, 47, 27. [CrossRef]

6. Costanzo, S.; Galluccio, L.; Morabito, G.; Palazzo, S. Software Defined Wireless Networks: Unbridling SDNs.
In Proceedings of the 2012 European Workshop on Software Defined Networking (EWSDN), Darmstadt,
Germany, 25–26 October 2012; pp. 1–6.

7. Niephaus, C.; Ghinea, G.; Aliu, O.G.; Hadzic, S.; Kretschmer, M. SDN in the wireless context-towards full
programmability of wireless network elements. In Proceedings of the 2015 1st IEEE Conference on Network
Softwarization (NetSoft), London, UK, 13–17 April 2015; pp. 1–6.

8. Chaudet, C.; Haddad, Y. Wireless software defined networks: Challenges and opportunities. In Proceedings
of the 2013 IEEE International Conference on Microwaves, Communications, Antennas and Electronics
Systems (COMCAS 2013), Tel Aviv, Israel, 21–23 October 2013; pp. 1–5.

9. Abujoda, A.; Dietrich, D.; Papadimitriou, P.; Sathiaseelan, A. Software-defined wireless mesh networks for
internet access sharing. Comput. Netw. 2015, 93, 359–372. [CrossRef]

10. Bannour, F.; Souihi, S.; Mellouk, A. Distributed SDN control: Survey, taxonomy, and challenges. IEEE Commun.
Surv. Tutor. 2017, 20, 333–354. [CrossRef]

11. Karakus, M.; Durresi, A. A survey: Control plane scalability issues and approaches in Software-Defined
Networking (SDN). Comput. Netw. 2017, 112, 279–293. [CrossRef]

http://dx.doi.org/10.1016/j.comnet.2004.12.001
http://dx.doi.org/10.1145/2655690
http://dx.doi.org/10.1016/j.comnet.2015.09.008
http://dx.doi.org/10.1109/COMST.2017.2782482
http://dx.doi.org/10.1016/j.comnet.2016.11.017

Future Internet 2019, 11, 166 17 of 17

12. Bari, M.F.; Roy, A.R.; Chowdhury, S.R.; Zhang, Q.; Zhani, M.F.; Ahmed, R.; Boutaba, R. Dynamic controller
provisioning in software defined networks. In Proceedings of the 9th International Conference on Network
and Service Management (CNSM 2013), Zurich, Switzerland, 14–18 October 2013.

13. Phemius, K.; Bouet, M.; Leguay, J. Disco: Distributed multi-domain sdn controllers. In Proceedings of the
2014 IEEE Network Operations and Management Symposium (NOMS), Krakow, Poland, 5–9 May 2014.

14. Berde, P.; Gerola, M.; Hart, J.; Higuchi, Y.; Kobayashi, M.; Koide, T.; Lantz, B.; O’Connor, B.; Radoslavov, P.;
Snow, W.; et al. ONOS: Towards an open, distributed SDN OS. In Proceedings of the third workshop on Hot
topics in software defined networking, Chicago, IL, USA, 22 August 2014.

15. SDN Architecture Overview, Version 1.1; Document TR-504; Open Networking Foundation: Palo Alto, CA,
USA, 2014.

16. Ochoa Aday, L.; Cervelló Pastor, C.; Fernández Fernández, A. Discovering the network topology: An efficient
approach for SDN. Adv. Distrib. Comput. Artif. Intell. J. 2016, 5, 101–108. [CrossRef]

17. Aslan, M.; Matrawy, A. On the Impact of Network State Collection on the Performance of SDN Applications.
IEEE Commun. Lett. 2016, 20, 5–8. [CrossRef]

18. Kaur, S.; Singh, J.; Ghumman, N.S. Network programmability using POX controller. In Proceedings of the
ICCCS International Conference on Communication, Computing & Systems, Punjab, India, 8–9 August 2014.

19. AMQP. Available online: http://www.amqp.org (accessed on 23 July 2019).
20. Fontes, R.R.; Afzal, S.; Brito, S.H.B.; Santos, M.A.S.; Rothenberg, C.E. Mininet-WiFi: Emulating

software-defined wireless networks. In Proceedings of the 2015 11th International Conference on Network
and Service Management (CNSM), Barcelona, Spain, 9–13 November 2015.

21. Hisham, E.; Yang, W. Decentralizing Software-Defined Wireless Mesh Networking (D-SDWMN) Control Plane.
In Proceedings of the World Congress on Engineering (WCE 2018), London, UK, 4–6 July 2018; Volume 1.

22. Pakzad, F.; Portmann, M.; Tan, W.L.; Indulska, J. Efficient topology discovery in software defined networks.
In Proceedings of the 2014 8th International Conference on Signal Processing and Communication Systems
(ICSPCS), Gold Coast, Australia, 15–17 December 2014; pp. 1–8.

23. GENI Wiki. Available online: http://groups.geni.net/geni/wiki/OpenFlowDiscoveryProtocol (accessed on
23 July 2019).

24. Attar, V.Z.; Chandwadkar, P. Network discovery protocol lldp and lldp-med. Int. J. Comput. Appl. 2010, 1,
93–97. [CrossRef]

25. Ochoa Aday, L.; Cervelló Pastor, C.; Fernández Fernández, A. Current Trends of Topology Discovery in
OpenFlow-Based Software Defined Networks. Available online: https://upcommons.upc.edu/bitstream/

handle/2117/77672/Current%20Trends%20of%20Discovery%20Topology%20in%20SDN.pdf (accessed on
23 July 2019).

26. Chen, L.; Abdellatif, S.; Berthou, P.; Nougnanke, K.B.; Gayraud, T. A Generic and Configurable Topology
Discovery Service for Software Defined Wireless Multi-Hop Network. In Proceedings of the 15th ACM
International Symposium on Mobility Management and Wireless Access, Miami, FL, USA, 21–25 November
2017; pp. 101–104.

27. Chen, X.; Wu, J.; Wu, T. The Top-K QoS-aware Paths Discovery for Source Routing in SDN. KSII Trans.
Internet Inf. Syst. 2018, 12, 2534–2553.

28. Open vSwitch. Available online: http://openvswitch.org (accessed on 23 July 2019).
29. Flowvisor Wiki. Available online: https://github.com/OPENNETWORKINGLAB/flowvisor/wiki (accessed

on 23 July 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.14201/ADCAIJ201652101108
http://dx.doi.org/10.1109/LCOMM.2015.2496955
http://www.amqp.org
http://groups.geni.net/geni/wiki/OpenFlowDiscoveryProtocol
http://dx.doi.org/10.5120/207-348
https://upcommons.upc.edu/bitstream/handle/2117/77672/Current%20Trends%20of%20Discovery%20Topology%20in%20SDN.pdf
https://upcommons.upc.edu/bitstream/handle/2117/77672/Current%20Trends%20of%20Discovery%20Topology%20in%20SDN.pdf
http://openvswitch.org
https://github.com/OPENNETWORKINGLAB/flowvisor/wiki
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	FD-SDWMN Architecture
	Overall Architecture
	Local Functionalities
	Global Functionality

	Architecture Implementation
	Coordinator Implementation
	Agents Implementation

	Topology Discovery
	Aggregated Topology Discovery Mechanism
	A Local Domain Topology Discovery
	Entire Network Topology Aggregation

	QoS Monitoring
	The Controller Traffic Overhead
	Evaluation
	Experimental Setup
	Control Plane Adaptation
	Aggregated Topology Discovery
	QoS Monitoring Scenario

	Conclusions
	References

