Ea future internet ﬁw\p\py

Article

A Sidecar Object for the Optimized Communication
Between Edge and Cloud in Internet of

Things Applications

1 1,%

Stefano Busanelli 100, Simone Cirani 1, Lorenzo Melegari 1 Marco Picone , Mirco Rosa 2

and Luca Veltri 2

1 Caligoo Srl, Via Don Minzoni, 112, 42043 Taneto di Gattatico (RE), Italy

2 Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze, 181/A,
43124 Parma, Italy

Correspondence: marco.picone@caligoo.com

check for
Received: 31 May 2019; Accepted: 30 June 2019; Published: 5 July 2019 updates

Abstract: The internet of things (IoT) is one of the most disrupting revolutions that is characterizing
the technology ecosystem. In the near future, the IoT will have a significant impact on people’s lives
and on the design and developments of new paradigms and architectures coping with a completely
new set of challenges and service categories. The IoT can be described as an ecosystem where
a massive number of constrained devices (denoted as smart objects) will be deployed and connected
to cooperate for multiple purposes, such a data collection, actuation, and interaction with people.
In order to meet the specific requirements, IoT services may be deployed leveraging a hybrid
architecture that will involve services deployed on the edge and the cloud. In this context, one of
the challenges is to create an infrastructure of objects and microservices operating between both the
edge and in the cloud that can be easily updated and extended with new features and functionalities
without the need of updating or re-deploying smart objects. This work introduces a new concept
for extending smart objects’ support for cloud services, denoted as a sidecar object. A sidecar
object serves the purpose of being deployed as additional component of a preexisting object without
interfering with the mechanisms and behaviors that have already been implemented. In particular,
the sidecar object implementation developed in this work focuses on the communication with existing
IoT cloud services (namely, AWS IoT and Google Cloud IoT) to provide a transparent and seamless
synchronization of data, states, and commands between the object on the edge and the cloud. The
proposed sidecar object implementation has been extensively evaluated through a detailed set of
tests, in order to analyze the performances and behaviors in real- world scenarios.

Keywords: internet of things; edge computing; cloud computing; sidecar pattern

1. Introduction

Among the multitude of emerging trends in the IT industry, the internet of things (IoT) is one
of the most important and certainly one that promises to have a significant impact on people’s lives.
The design and developments of new paradigms and architectures coping with this completely new
set of challenges is imperative. The technological progress and the imprinting of research over the
last few decades has made it possible to develop devices that meet the strict requirements imposed
by the internet of things evolution (where size, energy consumption, and costs are key), making
them increasingly smaller yet powerful. Along with the evolution of hardware, new communication
protocols, software stacks, and services have been designed, in order to allow an ever-increasing
number of devices to communicate with each other in an immediate and efficient way. This evolution,

Future Internet 2019, 11, 145; d0i:10.3390/£i11070145 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
https://orcid.org/0000-0002-5408-2764
https://orcid.org/0000-0002-1589-8656
https://orcid.org/0000-0001-8902-6909
https://orcid.org/0000-0002-3163-1900
https://orcid.org/0000-0003-2245-4823
http://www.mdpi.com/1999-5903/11/7/145?type=check_update&version=1
http://dx.doi.org/10.3390/fi11070145
http://www.mdpi.com/journal/futureinternet

Future Internet 2019, 11, 145 2 of 20

which took place in an extremely short timespan, poses the problem of integrating the existing objects
and infrastructures with new paradigms and implementations: as it is easy to guess, this problem is
not trivial and requires to be handled in a completely separate way.

New IoT architectures and the associated design thinking is quickly evolving and moving to
the full exploitation of the computation, memory, sensing, and actuation resources. Furthermore,
researchers are trying to face and overcome the problems associated heterogeneity of IoT applications
and systems. In this context, device virtualization solutions and platforms may definitely play
a key role in enabling the desired tradeoff between flexibility and performance. At the same
time, fundamental properties, such as fault tolerance and system availability, can be achieved by
splitting the application logic across different layers and decomposing complex business logics into
microservices [1,2]. The objective is to create a more scalable and natively redundant solutions,
with a minimal impact on the single-device performance, but with high potential in the whole system.
With microservices-oriented architectures, the operative functionalities are broken down into small,
modular, independently deployable and loosely-coupled microelements. This reduces the integration
and evolution complexity faced with traditional monolithic architecture, and increases the dynamic
and opportunistic deployment of new application and services according to new requirements and
needs of the system itself.

The approach presented in this paper follows this new technological trend by introducing an
innovative and scalable methodology to extend smart objects functionalities without modifying the
original device/object. This result is feasible through the design and deployment of one or multiple
IoT sidecar objects. In the context of microservices oriented IoT applications this solution will allow to
easily introduce new IoT behaviors and services making existing smart objects capable of increasing
their capabilities, without requiring any direct changes to their original implementation.

The sidecar pattern is a widely established architectural paradigm for several applications.
However, its adoption in IoT application (in particular if designed following the edge computing
vision [3]) is a new concept that may be convenient to achieve faster and efficient evolution of systems.
The IoT sidecar object paradigm is a novel definition to let existing smart objects enhance and extend
their behavior by providing them a sidecar. A sidecar is a separate piece of software dedicated to
handling specific issues, which are not directly related to the smart object and should be managed
outside the object’s scope, according to the principle of separation of concerns. It is deployed as
additional component of a pre-existing smart object without interfering with the mechanisms and
behaviors already implemented.

The use case detailed in this paper concerns to the extension of a smart object’s behavior for the
seamless integration with cloud services, such as AWS IoT and Google Cloud IoT. This paper covers
all the details related to its design and implementation.

The rest of the paper is organized as follows. In Section 2, we present an overview of related
works on sidecar pattern and smart object integration is provided. Section 3 provides a detailed
description of the proposed architecture. Section 4 presents an extensive set of experimental results
from the implemented testbed. Finally, in Section 5, we draw our conclusions.

2. Related Work

Over the last few years, the IoT has become an extremely hyped research area. A vast community
of makers and developers started working both on personal and business projects, ranging from
hardware prototyping (e.g., based on Arduino and Rapsberry Pi among others) to connected home
automation, such as connected lights, smart plugs, domotic systems for smart homes, to smart
building management systems. This huge momentum in the evolution of the IoT represents a great
opportunity from a business perspective: of course, all of these systems require software for managing,
monitoring, and controlling connected devices, as well as for serving a presentation layer for the end
user. The simplest way to develop and deploy such systems is, of course, to leverage the cloud, as it
represents an always-available and globally-reachable backend infrastructure that offers a number

Future Internet 2019, 11, 145 3 0f 20

of advantages for scalable distributed systems. Originally, IoT product manufacturers followed
a do-it-yourself (DIY) approach and developed their own cloud-based management platforms to
control their devices. However, this approach proved to be ineffective as the costs and efforts for
building and managing these platforms was too high. Researchers [4,5] started moving IoT application
logics and services to the cloud, and at the same time several cloud players have therefore developed
new products and services to solve this issue and provide managed IoT platforms that IoT product
and software developers could leverage. This is the case of Amazon’a AWS IoT Core [6], Google’s
GCP Cloud IoT [7] or Microsoft Azure [8], which are designed to connect devices to the cloud in an
easy and secure way. The advantages of using these services are mainly related to: (i) support for
scalability; (ii) a managed platform that relieves developers from maintaining and monitoring tasks;
(iii) native intergration with other services, such as messaging platforms and serverless execution.
From an architecture point of view, cloud IoT platforms are designed around the following principles:

e communication between devices and the cloud occurs using pub/sub communication protocols
(typically Message Queuing Telemetry Transport—MQTT [9]);

e devices send telemetry and receive control messages using the pub/sub interface;
devices embed a vendor-provided software development kit (SDK), which takes care of wrapping
the platform’s functions, such as authentication and messaging, in a developer-friendly set of
programming interfaces;

e security is implemented using a public key infrastracture where devices use a client certificate
generated by the cloud platform to authenticate against the platform’s services; policies can be
associated with certificates to determine the access permissions to resources;

e the state of each device is mirrored on the cloud using a “digital twin”, which can be accessed
using a HTTP-based interfaces [10] by external client applications;

e the cloud platform provides management Application Program Interfaces (APIs) for on-boarding
and management of devices.

Typically, in order to let an existing smart object connect to the cloud platform, the developer must
embed the SDK into the object’s software stack, create the device’s certificate, provide the certificate into
the object, and then use the SDK’s programming interfaces to send and receive messages. Of course,
while these operations may be trivial in most cases, it is not always possible to operate directly on the
smart object and change its implementation to embed an SDK. This represent a huge limitation from
a development point of view and at the same time also a design restriction because since from the
beginning the device should be deployed to support one or more target cloud services. We believe that
this approach can be overtaken with the presented work, in particular for application scenarios where
the business and the application logics can be distributed among multiple microservices and nodes.

An example of an alternative approach is provided in [11], where the authors propose
a standard-based cloud IoT platform, leveraging the Constrained Application Protocol (CoAP) [12]
and MQTT [9]. The work is based on the concept of IoT hub, which is a node places at the border of
a constrained network, implementing the functions of service discovery; border router; HTTP/CoAP
and CoAP/CoAP proxy; cache; and resource directory. The paper extends the availability of IoT Hubs
by creating replicas in the cloud in order to mirror all of its functions and let applications residing
outside the constrained network to access the resources managed by the IoT Hub.

The cloud of things (CoT) refers to the interaction between IoT and the cloud [13]. In [14],
an architecture for integrating cloud/IoT is proposed, based on a network element, denoted as “Smart
Gateway”, which is intended to act as intermediary between heterogeneous networks and the cloud.

In this dynamic context an additional and fundamental element is represented by the edge/fog
computing [3] vision. It brings a new approach to internet access networks by making computation,
storage, and networking resources available at the edge of access networks. This improves the
performance, by minimizing latency and availability, since resources are accessible even if internet
access is not available [15]. Fog-based solutions aim at introducing an intermediate architectural
layer where resources and applications are made available in the proximity of end devices, thus

Future Internet 2019, 11, 145 4 0of 20

avoiding continuous access to the cloud. Edge-based access networks are based on the presence of
highly specialized nodes, denoted as Fog Nodes, able to run distributed applications at the edge of the
network. Local resources are kept synchronized by multiple clones of the same machine, thus achieving
a high level of reliability and load balancing. Smart management of the activation/deactivation of
replicas and choice of the most appropriate fog node to run the clone allows to optimize the usage
of CPU and memory available on the infrastructure, according to the specific real-time resources
requirements by running applications. Major cloud IoT platforms have embraced the edge computing
paradigm and introduced their very own solutions (e.g., AWS Greengrass [16] and Google Cloud
IoT Edge [17]) to extend the reach of services that were targeting cloud-only deployments also to
scenarios where strict requirements, such as low-latency and unstable connection conditions, require
computation resources to be close to the smart objects. In order to support this approach, connected
objects still have to embed a dedicated SDK, thus resulting in the same complexity that was highlighted
above for the integration with cloud platforms.

Furthermore, lightweight virtualization approaches are growing faster and represent a new
technological enablers of a distributed virtualization infrastructure supporting heterogeneous internet
of things devices. In [2,18] authors investigated the opportunity to exploit nodes’ resources
through the use of docker containers. Container-based service application are independent from
a specific technology or programming language consequently provide the unique possibility to
develop once and deploy everywhere. In this context, container migration became also strategic
for the IoT researchers in order to provide strategic advantages, in terms of resource efficiency and
performance, over traditional hypervisor-based virtualization [19-21]. This approach enables the
creation of lightweight containerized applications suitable for IoT services where the application
logic is separated in different layers and the business login obtained through the cooperation of
multiple microservices [1,2]. This combination of edge computing together with microservices and
container-based solutions will represent the new technological asset for the internet of things. The next
generation of applications will be scalable, dynamic and interoperable by design allowing the creation
of a real cyber-physical world where everything can be discovered and interconnected.

On top of this new vision, the concept of physical object virtualization [22,23] is gaining a lot
of attention in order to separate the physical and the digital worlds through the creation of virtual
replicas of real objects or devices. For example, the authors of [24] propose the use virtual IoT devices
on the edge for local data processing, management of physical devices, and quick actuation. The cloud
is envisioned only as a way to access the edge infrastructure remotely but without the introduction of
gateway and/or objects replicas and the related synchronization procedures. With our work, we would
like to combine and extend this vision introducing the possibility for a smart object (real or virtual)
to evolve and add news features and functionalities without modifying its core or being aware of
that change.

This IoT evolution creates a context where IoT application’s components can be deployed into
a separate process/microservice, in order to preserve the isolation of the main application and comply
with the principle of separation of concerns. The sidecar pattern [25] has been introduced to augment
and improve an application’s container, without interfering with the application or affecting its
logic. A sidecar container adds functionality to an application container in simple, non-intrusive way.
Possible add-on functions that can be implemented using this pattern are (i) logging; (ii) monitoring;
(iii) health checks. The sidecar pattern is the basis for the deployment of a service mesh, such as
Istio [26]. In this work, we propose to adopt a similar concept to easily extend the functions of a smart
object in order to let it connect to a cloud IoT platform without requiring any change to its logic.

3. Architecture

In this section are discussed and explained in detail all the design choices made for the definition
of a sidecar object dedicated to the transparent and seamless synchronization of smart objects data,
states and commands with one or more cloud or remote services. As a general definition, a sidecar

Future Internet 2019, 11, 145 5 0f 20

object is an entity that can be attached to one or more existing objects (real or virtual) with the purpose
of mirroring states and capabilities of that object(s) to one or more corresponding entities. From
a different perspective, it can also be seen as an extension of the existing object(s) (hence the name
sidecar) that provides as additional functionality the ability to interface seamlessly with other entities.
The choice to designing and use a sidecar object, in contrast with traditional approaches of integrating
new functionalities directly on the original entity, has several advantages such as:

e The original entity must not be necessarily aware of the presence of the sidecar object, as the
latter runs within its isolated environment and relies on the preexisting mechanisms provided
by the former: this allows to attach the sidecar object without influencing the mechanisms
already implemented;

e Potentially, more than one sidecar object could be attached to an existing entity, thanks to its
isolation properties, allowing the realization of modularized solutions;

e In case of errors or failures occurring inside the sidecar object, the main entity can prosecute its
tasks regularly and the overall system behavior will degrade gracefully.

Figure 1 depicts a common IoT use case where a sidecar object (running for example on the same
node of the object or on a dedicated external infrastructure) subscribes to a shared MQTT broker
listening on the topics of interest. It has the responsibility of processing the incoming messages from
the associated object and forwarding the output data to the cloud services as needed. It is important
to underline that this approach does not require any modification and change to the preexisting
communication mechanisms and active technologies. The smart object keeps the same Pub/Sub
approach communicating fro example trough an MQTT broker without knowing the presence of the
sidecar entity and its responsability.

Smart Object (Temperature) Sidecar Object (Temperature)

| Cloud Service 1

MQTT MQTT Client || Cloudt —_
Broker Connector |
Telemetry

Cloud?2 —

Connector

MQTT Client

Telemetry

Cloud Service 2

Environment

Edge

|
|
|
| Cloud

Figure 1. Application scenario involving a smart objects with enhanced capabilities through the
activation of a sidecar objects for data synchronization with the cloud.

Figure 2 shows the global architecture of the sidecar object. Main components are the following;:

e Smart object module: this module deals with all the interactions between sidecar and smart object,
using several specialized sub-modules (as it will be explained in the following sections). There

may be more than one, but usually te communication is handled by only one smart object module.
e Cloud module(s): those components handle the communication between sidecar object and cloud

platforms; there can be more than one depending on the specifications, and typically an single
cloud service interacts only with one of them at a time. Like the smart object module, cloud
modules contains sub-modules designed specifically to achieve atomic tasks (such as connection,
message publishing, etc.).

e Sidecar processors: those intermediate modules have the important role of “bridges” between the
smart object module and cloud modules; each sidecar processor can handle the data message
flow only in one direction (smart object to cloud or vice versa). They may or may not perform
some operation on messages depending on the use case, but it is important to note that the real
processing must be implemented in specific modules that will be presented in the following
sections. It is directly managed by the sidecar object orchestrator.

Future Internet 2019, 11, 145 6 of 20

e Sidecar orchestrator: this component is in charge for all the higher level operations regarding
the coordination and synchronization of the elements described in the previous points. It never
acts directly on the data flow but only sends and receives control messages to and from
sub-components; it is also responsible for the initialization (gathering all the necessary startup
information from ad hoc configuration files provided externally) and shutdown procedures of
the sidecar object.

Sidecar Object

€ -)

! !

Outbound Processor I::>
Smart
Object

<: Module
<: Inbound Processor <::l

4 X
Smart Object Module Cloud Module

s N
(Smart Object (SO) Manager W Cloud Module Manager(s)

SO Comm Manager Custom Modules Custom Modules Cloud Comm Manager

I:(> SO Subscriber i Cloud Modul Cloud Module Publisher [:’l >
oul odule
Processor(s)
. so <}:I Cloud Module
<):| SO Subscriber <):I ErocEeSorS) <] T ji‘,:l
\ J L

Figure 2. Overall smart object module internal architecture with the detail of smart object
communication modules and cloud communications modules.

Cloud

=
Module(s) <::|

~J

4
A4

The smart object module (left side of the schemes) is composed of several sub-modules:

e Smart object manager: this component is on top of the smart object module managing chain,
and supervises the behavior of the smart object communication manager (see below) and other
case-specific components that vary based on the implementation. It never acts directly on the
data flow but only exchanges service messages with sub-components and the sidecar orchestrator
(which has full control over it).

e Case-specific components (custom modules): those sub-modules are optional, and may or may not
be present depending on the use case; they never handle data messages, and communicate directly
only with the smart object manager. An example of case-specific components are connection
operators, often used inside modules to manage connections with external actors.

e Smart object communication manager: this element manages all the sub-modules in charge of
communicating with the connected smart object, like publishers and Subscribers. Like the other
managers, it never handles data messages but only communicates with adjacent modules using
control messages.

e Smart object subscriber: this “operational” component has the task of subscribing to all the smart
object topics specified in the sidecar object configuration, forwarding the incoming messages to
the designated sidecar processor performing little or no processing on the aforesaid messages.
It never has sub-modules, and is directly coordinated by the smart object communication manager
using control messages.

e Smart object processor(s): those components collect all the data messages coming from sidecar
processors, eventually perform an additional processing (defined by specific policies), and then
forward the result to the smart object publisher; in most cases there is one smart object processor

Future Internet 2019, 11, 145 7 of 20

for each topic of interest. Like other operational modules it communicates only with the manager
that coordinates its behavior, which in this case is the smart object manager.

e Smart object publisher: this module publishes all the messages coming from the smart object
processors to the smart object, and its implementation strictly depends on the scenario it is
operating in. It also has the fundamental function of handling all the mechanisms inherent to the
recovery of data messages in case of errors or faults (as will be detailed in the following sections);
it is directly coordinated by the smart object communication manager.

The structure of a typical cloud module (right side of the schemes) is shown in Figure 2; as stated
before, a sidecar object can have more than one cloud module, and in this section it is described the
general structure that must be common for all of them. The structure is specular to the one seen for the
smart object module:

e Cloud module manager: this component is on top of the cloud module managing chain,
and supervises the behavior of the cloud communication manager (see below) and other
case-specific components that vary based on the specific implementation. It never acts
directly on the data flow but only exchanges control messages with sub-components and the
sidecar orchestrator.

e Case-specific components (custom modules): those sub-modules are optional, and may or may
not be present depending on the use case; they never handle data messages, and communicate
directly only with the cloud module manager. An example of case-specific components are
registry operators, often used to manage the synchronization of the sidecar object with the
corresponding data structures provided by cloud services.

e Cloud communication manager: this element manages all the sub-modules in charge of
communicating with the specified cloud service. Like the other managers, it never handles
data messages but only communicates with adjacent modules using control messages.

e Cloud module processor(s): those components collect all the data messages coming from sidecar
processors, eventually perform an additional processing (defined by specific policies), and then
forward the result to one of the cloud module publishers; in most cases there is one loud module
processor for each topic of interest. Like other operational modules it communicates only with
the manager that coordinates its behavior, which in this case is the cloud module manager.

e Cloud module publishers: those modules publish all the messages coming from the cloud module
processors to the cloud services, and their implementation strictly depends on the scenario they
are operating in. They also have the fundamental function of handling all the mechanisms
inherent to the recovery of data messages in case of errors or faults (as will be detailed in the
following sections); they are directly coordinated by the cloud comm manager.

e Cloud subscriber: this “operational” component has the task of subscribing to all the cloud topics
specified in the sidecar object configuration, forwarding the incoming messages to the designated
sidecar processor performing little or no processing on the aforesaid messages. It never has
sub-modules, and is directly coordinated by the cloud comm manager using control messages.

Operational Phases

The designed sidecar object is mainly characterized by three Operational Phases (Startup, Runtime,
Fault Handling/Recovery and Shutdown) described in this subsection. Figure 3 shows the Sequence
Diagram of the typical startup procedure performed by the sidecar object.

Future Internet 2019, 11, 145 8 of 20

Smart Object Smart Object Sidecar Cloud Module Cloud Comm
Comm Manager Manager Orchestrator Manager Manager
Message Farwarders
Initialization
Connection Operator Registry Operator
Initialization Initialization
Subscribers Modules c tionO t
itialization Message Processors Maayle: onnection Operator
Initializa Initialization Initialization Initialization
Message Processors
Publishers Initialization
Initialization Publishers
Initialization
Subscribers
Initialization

Start

Figure 3. Startup sequence diagram.

The first operation executed by the sidecar orchestrator is the initialization of the sidecar
processors. In this specific case and scheme they are called message forwarders, since they usually
have the only task of sending messages from one module to another without performing particular
operations. Then, the Orchestrator sends a initialization command to the smart object manager and all
the cloud module managers, that in turn trigger their specific initialization procedures: for example,
subscribers will register to the topics of interests, publisher will prepare themselves to send messages,
and so on. In the scheme are reported examples of sub-modules that can be initialized, but as stated
before this sequence could be different depending on the use case (it will fully be explained in the
Implementation chapter). It is important to note that the Orchestrator forwards the initialization
messages simultaneously: this is possible thanks to the choice of making all the modules separated
and independent, allowing to initialize them simultaneously with a potential time saving in real-use
scenarios (especially with time-consuming operations like remote connections). After that all the
modules have notified the sidecar orchestrator that initialization operations are terminated, a start
command is propagated hierarchically: as can be seen from the sequence diagram, this operation
takes much less time than the previous one, as all the components are already initialized. After the
orchestrator has collected all the start completed notifications coming from modules and sub-modules,
the sidecar object is ready to begin the data message handling.

The second phase denoted as “runtime” is shown in Figure 4. First of all, it is important to
specify that this diagram depicts the forwarding of a message from the smart object to the cloud,
but the exact same mechanism applies for messages coming from the cloud and directed to the smart
object. The first step is obviously the reception of the message by the Subscriber, that has registered to
the topics of interest in the initialization phase; then, the message is sent to the appropriate sidecar
processor (in this particular case a simple forwarder), that in turn forwards it to the specific Message
Processor of the “destination” module. In this case the processor, without performing any particular
operation, simply passes the message to the publisher, that takes care of sending the message to the
designed destination. An important constraint that must be applied during implementation concerns
the queuing mechanism: each module in charge of handling data messages must have its own separate
queue with fair order policies and synchronization measures, in order to ensure the correct elaboration
of each single message avoiding concurrency and fairness problems. In this example we exclude the
occurrence of faults during the message handling, whose relative cases will be specifically analyzed in
one of the following sections.

Future Internet 2019, 11, 145 9 of 20

Smart Object Sidecar
Subscriber Forwarder

J [Cloud Processor J [Cloud Publisher J

—_—— f———

Figure 4. Data messages handling in the case of simple forwarding.

Figure 5 depicts a more complex data message handling during the Runtime phase. It is easy to
see that the operation chain is the same seen in the previous case until the message reaches the module
processor, but in this case the behavior of the latter is to send only one message every three received;
the publisher then receives only the messages that must be effectively sent to the designed destination.

This behavior is a good example of isolation between modules: the publisher has no knowledge
of how messages are processed in the previous steps, but is only focused on its main task of
sending messages.

It is also important to note that the way in which the processor acts on the incoming messages is
ruled by specific custom update policies, that can be defined at will during implementation following
case-specific criteria.

Smart Object Sidecar
Subscriber Forwarder

] [Cloud Processor } [Cloud Publisher }

———p ———
_——— !

— == : i

—— = _ ———
———p .

Figure 5. Data messages handling with intermediate processing.

In Figure 6 is reported the sequence diagram of the standard fault handling and recovery
mechanism: this procedure can be extended to comply with specific requirements, but the base
structure must always be the same.

Connection Cloud Comm) Recover
L Operator J [Manager J “[Publishers J “[Handler:

T
'
|
|
'
|
i
|

Working Normally

]
'
L
|
'
'

Connection Loss Detected Init Recovery nj]
} Init Recovery
Connettion Recovery Mode e
Recovery Handling Recovery Mode

Connection Reestablished Recover

Recover

..........................

Publish Recovered
Messages

] e :,] Working Normally

Figure 6. Fault handling and recovery mechanism.

Future Internet 2019, 11, 145 10 of 20

For this example, we introduce the connection operator: this component, often present in practical
implementations, has the main task of monitoring the network connection, eventually trying to recover
the connectivity in case of faults. It is important to point out that faults can be detected by any of the
modules present in the sidecar object, that must notify the event to their specific Comm Manager in
any case: for example, if a Publisher throws an error generated by a message sending failure, it must
notify that to its particular comm manager, that reacts accordingly. Back to our example, as soon as
the connection operator detects a fault it sends a control message to the comm manager, that begins
the recovery operations: publishers are then notified, and in turn they begin the recovery handling
sorting all the messages currently waiting to be sent to topic-specific recovery handlers (that should be
instantiated only when needed). After that the recovery initialization has been completed, the module
enters the recovery mode and all the future messages coming from processors flow in the specific
recovery handlers until the fault is resolved. When connection operator restores the connectivity,
it immediately notifies the comm manager that in turn propagates the notifications to all the publishers:
at this point the recovery handlers pass back the messages to publishers, following topic-specific
recovery policies that regulates the reintroduction of the messages in terms of time, number, or even
content depending on the use case implementation. After the recovery handlers have emptied,
the module exits from recovery mode and message publishing operations returns to normal, eventually
having in queue messages coming from the recovery handling process. It is worth noting that faults
may also occur during the startup phase: in this case the mechanisms seen in this section do not
apply, an specific procedures are executed depending on the use case (e.g., try to reinitialize the entire
sidecar object).

4. Experimental Results

This section is entirely dedicated to an exhaustive set of experimental test and evaluation of the
implemented functionality of a sidecar object for the integration and synchronization with Google
Cloud IoT Platform. The environment used to perform the tests on the sidecar had the following
characteristics: (i) Dell XPS 15 9560 equipped with Intel Core i7-7700HQ CPU 2.80 GHz x 8 RAM 16 GB
Ubuntu 18.04.2 64-bit and (ii) WiFi connectivity with high-speed internet access (largely enough to
meet the maximum data requirements of a single sidecar object).

In the following test it has also been used a Mosquitto MQTT Broker, running in a local docker
container, and a custom Java program that emulated the behaviors of a real smart object in terms of
data generation. The section explains minutely all the tests performed (considering and averaging
through multiple runs for each configuration) on the sidecar object, analyzing and motivating in-depth
the obtained results. The metrics that will used are summarized in Table 1.

Table 1. Experimental evaluation’s metrics.

Metrics Dimension Description

Time in milliseconds required by the sidecar object and its

Startup Time [ms] internal components to startup

The pass-through delay as the time elapsed between the
arrival of the message inside the SmartObjectSubscriber
and the execution of the asynchronous publish by the
GoogleCloud-TelemetryPublisher

Message pass-through delay [ms]

The elapsed time between the asynchronous publish
Message Ack Delay [ms] performed by the TelemetryPublisher and the server
acknowledgment of that specific publish

Outbound and Recovery Queues sizes, for the Telemetry

Queues Sizes Adimensional Message Recovery tests
Heap Memory Size [MBytes] Allocated memory for the Java Heap
Heap Memory Usage [MBytes] User memory of the allocated Java Heap

CPU Usage Percentage Adimensional Percentage of used CPU by the object

Future Internet 2019, 11, 145 11 of 20

4.1. Initialization and Start Times

The first set of experimental tests measures the required time to initialize and start the sidecar
object and all its inner components associated to five full processing chains (corresponding to five
MQTT topics) that has to be synchronized with the cloud.

Figure 7a shows the initialization times of the higher level components of the sidecar object.
The GoogleCloudModuleManager is the component that needs more time to be initialized since the
communications between sidecar object and cloud is performed through the internet connectivity
instead of a local communication. The five SidecarForwarders on the contrary have a limited influence
on the overall startup time, as proof that the structures adopted during implementation add an
extremely low overhead to startup times. It is important to note that the sum of the startup times
showed in the graph is not equal to the total sidecar object startup time, as the initialization of
GoogleCloudModuleManager and SmartObjectModuleManager (as explained in the Implementation
section) is performed on separated threads running in parallel; the average startup time of the entire
sidecar object resulting from the tests is 1229.8 ms, with a standard deviation of 178 ms. In Figure 7b
are reported the results relative to the starting times of the same components.

Sidecar Object Modules Initialization Times Sidecar Object Modules Start Times Smart Object Modules Initialization Times
50 T T T 400
1600
350
1400 40 200
1200
g 1000 Z % g =
200
g g E
F 600 F = 150
100
400 10
200 1 - 50
0 0 0
SO-ManagerGC-Manage8C-Forwarders S0O-Manager GC-ManageSC-Forwarders SO-Connection SO-Subscriber
(a) (b) ()
Smart Object Modules Start Times Google Cloud Modules Initialization Times Google Cloud Modules Start Times
3 1600 10
25 1400 .
1200
5 2 7 1000 T 6
E E E
o 15 ® 800 ®
£ £ £ 4
= y T . = 600 IS
400 2
0 0 0

SO-Connection SO-Subscriber CommManager MsgProcessors CommManager MsgProcessors
(d) (e) €3]
Google Cloud Communication Modules Initialization Times Google Cloud Modules Start Times
1000 5

800

600

400 1
200] 1 il [T |

0 0 J—HL
TelemetryPutiRegistry StatePubConnection TelemetryPubRegistry StatePub Connection

(®) (h)

Figure 7. (a) Sidecar object modules initialization times; (b) sidecar object modules start times; (c) smart
object modules initialization times; (d) smart object modules start times; (e) Google Cloud Modules
initialization times; (f) Google Cloud Modules start times; (g) Google Cloud Communication Modules
initialization times and (h) smart object modules start times.

Time [ms]
Time [ms]

Future Internet 2019, 11, 145 12 of 20

As expected, starting times were significantly lower than the startup times, since they are
associated only the startup of Java Threads for each component. In Figure 7c are shown the results
related to the initialization times of the inner modules of the smart object module.

The SmartObjectConnectionOperator took much more time to be initialized compared with the
SmartObjectSubscriber, since it had to setup the secure connection through the use of cryptographic
keys. Figure 7d depicts start times of the same components.

Considering that both SmartObjectConnectionOperator and SmartObjectSubscriber ran on
a single thread, the startup times were extremely low (~1 ms) Figure 7e shows the initialization times
of the GoogleCloudModule submodules. Presented results show that, as expected, the communication
manager had the most relevant impact on the overall timing due to the remote connection with the
cloud services. On the other hand the initialization of internal and local components (such the five
MessageProcessors in this case) is barely perceptible.

For completeness, in Figure 7f are reported the start times relative to the last components analyzed.
As for the other cases analyzed, starting times are much lower of initialization times, as consequence
of the implementation choices made. The last (and probably more significant) test results are related
to the inner components of the GoogleCloudCommManager: in Figure 7g are detailed the initialization
times of such components. As expected, RegistryOperator and ConnectionOperator are the most
expensive in terms of initialization. It is also important to note that those two modules run sequentially,
as the RegistryOperator must be necessarily executed before the MQTT connection with the Google
Cloud API. Figure 7h confirms that the starting times of the components inside the Google Cloud
Communication Module are in line with the results registered for previous submodules.

4.2. Telemetry Messages Pass-Through and Ack Delays

This set of tests has the goal of better understand and analyze how the sidecar objects behaves
sending telemetry messages and data under different conditions and configurations. The first set
of tests has been focused on the evaluation of the performance as function of the message rate.
Evaluated rates follow the throughput limits imposed by the Google Cloud Platform on the maximum
throughput allowed for a single device. The experimental setup configuration takes into account:
(i) one full message processing chain (corresponding to one MQTT topic from smart object to the cloud);
(ii) 1000 message sent for each run; (iii) a messages payload size of 1 KB and 5 KB and (iv) multiple
message rates (5, 10, 30, 50, 70 and 100 messages per second). Source messages have been sent by
a custom Java program emulating a real smart object at fixed rate with the target specified payload
size. Figure 8a shows the pass-through delays emerging from the tests described above.

These results show that the sidecar object behaves well even with higher message rates without
performance degradations. The payload size does not have relevant influence on the results. Figure 8b
reports the results relative to ack delays under the same conditions, the delays are significantly higher
compared to the previous ones since the ack delay measures the round-trip time of a single telemetry
message transmitted through the internet. Furthermore, the most interesting aspect emerging is that
even at high rates the cloud maintains a constant responsiveness without signs of performance
degradations, proving how both sidecar object and Google Cloud platform are able to support
high-frequency message exchange. The second set of tests focuses on the ack delay when the
throughput limit imposed by the Google Cloud Platform is exceeded: such tests are performed
using a wide range of throughput values.

Figure 8c shows the ack delays as a function of different Throughputs. As expected the graph
highlights good performances and low delays with several message throughputs within the threshold
of Google Cloud platform (512 KB/s). Exceeding this limit we have and expected increasing of the
delay and in order to better understand the Google Cloud Platform behavior an additional set of tests
has been performed by using using throughput values of 480, 800, 1200 and 1600 KB/s. Figure 8d
shows the ack delays emerging from the tests using parameters previously mentioned. The sidecar
object performs well with the 480 KB/s throughput (that is near the limit of 512 KB/s), with ack delays

Future Internet 2019, 11, 145 13 of 20

aligning with the ones registered in the the previous tests. Furthermore, the obtained results with the
three values exceeding the limit show how the Google Cloud Platform behaves when a device exceeds
the maximum throughput rate. Incoming messages are not discarded, but queued internally and
elaborated as soon as possible returning the ack message only when the message has been effectively
ingested by the platform.

10 300 8000
Payload 1KBytes Payload 1KBytes mmmmm
Payload 4KBytes Payload 4KBytes 7000
250

6000
200

5000

150

4000

Average Ack Delay [ms]
Average Ack Delay [ms]

Average Pass-Through Delay [ms]

I T [
4
100 i T 3000
5 2000
%0 1000
0 0 0
5 10 30 50 70 100 5 10 30 50 70 100 48 96 144 192 240 288 336 384 432 480 528 576 624
Rate [ond] M Rate [ond] Message Throughput [KBytes/sec]
(a) (b) ()
7000 T T 10 T T T T T T T T 250
Throughput 480KBytes/sec —
6000 Throughput 800KBytes/sec ——
Throughput 1200KBytes/sec —k— = 8 200
Throughput 1600KBytes/sec 2
— 5000 = .
z g 3
> 4000 L T o 180
2 R 2
[=3
<2 Y7 X £ 2
2000 e L O A
e 91 W & 2
1000 N P
= B - B —
Oi‘fﬁ INSSANSH S TS S 0 0
0 50 100 150 200 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Message Sequence Number Message Sequence Number Message Sequence Number
(d) (e) ()

Figure 8. (a) Telemetry messages pass-through delay average; (b) telemetry messages ack delay
average; (c) telemetry messages ack delay average; (d) telemetry messages ack delay; (e) telemetry
messages pass-through delays; (f) telemetry messages ack delays.

The last tests associate to telemetry performance evaluation have been performed executing
a longer run (30 min) in order to evaluate check the sidecar object behavior over time. The experiment
is associate with: (i) 1 full message processing chain (from smart object to the cloud); (ii) 18,000 messages
sent; (iii) 10 messages per second and (iv) message payload size of 4 KB. Figure 8e,f show the results
related to pass-through and ack delays. Both graphs show that the results of the previous tests
(obtained from shorter runs) are confirmed, as the sidecar object maintains the same performances
even with significantly longer execution times.

4.3. State Messages Pass-Through Delay and Queue Sizes

This additional group of tests and analysis has been designed in order to analyze the behavior of
the sidecar object related to the publishing of state messages coming from the smart object at different
rates. The test configuration takes into account: (i) 1 full message processing chain (from smart object
to the cloud); (ii) 300 messages sent and (iii) a message payload size of 4 KB. Messages have been sent
at fixed rates of 0.7, 0.8, 0.9, 0.95, 1.0, 1.1, 1.2 and 1.5 messages per second. Obtained results are shown
in Figure 10a,b.

As described in the implementation chapter, the Google Cloud Platform applies a limit of one
state message per second for each device. If this limit is exceeded the connection is interrupted giving
a proper “error message”, and it must be reestablished. During our tests no disconnection has been
registered: this proofs that the sidecar object has never exceeded the limit imposed by the platform.
Graphs show that until messages arrive from the smart object with an acceptable rate, pass-through
delays remain low and stable and queue sizes close to zero. With message rates equal or greater than

Future Internet 2019, 11, 145 14 of 20

one per second, pass-through delays and queue sizes rise linearly: this is the expected behavior as the
sidecar object keeps in memory the received State messages publishing them at the aforementioned
rate of one per second, in order to avoid the disconnection from the Google Cloud Platform. It is worth
mentioning that the slight increase of pass-through time and queue size at the limit rate (1 message
per second) is caused by the publishing overhead, as this is a synchronous operation.

4.4. Telemetry Message Recovery

This experimental evaluation aims to analyze the sidecar object’s behavior in case of connection
faults occurring at runtime using different types of recovery policies. The experiment configuration is
the following: (i) 1 full message processing chain (from smart object to the cloud); (ii) 600 messages
sent; (iii) Payload message size of 4 KB and (iv) a keep-alive time of 14 s (keep-alive is the maximum
time from the last interaction with the server, after which the MQTT client defines the connection lost).
Messages are sent at the fixed rate (600 messages @ 5 msg/s) with the following schedule (depicted
in Figure 9):

0:00: all systems running normally with internet connectivity;

0:30: the testing machine is disconnected from the WiFi network and internet;
1:30: the testing machine is reconnected to the same WiFi network and to internet;
2:00: the test ends.

Start Disconnection Reconnection End

1
0:00 0:30 1:30 2:00

Figure 9. Recovery tests timeline.

This test typology is repeated for each of the three Recovery Policy described in the
Implementation chapter. The first case analyzed concerns to the NoRecovery policy, that discards all
the messages received by the Publisher while in RECOVERY MODE. The results are shown in Figure 10a.
It can be observed that at 0:30, in concurrence with the network disconnection, the outbound queue
size starts to increase. Around 1:00 the sidecar object detects the connection loss and applies the
NoRecovery policy. All the outbound messages are discarded, and any new incoming message is
consequently discarded and lost. Around 1:40 connection is reestablished and new messages are
published normally.

The second analyzed case is the one relative to the Al1Recovery policy, that keeps in memory
all the messages received during RECOVERY MODE and restores them on top of the publishing queue
during the RECOVERING phase. The results are shown in Figure 10b—d. Obtained results show that
at 0:30, in concurrence with the network disconnection, the outbound queue size started to increase.
Around 1:00 the sidecar object detected the connection loss and applied the A11Recovery policy: all the
outbound messages were transferred to the RecoveryHandler queue, and any new message coming
from the smart object was forwarded to the same queue. At around 1:45 connection was reestablished:
messages contained in the recovery queue were sent back to the publisher, which took around 3 s to
handle and recover all the collected messages before returning to the normal behavior.

The third case analyzed is the one relative to the OneEveryNRecovery policy, which keeps in
memory only one message every N received during RECOVERY MODE (for this test, N = 5) while
discarding the others. The results are shown in Figure 10e—-g. It can be observed that at 0:30,
in concurrence with the network disconnection, the Outbound Queue size starts to increase. Around
1:00, the sidecar object detected the connection loss and applies the OneEveryNRecovery policy: only
one message every 5 is transferred to the RecoveryHandler queue, and any new message coming from
the smart object follow the same procedure. At around 1:45, connection was reestablished: messages
contained in the recovery queue were sent back to the publisher, which this time took only 0.5 s to deal
with the restored messages before returning to the normal behavior.

Future Internet 2019, 11, 145 15 of 20

4500 A 200
0.7 msg/sec —— g megeee Outbound Queue ——
4000 0.8 msg/sec —H— 35 [-0.9 msg/sec 4 Recovery Queue
& 0.9 msg/sec —X— = “’:85'“"‘5;/95/:5‘:
£ 3500 -0.95msg/sec ——— € 30 [1'1 msg 150
- 1.0 msg/sec —— g 12 msg/se =
Z 3000 [1'7 mey, = g |1 megee g
2) msg/sec E 5 E
& o500 |1-2 msg/sec g ©
£ 1.5 msg/sec . N 100
»
5 2000 % s ?
= 1500 < g
2 o | % 8 s
@ 1000 3
& —e— <
500
ollz 0
0 2 4 6 8 10 o 2 s = = 0 ‘0 0 20000 40000 60000 80000 100000 120000
Message Sequence Number Message Sequence Number Time [ms]
(@) (b) (0)
400 200 450
Outbound Queue —— Outbound Queue —— Outbound Queue ——
350 |-Recovery Queue 1 180 rRecovery Queue 1 400 ~Recovery Queue
300 160 350
= 3 140 g
£ 250 £ 120 H 300
4 200 i 100 i 20
@ @ ® 200 /A
ERREY g g AN
3 100 g 60 3 / ‘\’_|
40 100 / |
50
20 50
0 0 0 /
0 20000 40000 60000 80000 100000 120000 30000 35000 40000 45000 50000 55000 60000 65000 70000 94000 95000 96000 97000 98000 99000
Time [ms] Time [ms] Time [ms]
(d) (e) ()
T T T T T 180 T T T T T T T 100 T T T T
utbound Queue —— utbound Queue —— utbound Queue ——
Outbound Qi Outbound Qi Outbound Qi
200 |-Recovery Queue 1 160 [-Recovery Queue 1 Recovery Queue
140 80
=3 = =
ﬁ 150 ﬁ 120 ﬁ 60
3 g 100 8 A
@100 o 80 @ 40
> > >
S / g 60 55 /
C 50 S 4 S 20 /
20
/ 0
0 0

30000 35000 40000 45000 50000 55000 60000 65000 70000 94600 94800 95000 95200 95400 95600 95800 96000
Time [ms] Time [ms] Time [ms]

(®) (h) @)

Figure 10. (a) State messages pass-through delays; (b) publisher queue sizes; (c) queue sizes adopting

0 20000 40000 60000 80000 100000 120000

the NoRecovery Policy; (d) queue sizes adopting the A11Recovery Policy; (e) queue sizes adopting the
AllRecovery policy during the disconnection event; (f) queue sizes adopting the A11Recovery policy
during the reconnection event; (g) Queue sizes adopting the OneEveryNRecovery policy; (h) queue
sizes adopting the OneEveryNRecovery policy during the disconnection event; (i) queue sizes adopting
the Al1Recovery policy during the reconnection event.

Starting from the performed and presented evaluation emerges how the Recovery Policy
significantly influences the behavior of the sidecar object, highlighting the importance of choosing the
right policy depending on the needs specific of each use case and application scenario.

4.5. Resources Usage

The last set of tests has been designed to analyze the resources usage of the sidecar object during
runtime. The used configuration takes into account the following parameters: (i) six full message
processing chains (five telemetry topics and one state topic, from smart object to the cloud); (ii) delay
between telemetry messages (for each topic): random in the range 100-1000 ms; (iii) delay between
state messages: random in the range 500-5000 ms; (iv) message payload of 4 KB and (v) test duration
of 30 min. Memory and CPU usage data were collected using the Java profiling tool Visual VM.

The first execution has been performed setting the maximum heap memory size for the sidecar
object at 256 MB (using the -Xmx256m option), that is largely enough for the correct functioning of
the system. Figure 11a,b show the results related to memory and CPU usage. From the memory
graph emerges that the 256 MB limit configured in this test is overabundant, as the JVM automatically

Future Internet 2019, 11, 145 16 of 20

reduces the max heap size in order to optimize the resource usage; it also important to note how the
garbage collector shrinks the memory used by the sidecar object intervening periodically. Regarding
the CPU usage, most of the measurements were ~0.4%: those extremely low values were due to the
high computational power available on the testing machine.

For the second execution the Heap Memory size limit has been set to only 16 MB (using the
-Xmx16m option): the results are shown in Figure 11c. In this case, memory available is sufficient to
guarantee the correct functioning of the system: the maximum heap is reduced only for extremely
short times, and the Java garbage collector intervenes at a much higher rate that the previous case.
Despite the “constrained” configuration, the measured behavior does not highlight any problem or
error proving that the sidecar object is able to remain operational.

@
S
15}

Héap Memon} Size' ——
e Heap Memory Used

H\

Heap Memor‘y Size'
20 - Heap Memory Used

N
133
S

N
=3
S

CPU [%]

Memory [MB]
@
<)
Memory [MB]

o
S

o
S

o - N W A OO N ©

0
0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800
Time [s] Time [s] Time [s]

@) (b) (0

Figure 11. (a) Memory usage with the -Xmx256m option (b) CPU usage (c) memory usage with the
-Xmx16m option.

4.6. Constrained Device Evaluation

In order to evaluate the performance and the behaviors of the sidecar object in constrained
scenarios, a specific set of tests has been performed using a Raspberry Pi 3B+ board. The single board
computer was equipped with: (i) Broadcom BCM2837B0 quad-core A53 (ARMvS) 64-bit @ 1.4 GHz;
(ii) 1 GB LPDDR2 SDRAM,; (iii) a 2.4 GHz and 5GHz 802.11b/g/n/ac Wi-Fi network interface and
(iv) Raspbian 9 (Stretch) as the operating system. The board has been connected to a Wi-Fi network
with high-speed internet access, largely enough to meet the maximum data requirements of a single
sidecar object. The sidecar object instance has been executed on a JVM running on the Raspberry
Pi board, while an external device connected to the same network run a Mosquitto MQTT Broker
(running in a docker container) and a custom Java program that faithfully reproduces the behaviors of
a real smart object. In order to minimize the footprint of testing tools on the Raspberry Pi, part of the
data generated during the sessions has been collected remotely using Visual VM. This set of tests has
the goal of better understand and analyze how the sidecar objects behaves sending telemetry messages
in a constrained scenario.

The test configuration takes into account: (i) 1 full message processing chain (from smart object
to the cloud); (ii) 18,000 messages sent; (iii) 10 messages per second and (iv) a payload size of 4 KB.
Messages have been sent by a custom Java program at fixed rate with the defined payload size for
30 min (18,000 messages @10 msg/s). Figure 12a,b show the results related to pass-through and ack
delays, while Figure 12c provides a combined view of the data obtained.

Future Internet 2019, 11, 145 17 of 20

60 250 250
Pass-through Delay
Total Delay
7 50 200 200
7 4 T -
5 £ 150 g 150
a z £
-§, 30 g, E
3 g 100 8
<
ﬁ 20 <
&
10 = —_— =|

0 0 0
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Message Sequence Number Message Sequence Number Message Sequence Number
(@) (b) (0)
- 20
30 Heap Memory Size
Heap Memory Used
25 15
T 20 -
2 g
£ s >
5] o
=10
5
5
0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800
Time [s] Time [s]
(d) (e)

Figure 12. Raspberry Pi experimental results: (a) telemetry messages pass-through delays; (b) telemetry
messages ack delays; (c) combined view of telemetry messages delays; (d) memory usage with the
-Xmx16m option; (e) CPU usage.

It is significant to compare the results obtained with the ones coming from from the tests performed
previous configuration. Regarding the Pass- Through Delay, it has been registered a slight performance
degradation both in terms of absolute value and variance: such behavior was however expected,
and it is safe to attribute the performance degradation to the limited power of the hardware involved.
The same consideration is still valid also for the Ack Delay, the results obtained are totally comparable.
The small difference can be justified by the performance of the network interface used on the Raspberry
Pi that is limited if compared with the one used for the previous tests.

The second test configuration considers: (i) six full message processing chains (five telemetry
topics and one state topic, from smart object to the cloud); (ii) delay between telemetry messages (for
each topic): random in the range 100-1000 ms; (iii) delay between state messages: random in the range
500-5000 ms and (iv) a payload size of 4 KB. Messages have been sent by a custom Java program at
fixed rate with the defined payload size for 30 min. Memory and CPU metrics have been collected
remotely using the Java profiling tool VisualVM running on a separated PC. The execution has been
performed setting the maximum heap memory size for the sidecar object at only 16 MB using the
-Xmx16m option. Figure 12d,e show the results related to memory and CPU usage. As expected, the CPU
usage is proportionally more affected by the execution of the sidecar object, but at the same time the
results obtained with a constrained hardware with a bounded configuration confirm that the footprint
of a sidecar object instance is definitely limited and multiple sidecars can be executed at the same
time. Regarding the memory usage, the Java garbage collector frequently acts to cope with imposed
constraints, optimizing the memory utilization gradually over time without ever exceeding limits.

5. Conclusions and Future Works

In this paper we have introduced the concept of the IoT sidecar object, an innovative and scalable
methodology to extend smart objects functionalities without modifying the original device/object.
Furthermore we presented the design and development of one of its implementation dedicated to
the transparent and seamless synchronization of smart object’s data, states and commands with one
or more cloud or remote services. An extensive set of experimental analysis has been performed in

Future Internet 2019, 11, 145 18 of 20

order to properly evaluate the behaviors and the performance of the proposed solution (integrated
with Google Cloud IoT) with several setups and configurations. The design and the modular structure
allowed the sidecar object to efficiently operate without the need of being aware of the context in
which it is used and deployed. An external orchestrator can coordinate the activation of one or
multiple sidecar objects according to the current context without affecting the deployment and the IoT
application’s designed behavior. Presented tests show, through the use of multiple metrics, that the
proposed solution performs well in terms delays, overhead and consumed resources and that can be
consequently deployed in several distributed IoT application scenarios.

In the context of microservices oriented IoT applications we strongly believe that this solution will
allow to easily introduce new IoT behaviors and services making existing smart objects and devices
capable of increasing their functionalities, without requiring any direct changes to their original
implementation. This approach follows the new IoT technology trends associated to microservices
and IoT edge computing applications where the operative functionalities are broken down into
small, modular, independently deployable and loosely-coupled microelements. Target applications
scenarios involve (but are not limited to): (i) digital twin [27,28] creation and management where
the responsibility to create and update the clone is delegated to the sidecar object; (ii) an edge
oriented serverless and lambda functions [29,30] execution of management where the complexity
and intelligence is outside the smart object and (iii) IoT container orchestration and support for IoT
microservice mesh (denoted as Service Mesh) [31] where the sidecar acts as inbound service for the
smart object handling protocols translation, access control and additional security features.

Furthermore additional and interesting developments are related to: (i) the implementation of
additional integration with cloud modules in order to support new IoT cloud services (e.g., AWS IoT
and Azure IoT) for smart object synchronization; (ii) the performance evaluation of the sidecar object
using different mobile internet connectivity in order to understand the behavior and the potential
limitation and new requirements related to mobility and data caching; and (iii) to the investigation of
innovative sidecar object orchestration patterns.

Author Contributions: M.P. and S.C. conceived and designed the idea, the architecture and the experiments;
M.R. with the supervision of M.P and S.C. developed the main Software modules involved in the solution. M.R.
performed all the experiments and testing of the components; M.P.,, S.C., S.B., LM., L.V and M.R. analyzed the
data and the obtained resutls; M.P. and S.C. with the supervision and coordination of L.V. wrote the paper.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Butzin, B.; Golatowski, F.; Timmermann, D. Microservices approach for the internet of things. In Proceedings
of the 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA),
Berlin, Germany, 6-9 September 2016; pp. 1-6. [CrossRef]

2. Morabito, R. Virtualization on Internet of Things Edge Devices with Container Technologies: A Performance
Evaluation. IEEE Access 2017, 5, 8835-8850. [CrossRef]

3. Bonomi, F; Milito, R.; Zhu, J.; Addepalli, S. Fog Computing and Its Role in the Internet of Things. Available
online: http://conferences.sigcomm.org/sigcomm /2012 /paper/mcc/p13.pdf (accessed on 4 July 2019).

4. Kovatsch, M.; Mayer, S.; Ostermaier, B. Moving Application Logic from the Firmware to the Cloud:
Towards the Thin Server Architecture for the Internet of Things. In Proceedings of the 2012 Sixth
International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, Palermo,
Italy, 4-6 July 2012; pp. 751-756. [CrossRef]

5. Benazzouz, Y.; Munilla, C.; Giinalp, O.; Gallissot, M.; Giirgen, L. Sharing user IoT devices in the cloud.
In Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea, 6-8 March 2014;
pp. 373-374. [CrossRef]

6. Amazon. Amazon AWS IoT. Available online: https://aws.amazon.com/iot-core/ (accessed on 4 July 2019).

http://dx.doi.org/10.1109/ETFA.2016.7733707
http://dx.doi.org/10.1109/ACCESS.2017.2704444
http://conferences.sigcomm.org/sigcomm/2012/paper/mcc/p13.pdf
http://dx.doi.org/10.1109/IMIS.2012.104
http://dx.doi.org/10.1109/WF-IoT.2014.6803193
https://aws.amazon.com/iot-core/

Future Internet 2019, 11, 145 19 of 20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Google. Google Cloud IoT Core. Available online: https://cloud.google.com/iot-core/ (accessed on
4 July 2019).

Microsoft. Microsoft Azure—Cloud Platform. Available online: http://azure.microsoft.com/it-it/ (accessed
on 4 July 2019).

MQTT Version 3.1.1. 2014. Available online: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.
html (accessed on 4 July 2019).

Fielding, R.; Gettys, J.; Mogul, J.; Frystyk, H.; Masinter, L.; Leach, P.; Berners-Lee, T. Hypertext Transfer 619
Protocol—HTTP/1.1; REC 2616; IETF: Fremont, CA, USA, 1999.

Cirani, S.; Ferrari, G.; Mancin, M.; Picone, M. Virtual Replication of IoT Hubs in the Cloud: A Flexible
Approach to Smart Object Management. |. Sens. Actuator Netw. 2018, 7, 16. [CrossRef]

Shelby, Z.; Hartke, K.; Bormann, C. The Constrained Application Protocol (CoAP); RFC 7252; IETF: Fremont,
CA, USA, 2014.

Aazam, M.; Khan, I.; Alsaffar, A.; Huh, ENN. Cloud of Things: Integrating Internet of Things and cloud
computing and the issues involved. In Proceedings of the 2014 11th International Bhurban Conference
on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 14-18 January 2014; pp. 414-419.
[CrossRef]

Aazam, M.; Hung, PP; Huh, E.N. Smart gateway based communication for cloud of things. In Proceedings
of the 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP), Singapore, 21-24 April 2014; pp. 1-6. [CrossRef]

Yannuzzi, M.; Milito, R.; Serral-Gracia, R.; Montero, D.; Nemirovsky, M. Key ingredients in an IoT recipe:
Fog Computing, Cloud computing, and more Fog Computing. In Proceedings of the 2014 IEEE 19th
International Workshop on Computer Aided Modeling and Design of Communication Links and Networks
(CAMAD), Athens, Greece, 1-3 December 2014; pp. 325-329. [CrossRef]

Amazon. Amazon AWS IoT Greengrass. Available online: https://aws.amazon.com/greengrass/ (accessed
on 4 July 2019).

Google. Google Cloud IoT Edge. Available online: https://cloud.google.com/blog/products/gcp/bringing-
intelligence-edge-cloud-iot (accessed on 4 July 2019).

Renner, T.; Meldau, M.; Kliem, A. Towards Container-Based Resource Management for the Internet of
Things. In Proceedings of the 2016 International Conference on Software Networking (ICSN), Jeju Island,
Korea, 23-26 May 2016; pp. 1-5. [CrossRef]

Morabito, R; Farris, I; Iera, A.; Taleb, T. Evaluating Performance of Containerized IoT Services for Clustered
Devices at the Network Edge. IEEE Internet Things J. 2017, 4, 1019-1030. [CrossRef]

Nider, J.; Rapoport, M. Cross-ISA Container Migration. In Proceedings of the 9th ACM International on
Systems and Storage Conference, SYSTOR 16, Haifa, Israel, 6-8 June 2016; ACM: New York, NY, USA, 2016;
p. 24:1. [CrossRef]

Machen, A.; Wang, S.; Leung, K.K.; Ko, B.J.; Salonidis, T. Live Service Migration in Mobile Edge Clouds.
Wirel. Commun. 2018, 25, 140-147. [CrossRef]

Nitti, M.; Pilloni, V.; Colistra, G.; Atzori, L. The Virtual Object as a Major Element of the Internet of Things:
A Survey. IEEE Commun. Surv. Tutor. 2016, 18, 1228-1240. [CrossRef]

Guan, Y,; Vasquez,].C.; Guerrero,].M.; Samovich, N.; Vanya, S.; Oravec, V.; Garcia-Castro, R.; Serena, F.;
Poveda-Villalén, M.; Radojicic, C.; et al. An open virtual neighbourhood network to connect IoT
infrastructures and smart objects—Vicinity: IoT enables interoperability as a service. In Proceedings of the
2017 Global Internet of Things Summit (GIoTS), Geneva, Switzerland, 6-9 June 2017; pp. 1-6. [CrossRef]
Datta, S.K.; Bonnet, C. An edge computing architecture integrating virtual IoT devices. In Proceedings of
the 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE), Nagoya, Japan, 24-27 October 2017;
pp. 1-3. [CrossRef]

Burns, B. Designing Distributed Systems: Patterns and Paradigms for Scalable, Reliable Services, 1st ed.;
O'Reilly Media, Inc.: Sebastopol, CA, USA, 2018.

Moyer, F. Comprehensive Container-Based Service Monitoring with Kubernetes and Istio; USENIX Association:
Berkeley, CA, USA, 2018.

Canedo, A. Industrial IoT lifecycle via digital twins. In Proceedings of the 2016 International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), Pittsburgh, PA, USA, 1-7 October 2016;

p- 1

https://cloud.google.com/iot-core/
http://azure.microsoft.com/it-it/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://dx.doi.org/10.3390/jsan7020016
http://dx.doi.org/10.1109/IBCAST.2014.6778179
http://dx.doi.org/10.1109/ISSNIP.2014.6827673
http://dx.doi.org/10.1109/CAMAD.2014.7033259
https://aws.amazon.com/greengrass/
https://cloud.google.com/blog/products/gcp/bringing-intelligence-edge-cloud-iot
https://cloud.google.com/blog/products/gcp/bringing-intelligence-edge-cloud-iot
http://dx.doi.org/10.1109/ICSN.2016.7501933
http://dx.doi.org/10.1109/JIOT.2017.2714638
http://dx.doi.org/10.1145/2928275.2933275
http://dx.doi.org/10.1109/MWC.2017.1700011
http://dx.doi.org/10.1109/COMST.2015.2498304
http://dx.doi.org/10.1109/GIOTS.2017.8016233
http://dx.doi.org/10.1109/GCCE.2017.8229253

Future Internet 2019, 11, 145 20 of 20

28.

29.

30.

31.

Song, E.Y,; Burns, M.; Pandey, A.; Roth, T. IEEE 1451 Smart Sensor Digital Twin Federation for IoT/CPS
Research. In Proceedings of the 2019 IEEE Sensors Applications Symposium (SAS), Sophia Antipolis, France,
11-13 March 2019; pp. 1-6. [CrossRef]

McGrath, G.; Short, J.; Ennis, S.; Judson, B.; Brenner, P. Cloud Event Programming Paradigms: Applications
and Analysis. In Proceedings of the 2016 IEEE 9th International Conference on Cloud Computing (CLOUD),
San Francisco, CA, USA, 27 June-2 July 2016; pp. 400-406. [CrossRef]

Lynn, T.; Rosati, P; Lejeune, A.; Emeakaroha, V. A Preliminary Review of Enterprise Serverless Cloud
Computing (Function-as-a-Service) Platforms. In Proceedings of the 2017 IEEE International Conference
on Cloud Computing Technology and Science (CloudCom), Hong Kong, China, 11-14 December 2017;
pp- 162-169. [CrossRef]

Khan, A. Key Characteristics of a Container Orchestration Platform to Enable a Modern Application.
IEEE Cloud Comput. 2017, 4, 42-48. [CrossRef]

@ (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/SAS.2019.8706111
http://dx.doi.org/10.1109/CLOUD.2016.0060
http://dx.doi.org/10.1109/CloudCom.2017.15
http://dx.doi.org/10.1109/MCC.2017.4250933
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Architecture
	Experimental Results
	Initialization and Start Times
	Telemetry Messages Pass-Through and Ack Delays
	State Messages Pass-Through Delay and Queue Sizes
	Telemetry Message Recovery
	Resources Usage
	Constrained Device Evaluation

	Conclusions and Future Works
	References

