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Abstract: We focus on the problem of adding fault-tolerance to an existing concurrent protocol in
the presence of unchangeable environment actions. Such unchangeable actions occur in cases
where a subset of components/processes cannot be modified since they represent third-party
components or are constrained by physical laws. These actions differ from faults in that they
are (1) simultaneously collaborative and disruptive, (2) essential for satisfying the specification
and (3) possibly non-terminating. Hence, if these actions are modeled as faults while adding
fault-tolerance, it causes existing model repair algorithms to declare failure to add fault-tolerance.
We present a set of algorithms for adding stabilization and fault-tolerance for programs that run in
the presence of environment actions. We prove the soundness, completeness and the complexity of
our algorithms. We have implemented all of our algorithms using symbolic techniques in Java. The
experimental results of our algorithms for various examples are also provided.

Keywords: stabilization; fault-tolerance; program synthesis; addition of fault-tolerance; model repair;
cyber physical systems

1. Introduction

Model repair is the problem of revising an existing model/program so that it satisfies new
properties while preserving existing properties. It is desirable in several contexts such as when
an existing program needs to be deployed in a new setting or to repair bugs. Model repair for
fault-tolerance enables one to separate the fault-tolerance and functionality so that the designer can
focus on the functionality of the program and utilize automated techniques for adding fault-tolerance.
It can also be used to add fault-tolerance against a newly discovered fault.

This paper focuses on performing such repair when some actions cannot be removed from the
model. We refer to such transitions as unchangeable environment actions. There are several possible
reasons for actions being unchangeable. Examples include scenarios where the system consists of
several components –some of which are developed in-house and can be repaired and some of which
are third-party and cannot be changed. They are also useful in systems such as Cyber-Physical Systems
(CPS) where modifying physical components may be very expensive or even impossible.

The environment actions differ from fault actions considered in existing work such as [1]. Fault
actions are assumed to be temporary in nature and all the previously proposed algorithms to add
fault-tolerance in [1] work only with this important assumption that faults finally stop occurring.
Unlike fault actions, environment actions can keep occurring. Environment actions also differ from
adversary actions considered in [2] or in the context of security intrusions. In particular, the adversary
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intends to cause harm to the system. By contrast, environment actions can be collaborative as well.
In other words, environment actions are simultaneously collaborative and disruptive. The goal of
this work is to identify whether it is possible for the program to be repaired so that it can utilize
the assistance provided by the environment while overcoming its disruption. To give an intuition of
the role of the environment and the difference between program, environment and fault actions, we
present the following examples.

Intuitive examples to illustrate the role of the environment. The first intuitive example is
motivated by a simple pressure cooker (see Figure 1). The environment (heat source) causes the
pressure to increase. In the subsequent discussion, we analyze this pressure cooker when the heat
source is always on. There are two mechanisms to decrease the pressure, a vent and an overpressure
valve. For the sake of presentation, assume that pressure below 4 is normal. If the pressure increases to
4 or 5, the vent mechanism reduces the pressure by 1 in each step. However, the vent may fail (e.g.,
if something gets stuck in the vent pipe) and its pressure reduction mechanism becomes disabled.
If the pressure reaches 6, the overpressure valve mechanism causes the valve to open resulting in an
immediate drop in pressure to be less than 4. We denote the state where the pressure is x by sx when
the vent is working and by f sx when the vent has failed.
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Figure 1. An intuitive example to illustrate the role of environment actions. We want the pressure to be
always less than 4. The program captures the behavior of the pressure cooker including the vent and
the overpressure valve. The environment captures the behaviors of the heat source. The environment
can be disruptive for the venting mechanism. It is, however, essential for the overpressure valve to be
activated. For the sake of readability, only transitions relevant to the discussion are shown in the figure.

Our goal in the subsequent discussion is to model the pressure cooker as a program and identify
an approach for the role of the environment and its interaction with the program so that we can
conclude this requirement: starting from any state identified above, the system reaches a state where
the pressure is less than 4.

Next, we argue that how the role of the environment differs from the role of fault and program
actions. In turn, this prevents us from using existing approaches such as Reference [1]. Specifically,

• Treating the environment as a fault does not work. Faults are assumed to be exceptional events
in the system that are expected to stop after some time. By contrast, heat is an essential part of
the system that is needed for the system to work. In addition, if we treat the environment as a
fault, then none of the environment transitions including transitions from state f s4 to f s5 and
from f s5 to f s6 are required to occur. If these actions do not occur, the overpressure valve is never
activated. Hence, neither the valve nor the vent mechanism reduces the pressure to be less than 4.

• Treating the environment transitions similar to program transitions is also not acceptable.
To illustrate this, consider the case where we want to make changes to the program in Figure 1.
For instance, if the overpressure valve is removed, then this would correspond to removing the
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transition from s6 (respectively f s6) to where the pressure is less than 4. Also, if we add another
safety mechanism, it would correspond to adding new transitions. However, we cannot do the
same with environment actions that capture the changes made by the heat source. For example,
we cannot add new transitions (e.g., from f s4 to s4) to the environment and we cannot remove
transitions (e.g., from s4 to s5). In other words, even if we make any changes to the model in
Figure 1 by adding or removing safety mechanisms, the transitions marked as environment actions
remain unchanged. We cannot introduce new environment transitions and we cannot remove
existing environment transitions. This is what we mean by the environment being unchangeable.

• Treating the environment to be collaborative without some special fairness to the program does
not work either. In particular, without some special fairness for the program, the system can cycle
through states s4, s5, s4, s5 · · · .

• Treating the environment to be simultaneously collaborative as well as adversarial where the
program has some special fairness enables one to ensure that this program achieves its desired
goals. In particular, we need the environment to be collaborative, that is, if it reaches a state where
only environment actions can execute then one of them execute This is necessary to ensure that
system can transition from state f s4 to f s5 and from f s5 to f s6 which is essential for recovery to
a state where the pressure is less than 4. We also need the program to have special fairness to
require that it executes faster than the environment so that it does not execute in a cycle through
states s4, s5, s4, · · · (we will precisely define the notion of faster in Section 2.1).

As another example, consider the shepherding problem. In this problem, a shepherd and his dog
want to steer a sheep to a specific location (cf. Figure 2). They cannot carry the sheep; the only way to
move the sheep is the movement of the sheep by itself. The sheep always tries to increase its distance
from the shepherd and the dog. In this example, the program captures the behavior of the shepherd
and the dog and the environment captures the behaviors of the sheep.
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Figure 2. The farmer and the dog want to steer the sheep to the location marked by a star. The program
captures the behavior of the farmer and the dog and the environment captures the behavior of the
sheep. A good program uses the assistance of the sheep (i.e., the environment) while overcomes its
disruption to steer it to the desired location.

Like the pressure cooker example, the environment is both assistive and disruptive. On one hand,
the environment is assistive, because without the environment actions it is impossible to reach the
desired state. On the other hand, the environment is disruptive, because the environment actions can
make a (poorly designed) program go into an infinite loop thereby never reaching the desired state.
A good program, however, uses the assistance of the sheep (i.e., the environment) while overcomes its
disruption to steer the sheep to the desired location.

Goal of the paper. Based on the above examples, our goal in this paper is to evaluate how such
simultaneously collaborative and adversarial environment can be used in adding stabilization and
fault-tolerance to a given program.

A preliminary version of this work appeared in [3]. In addition to the results presented in [3], in
this paper, we provide a sound and complete algorithm for adding masking fault-tolerance. We also
introduce our JavaRepair package that includes implementation of our algorithms in Java using
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symbolic techniques to support larger state spaces. We provide experimental results of using our
proposed algorithms to solve different versions of the shepherding problem. To obtain these results,
we have used our JavaRepair package. The main results of this work are as follows:

• We formalize definitions and problems statements for the addition of stabilization and
fault-tolerance in presence of unchangeable environment actions.

• We present an algorithm for the addition of stabilization to an existing program. This algorithm
is sound and complete, that is, the program found by it is guaranteed to be stabilizing and if it
declares failure then it implies that adding stabilization to that program is impossible.

• We present a sound and complete algorithm for the addition of fail-safe fault-tolerance.
• We present a sound and complete algorithm for the addition of masking fault-tolerance.
• We show that the complexity of all algorithms presented in this paper is polynomial (in the state

space of the program).
• We present our JavaRepair package that includes the implementation of the algorithms presented

in this paper available at [4].
• We present experimental results of applying our algorithms for different examples.

Organization of the paper. This paper is organized as follows: in Section 2, we provide the
definitions of a program, environment, specification, fault, fault-tolerance and stabilization. In Section 3
we define the problem of adding stabilization and propose an algorithm to solve that problem.
In Section 4, as a case study, we illustrate how the proposed algorithm can be used for a smart grid
controller. In Section 5, we define the problem of adding fault-tolerance and propose algorithms to
add failsafe and masking fault-tolerance. In Section 6, we present our JavaRepir package and provide
experimental results for several examples. In Section 7, we show how our proposed algorithms can be
extended to solve related problems. In Section 8, we discuss related work. Finally, we make concluding
remarks in Section 9.

2. Preliminaries

In this section, we define the notion of program, environment, specification, fault and
fault-tolerance. The definition of the specification is based on the definition by Alpern and Schneider [5].
The definitions of fault and fault-tolerance are adapted from those by Arora and Gouda [6].

2.1. Program Design Model

We define a program in terms of its states and transitions. Intuitively, the state space of a program
represents the set of all possible states that a program can be in. On the other hand, transitions specify
how the program moves from one state to another.

Definition 1 (Program). A program p is a tuple 〈Sp, δp〉 where Sp is the state space of program p and
δp ⊆ Sp × Sp.

In addition to program transitions, the state of a program may change due to the environment
where the program is running. Instead of modeling the environment in terms of concepts such as
variables that are written by program and variables that are written by the environment, we use a
more general approach which models it as a set of transitions that is a subset of Sp × Sp.

Definition 2 (Environment). An environment δe for program p, is defined as a subset of Sp × Sp.

Our algorithms assume that from any state in the state space of a program p in an environment δe,
there is at least one transition in δp ∪ δe. If there is no transition from state s0 in δp ∪ δe of the given
program, we add the self-loop transition (s0, s0) to δp. We note that this assumption is not restrictive.
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Instead, it is made to simplify subsequent definitions, since we do not need to concern with terminating
computations separately.

We refer to a subset of states of a program by a state predicate. Thus, we have

Definition 3 (State Predicate). A state predicate of p is any subset of Sp.

Note that we can represent a state predicate by either a subset of states or a predicate. Thus, there
is a correspondence between a state predicate and subset of states where the state predicate is true. For
example, state predicate True is a subset that includes all states of a program and False is an empty
set. Similarly, the negation of a state predicate is the set of states where the given state predicate is
false. We say a state predicate is closed in a set of transitions if no transition in the set leaves the state
predicate.

Definition 4 (Closure). A state predicate S is closed in a set of transitions δ iff (∀(s0, s1) : (s0, s1) ∈ δ : (s0 ∈
S⇒ s1 ∈ S)). (We use Qx : D(x) : P(x) to specify a formula where Qx is a quantifier that is instantiated to be
∀x or ∃x, D(x) is a domain where x can come from and P(x) is predicate over x. When there is no restriction on
the domain, we use Q :: P. For example, ‘∃x : x is odd: x is prime’ states that there exists an x in {1, 3, 5, · · · }
that is a prime.)

Definition 5 (Projection). The projection of a set of transition δ on state predicate S, denoted as δ|S, is set
{(s0, s1) : (s0, s1) ∈ δ ∧ s0, s1 ∈ S}〉. In other words, δ|S consists of transitions of δ that start at S and end
in S.

A computation of a program in an environment is a sequence of states that starts in an initial
state and in each state executes either a program transition or an environment transition. Moreover,
after an environment transition executes, the program is given a chance to execute in the next k−1
steps. However, whenever in a state no program transition is available, an environment transition can
execute.

Definition 6 (p[]kδe computation). Let p be a program with state space Sp and transitions δp. Let δe be an
environment for program p and k be an integer greater than 1. We say that a sequence σ = 〈s0, s1, s2, ...〉 is a
p[]kδe computation iff

• ∀i : i ≥ 0 : si ∈ Sp, and
• ∀i : i ≥ 0 : (si, si+1) ∈ δp ∪ δe, and
• ∀i : i ≥ 0 : ((si, si+1) ∈ δe)⇒

(∀l : i < l < i + k : (∃s′l :: (sl , s′l) ∈ δp)⇒ (sl , sl+1) ∈ δp)).

2.2. Specification

Following Alpern and Schneider [5], we let the specification of the program consist of a safety
specification and a liveness specification. The safety specification identifies bad things that the program
should not do. We define a safety specification as a set of (bad) transitions. Specifically,

Definition 7 (Safety). A safety property is specified in terms of a set of bad transitions, δb, that the program
is not allowed to execute. Thus, a sequence σ = 〈s0, s1, . . .〉 satisfies the safety property δb iff ∀j : j > 0 :
(sj, sj+1) /∈ δb.

Liveness, on the other hand, identifies good things that the program should do. We define a
liveness property in terms of a set of leads-to properties. A leads-to property is of the form L  T
where L and T are two state predicates and the leads-to property requires that if the program reaches a
state in L it eventually reaches a state in T. Specifically,
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Definition 8 (Leads-to). A leads-to property is specified in terms of L  T, where both L and T are state
predicates. A sequence σ = 〈s0, s1, . . .〉 satisfies the leads-to property iff ∀j : sj ∈ L : (∃k : k ≥ j : sk ∈ T).

Finally, a specification consists of a safety property and a liveness specification (in terms of a set
of leads-to properties).

Definition 9 (Specification). A specification spec , is a tuple 〈S f , Lv〉, where S f is a safety property and Lv
is a set of leads-to properties. A sequence σ satisfies spec iff it satisfies S f and Lv.

Definition 10 (Satisfaction). Program p k-satisfies specification spec from S in environment δe iff the following
conditions hold:

• S is closed in δp ∪ δe, and
• Every p[]kδe computation that starts from a state in S satisfies spec.

We note that from the above definition, it follows that starting from a state in S, execution of
either a program transition or an environment transition results in a state in S. Transitions that start
from a state in S and reach a state outside S will be modeled as faults (cf. Definition 12). We define an
invariant for a program as a subset of states such that if the program starts from that subset, it satisfies
its required specification.

Definition 11 (Invariant). State predicate S is an invariant of p for specification spec iff

• S 6= ∅, and
• p k-satisfies spec from S.

2.3. Faults and Fault-Tolerance

Like environment transitions, we define a class of faults for a program as a set of transitions that
may change the state of the program:

Definition 12 (Fault). A class of faults f for p(= 〈Sp, δp〉) is a subset of Sp × Sp.

Now, we extend Definition 6 to one that captures the computation of a program in presence of
fault transitions:

Definition 13 (p[]kδe[] f computation). Let p be a program with state space Sp and transitions δp. Let δe be
an environment for program p, k be an integer greater than 1 and f be the set of faults for program p. We say
that a sequence σ = 〈s0, s1, s2, ...〉 is a p[]kδe[] f computation iff

• ∀i : i ≥ 0 : si ∈ Sp, and
• ∀i : i ≥ 0 : (si, si+1) ∈ δp ∪ δe ∪ f , and
• ∀i : i ≥ 0 : (si, si+1) ∈ δe ⇒
∀l : i < l < i + k : (∃s′l :: (sl , s′l) ∈ δp ⇒ (sl , sl+1) ∈ (δp ∪ f )), and

• ∃n : n ≥ 0 : (∀j : j > n : (sj−1, sj) ∈ (δp ∪ δe)).

Note that in the above definition, we require that fault transitions finally stop occurring. This
captures the transient nature of faults. On the other hand, environment transitions keep occurring
forever. Fault transitions can perturb the program by arbitrarily changing its state. The definition of
fault-span captures the boundary up to which the program could be perturbed by faults. Thus,

Definition 14 (Fault-span). The state predicate T is a k- f -span of p from S in environment δe iff

• S⇒ T, and
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• for every p[]kδe[] f computation 〈s0, s1, s2, . . .〉, where s0 ∈ S, ∀i : si ∈ T.

Next, we define the notion of fault-tolerance. We consider two different types of fault-tolerance
namely failsafe and masking fault-tolerance. A failsafe fault-tolerance ensures that the safety property
of the desired specification (cf. Definition 9) is not violated even if faults occur. In other words, we have

Definition 15 (Failsafe fault-tolerance). Program p is failsafe k- f -tolerant to specification spec (=〈S f , Lv〉)
from S in environment δe iff the following two conditions hold:

• p k-satisfies spec from S in environment δe and
• any prefix of any p[]kδe[] f computation that starts from S satisfies S f .

Masking fault-tolerance is stronger than failsafe fault-tolerance, as in addition to satisfying the
safety property, masking fault-tolerance requires recovery to the invariant. Specifically,

Definition 16 (Masking fault-tolerance). p is masking k- f -tolerant to specification spec from S in
environment δe iff the following two conditions hold:

• p is failsafe k- f -tolerant to spec (=〈S f , Lv〉) from S in environment δe and
• there exists T such that (1) T is an k- f -span of p from S in environment δe and (2) for every p[]kδe[] f

computation σ(= 〈s0, s1, s2, . . .〉) that starts from a state in S, for any i such that si ∈ T, then there exists
j ≥ i such that sj ∈ S.

The second constraint in Definition 16 simply means that in any computation that starts at T must
go to S.

We also define the notion of stabilizing programs. We extend the definition from References [7]
and [8] for a program in the presence of environment actions.

Definition 17 (Stabilization). Program p is k-stabilizing for invariant S in environment δe, iff following
conditions hold:

• S is closed in δp ∪ δe, and
• for any p[]kδe computation 〈s0, s1, s2, ...〉 there exists l such that sl ∈ S.

3. Addition of Stabilization

In this section, we present our algorithm for adding stabilization to an existing program. In
Section 3.1, we identify the problem statement and in Section 3.2, we present an algorithm to add
stabilization. Finally, in Section 3.3, we provide proofs of soundness, completeness and the complexity
results of the proposed algorithm.

3.1. Problem Definition

The problem of adding of stabilization begins with a program p = 〈Sp, δp〉, its invariant S and
an environment δe. The goal is to change the set of program transitions so that starting from an
arbitrary state, the program recovers to S. In addition, we do not want to change the behavior of
the program inside its invariant. Thus, during the addition, we are not allowed to change the set
of program transitions in the invariant (i.e., δp|S). Also, we introduce parameter δr that identifies
additional restrictions on program transitions. As an example, consider the case where a program
cannot change the value of a sensor, that is, it can only read it. However, the environment can change
the value of the sensor. In this case, transitions that change the value of the sensor are disallowed as
program transitions but they are acceptable as environment transitions. Thus, the problem statement
is as follows:
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Given program p with state space Sp and transitions δp, invariant S, environment
δe, set of program restriction δr and k > 1, identify p′ with state space Sp such that:

C1 p′|S = p|S
C2 p′ is k-stabilizing for invariant S in the environment δe.
C3 δ′p ∩ δr = ∅

3.2. Algorithm to Add Stabilization

The algorithm proposed here adds stabilization for the case where k=2. When k=2, environment
transitions can execute immediately after any program transition. By contrast, for larger k, the
environment transitions may have to wait until the program has executed k−1 transitions.

The procedure for adding stabilization is as shown in Algorithm 1. In this algorithm, δ′p is the set
of transitions of the final stabilizing program. Inside the invariant, the transitions must be equal to the
original program (Constraint C1). Therefore, in the first line, we set δ′p to δp|S. Next, the algorithm
expands set R that includes states from which all computations reach a state in S. Initially, R is set to S
at (Line 2).

State predicate Rp is the set of states that can reach a state in R using an unrestricted program
transition, that is, a transition not in δr. In each iteration, R′p is the set of new states that we add to Rp.
In Line 9, we add program transitions from states in R′p to states in R to δ′p.

Algorithm 1 Addition of stabilization

Input: Sp, δp, δe, S, and δr
Output: δ′p or Not-Possible

1: δ′p := (δp|S);
2: R = S;
3: Rp = {}
4: repeat

5: R′ = R;
6: R′p = {s0|s0 /∈ (R ∪ Rp) ∧ ∃s1 : s1 ∈ R : (s0, s1) /∈ δr};
7: Rp = Rp ∪ R′p;
8: for each s0 ∈ R′p do

9: δ′p = δ′p ∪ {(s0, s1)|(s0, s1) /∈ δr ∧ s1 ∈ R};
10: end for
11: for each s0 /∈ R : @s2 ∈ ¬(R ∪ Rp) : (s0, s2) ∈ δe ∧

(∃s1 : s1 ∈ (R ∪ Rp) : (s0, s1) ∈ δe ∨ s0 ∈ Rp) do

12: R = R ∪ s0;
13: end for
14: until (R′ = R);
15: if ∃s0 /∈ R then

16: return Not-Possible;
17: else

18: return δ′p;
19: end if

In the loop on Lines 11–13, we add more states to R. We add s0 to R (Line 12), whenever every
computation starting from s0 has a state in S. A state s0 can be added to R only when there is no
environment transition starting from s0 going to a state outside R ∪ Rp. In addition to this condition,
there must be at least one transition from s0 that reaches R. The loop on Lines 4–14 terminates if no
state is added to R in an iteration. Upon termination of the loop, the algorithm declares failure to add
stabilization if there exists a state outside R. Otherwise, it returns δ′p as the set of transitions of the
stabilizing program.
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We use Figure 3 as an example to illustrate Algorithm 1. Figure 3 depicts the status of the state
space in a hypothetical ith iteration of the loop on Lines 4–14. In this iteration, state A is added to R.
This is due to the fact that (1) there is at least one transition from A (namely (A, F)) that reaches R and
(2) there is no environment transition from A that reaches outside R ∪ Rp. Likewise, state C is also
added to R. State B is not added to R due to environment transition (B, E). Likewise, state D is not
added to R. State E is not added to R since there is no transition from E to a state in R.

In the next, that is, (i + 1)th iteration, E is added to R due to transition (E, A) that goes to A that
was added to R in the ith iteration. Continuing this, B and D will be added in the (i + 2)th iteration.

Rp

S

R

A

B

C

D

Program transition

Environment transition

S: Invariant
R: Recovery to invariant is guaranteed
Rp: Program transition to R is possible

State which will be added 
to R in current iteration

EF

G

Figure 3. Illustration of how R expands in Algorithm 1.

3.3. Soundness, Completeness and Complexity Results

In this Section, we show that Algorithm 1 is sound and complete and its time complexity is
polynomial in the size of the state space.

Soundness: First, we show that Algorithm 1 is sound, that is, if it finds a solution, the solution
satisfies the problem statement for adding stabilization provided in Section 3.1.

Based on the notion of fairness for program transitions, we introduce the notion of whether an
environment transition can execute in a given computation prefix. An environment transition can
execute in a computation prefix if an environment transition exists in the last state of the prefix and
either (1) there are no program transitions starting from the last state of the prefix or (2) the last k− 1
transitions of the prefix are program transitions.

Definition 18 (Environment-enabled). In any prefix of any p[]kδe computation σ = 〈s0, s1, . . . , si〉, si is an
environment-enabled state iff
(∃s :: (si, s) ∈ δe) ∧((

@(si, s′) :: (si, s′) ∈ δp
)
∨(

@j : j > i− k : (sj, sj+1) ∈ δe
))

.

The following lemma focuses on the recovery to S from states in R:

Lemma 1. Any p′[]kδe computation that starts from a state in R, contains a state in S.

Proof. We prove this by induction.
Base case: R = S. The statement is satisfied trivially.
Induction hypothesis: Theorem holds for the current set of R.
Induction step: We show when we add a state to R, the theorem still hold for R. A state s0 is added to
R in two cases:
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Case 1 (@s2 : s2 ∈ ¬(R ∪ Rp) : (s0, s2) ∈ δe) ∧ (∃s1 : s1 ∈ (R ∪ Rp) : (s0, s1) ∈ δe)

Since there is no s2 in ¬(R ∪ Rp) such that (s0, s2) ∈ δe, for every (s0, s1) ∈ δe, s1 is in R ∪ Rp.
In addition, we know that there is at least one s1 in R ∪ Rp such that (s0, s1) ∈ δe. By the construction
of Rp, we know that if s1 is in Rp, there is a program transition from s1 to a state in R. Since (s0, s1) ∈ δe

and because of the fairness assumption, the program can occur and reach R. Thus, every computation
starting from s0 has a state in R. Since we do not change the set of transitions of states in R of the
previous iteration, the set of computations starting from any state in R is unchanged. Thus, based on
the induction hypothesis, every computation starting from s0 has a state in S.

Case 2 @s2 : s2 ∈ ¬(R ∪ Rp) : (s0, s2) ∈ δe ∧ s0 ∈ Rp

Since there is no s2 in ¬(R ∪ Rp) such that (s0, s2) ∈ δe, for every (s0, s1) ∈ δe, s1 is either in R
or Rp. In addition, we know that there is at least one state s3 in R such that (s0, s3) ∈ δp. In any
p′[]kδe computation starting from s0 if (s0, s1) ∈ δ′p then s1 ∈ R. If (s0, s1) ∈ δe then s1 ∈ R ∪ Rp. By
construction of Rp, we know that if s1 is in Rp, there is a program transition from s1 to a state in
R. Since (s0, s1) ∈ δe and because of the fairness assumption, program can reach R. Thus, every
computation starting from s0 has a state in R. Since we do not change the set of transitions of states in
R of the previous iteration, the set of computations starting from any state in R is unchanged. Thus,
based on the induction hypothesis, every computation starting from s0 has a state in S.

Theorem 1. Algorithm 1 is sound.

Proof. We need to show that the constraints of the problem definition are satisfied. At the beginning
of the algorithm δ′p = δp|S and all other transitions added to δ′p in the rest of the algorithm starts
outside S. Thus, p′|S = p|S that satisfies the first constraint. The second constraint is satisfied based
on Lemma 1 and the fact that R includes all states. The third constraint is satisfied, as we do not add
any transitions in δr to the program.

Completeness: Next, we focus on showing that Algorithm 1 is complete, that is, if there is a
solution that satisfies the problem statement for adding stabilization, Algorithm 1 finds one. The proof
of completeness is based on the analysis of states that are not in R upon termination.

Any state that is not in R at the end of Algorithm 1, either does not have any environment
transition, or it has an environment transition that goes to ¬(R ∪ Rp). Thus, we note the following
observation:

Observation 1. For any s0 such that s0 /∈ R and ∃s1 :: (s0, s1) ∈ δe, we have ∃s2 : s2 ∈ ¬(R ∪ Rp) :
(s0, s2) ∈ δe.

Also, if a state is in Rp but it is not in R, it has an environment transition to ¬(R ∪ Rp).

Observation 2. For any s0 ∈ ¬R ∩ Rp, ∃s1 : s1 ∈ ¬(R ∪ Rp) : (s0, s1) ∈ δe.

Now, for the rest of our discussion in this section, we assume that Algorithm 1 has returned
failure. The following lemma focuses on the situation where a given revision p′′ reaches a state marked
as ¬(R ∪ Rp) by Algorithm 1.

Lemma 2. Let δ′′p be any program such that δ′′p ∩ δr = ∅. Let sj be any state in ¬(R ∪ Rp) at the end of
Algorithm 1. Then, for every p′′[]kδe prefix α = 〈..., sj−1, sj〉, there exists suffix β = 〈sj+1, sj+2, . . .〉, such that
αβ is a p′′[]kδe computation and one of two conditions below is correct:

1. sj+1 ∈ ¬(R ∪ Rp)

2. sj+1 ∈ (Rp − R) ∧ sj+2 ∈ ¬(R ∪ Rp)
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Proof. There are two cases for sj:

Case 1 If sj is environment-enabled in prefix α = 〈..., sj−1, sj〉
According to the Observation 1, since sj ∈ ¬(R ∪ Rp), there exists s′′ ∈ ¬(R ∪ Rp) such that
(sj, s′′) ∈ δe. We set sj+1 = s′′.

Case 2 If sj is not environment-enabled in α = 〈..., sj−1, sj〉
In this case (sj, sj+1) ∈ δp and as sj ∈ ¬(R ∪ Rp), sj+1 ∈ ¬R (otherwise, sj would be included in Rp,
as we can reach state sj+1 ∈ R with a transition which is not in δr). There are two sub-cases for this case:

Case 2.1 sj+1 ∈ ¬Rp

In this case sj+1 ∈ ¬(R ∪ Rp).

Case 2.2 sj+1 ∈ Rp

As sj+1 ∈ ¬R ∩ Rp, according to Observation 2, we have ∃s2 : s2 ∈ ¬(R ∪ Rp) : (sj+1, s2) ∈ δe.
As (sj, sj+1) ∈ δp, even with fairness (sj+1, s2) can occur. Therefore we set sj+2 = s2, that is,
sj+2 ∈ ¬(R ∪ Rp).

From this lemma, we conclude that for any given program p′′, if a computation ever reaches a
state in ¬(R ∪ Rp), there is a computation from that state that never reaches R. Specifically, we have
the following corollary:

Corollary 1. Let δ′′p be any program such that δ′′p ∩ δr = ∅. Let sj be any state in ¬(R ∪ Rp) at the end of
Algorithm 1. Then for every p′′[]kδe prefix α = 〈..., sj−1, sj〉, there exists suffix β = 〈sj+1, sj+2, . . .〉 (possibly
〈〉), such that αβ is a p′′[]kδe computation and ∀i : i ≥ j : si ∈ ¬R (i.e., ¬S).

Theorem 2. Algorithm 1 is complete.

Proof. Suppose program p′′ solve the addition problem. Algorithm 1 returns Not-possible only when,
at the end of loop on Lines 4–14 there exists a state s0 such that s0 /∈ R. When s0 /∈ R, we have two
cases as follows:

Case 1 ∃s2 : s2 ∈ ¬(R ∪ Rp) : (s0, s2) ∈ δe

As there exists an environment action to state s2 in ¬(R ∪ Rp), starting from s0 there is a computation
such that the next state after s0 is in ¬(R ∪ Rp). Note that, when a computation starts from s0, even
with the fairness assumption (s0, s2) ∈ δe can occur. Based on Corollary 1, for every δ′′p such that
δ′′p ∩ δr = ∅, starting from s0, there is a computation such that all of its states are outside R (i.e.,
outside s).

Case 2 @s1 : s1 ∈ (R ∪ Rp) : (s0, s1) ∈ δe ∧ s0 /∈ Rp

Based on Corollary 1, starting from s0 ∈ ¬(R ∪ Rp), there is a computation such that every state is in
¬R. Therefore, for every δ′′p such that δ′′p ∩ δr = ∅, starting from s0, there is a computation such that all
of its states are outside R (i.e., outside s).

Thus in both cases, p′′ has a computation that never reaches the invariant (contradiction).

Time complexity: Finally, regarding the time complexity of Algorithm 1 we have the following
theorem:

Theorem 3. Time complexity of Algorithm 1 is polynomial (in the size of state space of p).
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Proof. The proof follows from the fact that each statement in Algorithm 1 is executed in polynomial
time and the number of iterations is also polynomial, as in each iteration at least one state is added
to R.

4. Case Study: Stabilization of a Smart Grid

In this section, we illustrate how Algorithm 1 can be used for adding stabilization to a controller
program of a smart grid. We consider an abstract version of the smart grid described in [9] (see
Figure 4). In this example, the system consists of a generator G and two loads Z1 and Z2. There are
three sensors in the system. Sensor G shows the power generated by the generator and sensors 1 and 2
show the demand of load Z1 and Z2, respectively. The goal is to ensure that proper load shading is
used if the load is too high (respectively, generating capacity is too low).

switch 

2

switch 

1

sensor 1 sensor 2

sensor 
G

Control 
Center

G

Z1 Z2

~

Wire
Data/Signal

Figure 4. A single generator smart grid system [9].

The control center is shown by a dashed circle in Figure 4. It can read the values of the sensors
and turn on/off switches connected to the loads. The program of the control center has to control
switches in a manner that all the conditions below are satisfied:

1. Both switches must be turned on if the overall sensed load is less than or equal to the
generation capacity.

2. If sensor values reveal that neither load can individually be served by G then both are shed.
3. If only one load can be served then the smaller load is shed assuming the larger load can be

served by G.
4. If only one can be served and the larger load exceeds the generation capacity, the smaller load

is served.

4.1. Program Model

We model the program of the smart grid shown in Figure 4 by program p which has five variables
as follows:
VG : The value of sensor G.
V1 : The value of sensor 1.
V2 : The value of sensor 2.
w1 : The status of switch 1.
w2 : The status of switch 2.

The value of each sensor is an integer in the range [0, max]. The status of each switch is a Boolean.
The invariant S for this program includes all the states which are legitimate according to the conditions
1-4 mentioned above. Therefore, S is the union of state predicates I1 to I6 as follows (We need to add
0 ≤ V1, V2, Vg ≤ max to all conditions. For brevity, we keep these implicit.):
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I1 = (V1 + V1 ≤ VG) ∧ (w1 ∧ w2)

I2 = V1 ≤ VG ∧V2 > VG) ∧ (w1 ∧ ¬w2)

I3 = (V1 > VG ∧V2 ≤ VG) ∧ (¬w1 ∧ w2)

I4 = (V1 > VG ∧V2 > VG) ∧ (¬w1 ∧ ¬w2)

I5 = (V1 + V2 > VG ∧V1 ≤ VG ∧V2 ≤ VG ∧V1 ≤ V2) ∧ (¬w1 ∧ w2)

I6 = (V1 + V2 > VG ∧V1 ≤ VG ∧V2 ≤ VG ∧V1 > V2) ∧ (w1 ∧ ¬w2)

We note the following observation about states in S:

Observation 3. For any value of V1, V2 and VG, there exists an assignment to w1 and w2 that changes the
state to a state is in S.

The environment can change the values of sensors 1 and 2. In addition, environment can keep
the current value of a sensor by self-loop environment transitions. However, environment cannot
change the status of switches, change the generated load, or leave the invariant. Thus, the set of
environment transitions δe is equal to {(s0, s1)|

(
w1(s0) = w1(s1)

)
∧
(
w2(s0) = w2(s1)

)
∧
(
VG(s0) =

VG(s1)
)
∧
(
∩6

i=1 Ii(s0)⇒ ∩6
i=1 Ii(s1)

)
}, where v(sj) shows the value of the variable or predicate v in

state sj.
Program cannot change the value of any sensor. Thus, set of program restrictions for this program

is δr = {(s0, s1)| VG(s0) 6= VG(s1) ∨V1(s0) 6= V1(s1) ∨V2(s0) 6= V2(s1)}.
For the sake of presentation, we also consider the case where that program cannot change the

status of more than one switch in one transition. For this case, we add more transitions to the
set of program restrictions. We call the set of program restrictions for this case δr2 and it is equal
to {(s0, s1)| VG(s0) 6= VG(s1) ∨ V1(s0) 6= V1(s1) ∨ V2(s0) 6= V2(s1) ∨ (w1(s0) 6= w1(s1) ∧ w2(s0) 6=
w2(s1))}.

4.2. Addition of Stabilization

Here, we apply Algorithm 1 to add stabilization to program p defined in Section 4.1. We illustrate
the result of applying Algorithm 1 for two sets of program restrictions, δr1 and δr2 .

4.2.1. Adding Stabilization for δr1

At the beginning of Algorithm 1, R is initialized with S. In the first iteration of loop on Lines 4–14,
Rp is the set of states outside S that can reach a state in S with only one program transition. A program
transition cannot change the value of any sensor. According to Observation 3, from each state in ¬S it
is possible to reach a state in S with changing the status of switches. Therefore, the following set of
transitions are added to δ′p by Line 9:

{(s0, s1)| V1(s0) = V1(s1) ∧V2(s0) = V2(s1) ∧VG(s0) = VG(s1) ∧ s0 /∈ ∪6
i=1 Ii ∧ s1 ∈ ∪6

i=1 Ii}

Since every state in ¬S (¬R) is in Rp, there does not exist any environment transition starting
from any state to a state in ¬(R ∪ Rp). Therefore, all the states in ¬R are added to R by Line 12. In the
second iteration, no more states are added to R. Thus, loop on Lines 4–14 terminates. Since there is no
state in ¬R, the algorithm returns δ′p.

4.2.2. Adding Stabilization for δr2

At the beginning of Algorithm 1, R is initialized with S. In the first iteration of loop on Lines 4–14,
Rp is the set of states outside S that can reach a state in S with only one program transition. A program
transition cannot change the value of any sensor. In addition, according to δr2 , it cannot change the
status of both switches simultaneously. Therefore, state predicate Rp is the union of state predicates
Rp1 to Rp6 as follows (⊕ denotes the xor operation):
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Rp1 = (V1 + V1 ≤ VG) ∧ (w1 ⊕ w2)

Rp2 = (V1 ≤ VG ∧V2 > VG) ∧ (w1 ⊕¬w2)

Rp3 = (V1 > VG ∧V2 ≤ VG) ∧ (¬w1 ⊕ w2)

Rp4 = (V1 > VG ∧V2 > VG) ∧ (¬w1 ⊕¬w2)

Rp5 = (V1 + V2 > VG ∧V1 ≤ VG ∧V2 ≤ VG ∧V1 ≤ V2) ∧ (¬w1 ⊕ w2)

Rp6 = (V1 + V2 > VG ∧V1 ≤ VG ∧V2 ≤ VG ∧V1 > V2) ∧ (w1 ⊕¬w2)

Similarly, ¬(R ∪ Rp) includes every state that is outside S and more than one step are needed
to reach a state in S. Therefore, state predicate ¬(R ∪ Rp) is the union of state predicates R′p1

to R′p6

as follows:

R′p1
= (V1 + V1 ≤ VG) ∧ (¬w1 ∧ ¬w2)

R′p2
= (V1 ≤ VG ∧V2 > VG) ∧ (¬w1 ∧ w2)

R′p3
= (V1 > VG ∧V2 ≤ VG) ∧ (w1 ∧ ¬w2)

R′p4
= (V1 > VG ∧V2 > VG) ∧ (w1 ∧ w2)

R′p5
= (V1 + V2 > VG ∧V1 ≤ VG ∧V2 ≤ VG ∧V1 ≤ V2) ∧ (w1 ∧ ¬w2)

R′p6
= (V1 + V2 > VG ∧V1 ≤ VG ∧V2 ≤ VG ∧V1 > V2) ∧ (¬w1 ∧ w2)

Now, observe that from any state in Rp, it is possible to reach a state in ¬(R ∪ Rp) by an
environment transition. Therefore, no state is added to R in the first iteration and loop on Lines 4–14
terminate in the first iteration. Since all the states outside S remain in ¬R, the algorithm declares that
there is no solution to the addition problem. Therefore, according to the completeness of Algorithm 1,
there does not exist a 2-stabilizing program for the smart grid described in this section when the set of
program restriction is δr2 .

5. Addition of Fault-Tolerance

In this section, we present our algorithm for adding failsafe and masking fault-tolerance.
In Section 5.1, we identify the problem statement for adding fault-tolerance. In Section 5.2, we present
an algorithm for adding failsafe fault-tolerance. The proofs of the soundness and completeness and
the complexity results for this algorithm are provided in Appendix A. In Section 5.3, we present an
algorithm for adding masking fault-tolerance. The proofs of the soundness and completeness and the
complexity results for this algorithm are provided in Appendix B.

5.1. Problem Definition

The problem statement for the addition of fault-tolerance is as follows:

Given p, δe, S, spec, set of program restrictions δr, k > 1 and f such that p k-satisfies
spec from S in environment δe and δp ∩ δr = ∅, identify p′ and invariant S′ such that:

C1 every computation of p′[]kδe that starts in a state in S′ is a computation of
p[]kδe that starts in S and

C2 p′ is (failsafe or masking) k- f -tolerant to spec from S′ in environment δe

and
C3 δ′p ∩ δr = ∅

The problem statement requires that the program does not introduce new behaviors in the absence
of faults (Constraint C1), provides desired fault-tolerance (Constraint C2) and does not include any
transition in δr (Constraint C3).



Future Internet 2019, 11, 144 15 of 34

5.2. Algorithm to Add Failsafe Fault-Tolerance

The procedure for adding failsafe fault-tolerance for k = 2 is shown in Algorithm 2. In this
algorithm, set ms1 is the set of states from which there exists a computation suffix that violates the safety
of spec. ms2 is the set of states such that, if they are reached by a program or fault transition, or starting
from them, there exists a computation suffix that violates safety. Note that ms2 always includes ms1.
First, ms1 is initialized to {s0|(s0, s1) ∈ f ∩ δb} and ms2 is initialized to ms1∪{s0|∃s1 :: (s0, s1) ∈ δe ∩ δb}
by Lines 1 and 2, respectively. Set mt is the set of transitions that the final program cannot have, as
they are in δb ∪ δr, or reach a state in ms2.

Algorithm 2 Adding Failsafe Fault-Tolerance

Input: Sp, δp, δe, S, δb, δr and f
Output: (S′, δ′p) or Not-Possible

1: ms1 = {s0|∃s1 :: (s0, s1) ∈ f ∩ δb};
2: ms2 = ms1 ∪ {s0|∃s1 :: (s0, s1) ∈ δe ∩ δb};
3: mt = {(s0, s1)| (s0, s1) ∈ (δb ∪ δr) ∨ s1 ∈ ms2};
4: repeat

5: ms′1 = ms1;
6: ms′2 = ms2;
7: ms1 = ms1 ∪ {s0| ∃s1 : s1 ∈ ms2 : (s0, s1) ∈ f } ∪ {s0|(∃s1 :: (s1 ∈ ms1 ∧ (s0, s1) ∈ δe) ∨ (s0, s1) ∈

δe ∩ δb)) ∧ (∀s2 :: (s0, s2) ∈ mt)};
8: ms2 = ms2 ∪ms1 ∪ {s0|∃s1 : s1 ∈ ms1 : (s0, s1) ∈ δe)};
9: mt = {(s0, s1)| (s0, s1) ∈ (δb ∪ δr) ∨ s1 ∈ ms2};

10: until (ms′1 = ms1 ∧ms′2 = ms2)
11: δ′p = δp|S−mt;
12: S′, δ′p = ClosureAndDeadlocks(S−ms2, δ′p, δe);
13: repeat

14: if S′ = ∅ then

15: return Not-Possible;
16: end if
17: S′′ = S′;
18: ms3 = {s0|

(
∃s1, s2 :: (s0, s1) ∈ δe ∧ (s0, s2) ∈ δp

)
∧
(
@s3 :: (s0, s3) ∈ δ′p

)
};

19: ms4 = {s0|∃s1 :: (s1 ∈ ms3 ∧ (s0, s1) ∈ δe)}
20: S′, δ′p = ClosureAndDeadlocks(S−ms4, δ′p, δe);
21: until (S′′ = S′)
22: δ′p =

(
δ′p ∪

(
(Sp − S′)× Sp)

))
−mt;

23: return (S′, δ′p) ;

24: ClosureAndDeadlocks(S, δp, δe)
25: repeat
26: S′ = S;
27: δ′p = δp;
28: S = S− {s0| (∀s1 : s1 ∈ S : (s0, s1) /∈ δp ∪ δe)};
29: S = S− {s0| ∃s1 :: (s0, s1) ∈ δe ∧ s0 ∈ S ∧ s1 /∈ S};
30: δp = δp − {(s0, s1) :: s0 ∈ S ∧ s1 /∈ S};
31: until (S′ = S) ∧ (δ′p = δp)
32: return S, δp;

In the loop on Lines 4–10, more states are added to ms1 and ms2. Consequently, we update mt.
Any state s0 is added to ms1 by Line 7 in two cases: (1) if there exists a fault transition starting from s0

that reaches a state in ms2, or (2) there exists an environment transition (s0, s1) such that (s0, s1) is a
bad transition or s1 ∈ ms1 and any other transition starting from ms1 reaches a state in ms2 (i.e., any
transition (s0, s2) ∈ mt).
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A state is added to ms2 by Line 8 if it is added to ms1 or if there exists an environment transition
to a state in ms1. We update mt by Line 9 to include transitions to new states added to ms2. The loop
on Lines 4–10 terminates if no state is added to ms1 or ms2 in an iteration.

Then, we focus on creating new invariant, S′, for the revised program. S′ cannot include any
transition in ms2, as starting from any state in ms2, there is a computation which violates the safety.
In addition, the set of program transitions of the revised program, δ′p, cannot include any transition in
mt, as by any transition in mt a state in ms2 is reached. Thus, we initialized δ′p with δp|S−mt. Note
that S′ must be closed in p′ ∪ δe and it cannot include any deadlock state. (Note, as we said in Section 2,
for original deadlock states we have added self-loops. Thus, any deadlock state at this point is created
because of removing transitions. Having these deadlock state in the invariant create new behavior
inside invariant which is not acceptable.)

Thus, whenever we remove a state from S′ we ensure that the S′ is closed in p′ ∪ δe and does not
include any deadlock state by Line 12.

To satisfy condition C1, in the loop on Lines 13–21, we remove certain states that cause new
computations for p′ that are not computations of p. Suppose starting from s0 there exists environment
transition (s0, s1). In addition, there exists a program transition (s0, s2) in the set of program transitions
of the original program, δp. Set ms3 includes any state like s0. If s0 is reached by environment transition
(s3, s0), in the original program, according to the fairness assumption, (s0, s1) cannot occur. Thus,
sequence 〈s3, s0, s1〉 cannot be in any p[]2δe computation. However, if we remove program transition
(s0, s2) in the revised program, 〈s3, s0, s1〉 can be in a p′[]2δe computation. Therefore, we have to remove
any state like s3 (i.e., all states in ms4 from the invariant (Line 20)).

After creating invariant S′, we add program transitions outside it to δ′p. Note that outside S′, any
program transition which is not in mt is allowed to be in the final program. In Line 15, the algorithm
declares that no solution to the addition problem exists, if S′ is empty. Otherwise, at the end of the
algorithm, it returns (δ′p, S′) as the solution to the addition problem.

5.3. Algorithm to Add Masking Fault-Tolerance

In this section, we present an algorithm for adding masking fault-tolerance in the presence of
unchangeable environment actions. The intuition behind this algorithm is as follows: first, we utilize
the ideas from adding stabilization. Intuitively, in Algorithm 1, we constructed the set R from where
recovery to the invariant (S) was possible. In the case of stabilization, we wanted to ensure that R
includes all states. However, for masking fault-tolerance recovery from all states is not necessary.
We also need to ensure that recovery from R is not prevented by faults. This may require us to prevent
the program from reaching some states in R. Hence, this process needs to be repeated to identify a set
R such that recovery to S is provided and faults do not cause the program to reach a state outside R.
In addition, in masking fault-tolerance, like failsafe fault-tolerance, the program must satisfy safety of
specification even in presence of faults. Thus, the details of Algorithm 3 are as follows.

We start with an invariant equal to the original invariant (i.e., S′ = S). Like Algorithm 1, we set δ′p
to δp|S which is the set of all program transitions inside the invariant. Like in the case of Algorithm 2,
set ms1 includes all states such that no matter how they are reached, there is a computation that is
not desirable. In the case of failsafe fault-tolerance, such computation violates safety. On the other
hand, here in case of masking fault-tolerant, such computation either violates safety or never reaches
the invariant. ms2 is the set of states such that, if they are reached by a program or fault transition,
or starting from them, there exists a computation suffix which either violates safety or never reaches
the invariant. Same as Algorithm 2, set mt always includes all transitions to states in ms2. We initialize
sets ms1, ms2 and mt as done in Algorithm 2 and expand them in the loop on Lines 6–43. In this loop,
we use Algorithm 1 and Algorithm 2 with some modification.
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Algorithm 3 Adding Masking Fault-Tolerance

Input: Sp, δp, δe, S, δb, δr, and f
Output: (S′, δ′p) or Not-Possible

1: S′ = S;
2: δ′p = (δp|S);
3: ms1 = {s0|(s0, s1) ∈ f ∩ δb};
4: ms2 = ms1 ∪ {s0|∃s1 : (s0, s1) ∈ δe ∩ δb};
5: mt = {(s0, s1)| (s0, s1) ∈ (δb ∪ δr) ∨ s1 ∈ ms2};
6: repeat

7: ms′1 = ms1;
8: ms′2 = ms2;
9: R = S′;

10: S′′ = S′;
11: Rp = {};
12: repeat

13: R′ = R;
14: R′p = {s0|s0 /∈ R ∧ ∃s1 : s1 ∈ R : (s0, s1) /∈ mt};
15: Rp = R′p ∪ Rp;
16: for each s0 ∈ R′p do

17: δ′p = δ′p ∪ {(s0, s1)|(s0, s1) /∈ mt ∧ s1 ∈ R};
18: end for
19: for each s0 /∈ R :

(
@s2 : s2 ∈ (¬(R∪ Rp)∪ms1) : (s0, s2) ∈ δe

)
∧
((
∃s1 : s1 ∈ (R∪ Rp)−ms1 :

(s0, s1) ∈ δe) ∧(@s2 :: (s0, s2) ∈ (δe ∩ δb))
)
∨s0 ∈ Rp

)
do

20: R = R ∪ s0;
21: end for
22: until (R′ = R);
23: ms1 = ms1 ∪ ¬(R ∪ Rp);
24: ms2 = ms2 ∪ ¬R;
25: repeat

26: ms′′1 = ms1;
27: ms′′2 = ms2;
28: ms1 = ms1 ∪ {s0| ∃s1 : s1 ∈ ms2 : (s0, s1) ∈ f } ∪ {s0|

(
∃s1 : s1 ∈ ms1 : (s0, s1) ∈ δe) ∨ (s0, s1) ∈

(δe ∩ δb)
)
∧
(
@s2 :: (s0, s2) ∈ δ′p

)
};

29: ms2 = ms2 ∪ms1 ∪ {s0|∃s1 : s1 ∈ ms1 : (s0, s1) ∈ δe)};
30: mt = {(s0, s1)| (s0, s1) ∈ (δb ∪ δr) ∨ s1 ∈ ms2};
31: until ms′′1 = ms1 ∧ms′′2 = ms2
32: δ′p = δ′p −mt;
33: S′, δ′p = ClosureAndDeadlocks(S′ −ms2, δ′p, δe);
34: repeat

35: if S′ = φ then

36: return Not-Possible;
37: end if
38: S′′′ = S′;
39: ms3 = {s0|

(
∃s1, s2 :: (s0, s1) ∈ δe ∧ (s0, s2) ∈ δp

)
∧
(
@s3 : (s0, s3) ∈ δ′p

)
};

40: ms4 = {s0|∃s1 :: (s1 ∈ ms3 ∧ (s0, s1) ∈ δe)}
41: S′, δ′p = ClosureAndDeadlocks(S−ms4, δ′p, δe);
42: until (S′′′ = S′)
43: until (S′′ = S′ ∧ms′1 = ms1 ∧ms′2 = ms2)
44: return (S′, δ′p) ;

In the loop on Lines 12–22 we build set R which includes all states from which all computations
reach a state in S′. In addition, all required program transitions are added to δ′p by Line 17. When loop
on Lines 12–22 terminates, we add all states in ¬(R ∪ Rp) to ms1. We also set ms2 to ¬R. Then, in the
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loop on Lines 25–31 we expand ms1 and ms2 with the same procedure used in Algorithm 2. In Line 32,
we remove any transition in mt from δ′p. In Line 33, we remove all states in ms2 from S′ and ensure
closure and deadlock freedom.

In the loop on Lines 34–42, we remove some states from S′ to avoid new behavior inside the
invariant just like what we did in Algorithm 2. If any state s0 is removed from S′ in Lines 33 or 41,
we need to repeat the loop on Lines 6–43, because it is possible that a state in R was dependent on s0 to
reach S′ but s0 is not in S′ anymore. We also need to repeat this loop if the set of ms1 or m2 has changed.
In Line 36, the algorithm declares that there does not exist a solution if S′ is empty. Otherwise, when
loop on Lines 6–43 terminates, the algorithm returns (δ′p, S′) as the solution to the addition problem.

We note that the addition of nonmasking fault-tolerance considered [6] is also possible with
Algorithm 3. In particular, in this case, we need to set δb to be the empty set. In principle, Algorithm 3
could also be used to add stabilization. However, we presented Algorithm 1 separately since it is a
much simpler algorithm and forms the basis of Algorithm 3.

6. Experimental Results

In this section, we provide some of our experimental results of applying algorithms provided
in previous sections. We have implemented the algorithms proposed in this paper in Java in a
package called JavaRepair. JavaRepair and the code for examples of this section can be downloaded
from [4]. JavaRepair uses JavaBDD [4] for symbolic repair using Binary Decision Diagrams (BDDs).
All experiments are done on a 64-bit Windows 8.1 machine with AMD A8-6410 APU 2.00 GHz CPU
and 8 GB RAM. We first provide our results for the addition of stabilization in Section 6.1, next we
focus on the addition of fault-tolerance in Section 6.2.

6.1. Addition of Stabilization

In this section we use the JavaRepair package to repair/synthesis stabilizing programs for two
variations of the shepherding problem [10].

6.1.1. One-Dimensional Stabilizing Shepherding Problem

In this section, we focus on the shepherding problem introduced in Section 1. We first consider
the one-dimensional version of the problem where both farmer and the sheep move in a line. Thus,
we have a row of n cells that the sheep/farmer can be in. Thus, we have two variables c f and cs which
represent the location of the farmer and the sheep, respectively (see Figure 5). The farmer and the
sheep can change their location at most by one cell at a time.

SF

0 1 n-1n-2

Figure 5. An example state of an 1D shepherding problem with n = 6. In this example, c f = 1 and
cs = n− 2.

The rightmost cell is marked as the desired location. The farmer wants to steer the sheep to this
cell. Thus, the invariant for the problem is {s|cs(s) = n− 1}, where n is the number of cells in the row.
The sheep always tries to increase its distance with the farmer. When the farmer and the sheep are in
the same location, the sheep non-deterministically decides to go to the right or left, if it has space in
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its both left and right. When the sheep is in the desired location, it stops moving further. With this
explanation, the set of environment transitions is

δe =
{
(s0, s1)|cs(s0) 6= n− 1∧ c f (s0) = c f (s1)∧((

c f (s0) < cs(s0) ∧ cs(s0) < n− 1∧ cs(s1) = cs(s0) + 1
)
∨(

c f (s0) > cs(s0) ∧ cs(s0) > 0∧ cs(s1) = cs(s0)− 1
)
∨(

c f (s0) = cs(s0) ∧ cs(s0) < n− 1∧ cs(s1) = cs(s0) + 1
)
∨(

c f (s0) = cs(s0) ∧ cs(s0) > 0∧ cs(s1) = cs(s0)− 1
))}

Also, since the farmer cannot move more than one cell in one step, the set of program restrictions is

δr = {(s0, s1)| |c f (s0)− c f (s1)| > 1}.

Because of the non-determinism in the movement of the sheep, a program for the farmer can go
into an infinite loop such that it never reaches the goal state. To understand how that can happen,
consider this scenario: suppose both farmer and sheep are in the cell 0. Since the left side of the sheep
is closed, it can only move to the right. Thus, it moves to the second cell. Now, suppose the farmer
also decides to go to the second cell. Thus, again both of them are in the same cell. However, this time,
since the left side of the sheep is open, it may decide to go there. Suppose sheep decides to go the left
cell. Then, the farmer also goes back to the first cell. Once again, they are both in the first cell and the
same scenario can repeat forever. A correct program for the farmer utilizes the behavior of the sheep,
while avoiding going into an infinite loop and steers the sheep to the desired location.

We modeled this problem using JavaRepair for different sizes. We used a program with an
empty set of transitions as the input program. Algorithm 1 successfully adds stabilization to the given
program. Table 1 shows the repair time for different sizes.

6.1.2. Two-Dimensional Stabilizing Shepherding Problem

In this section, we consider the shepherding problem described in Section 6.1.1 in a
two-dimensional space. Thus, instead of a single row of cells, we have a grid of cells where the
sheep and the farmer can move. Thus, we have four variables r f , c f , rs and cs that represent the row
and column of the farmer and the sheep, respectively (see Figure 6).

S

F

0 1 n-1

0

1

n-1

Figure 6. An example state of a 2D shepherding problem with n = 4. In this example, r f = 2, c f = 1,
rs = 1 and cs = 2.

The upper right corner of the grid is the desired location. Thus, the invariant for this problem is
{s|rs(s) = 0∧ cs(s) = n− 1}, where again n is the number of cells in a row. The sheep again tries to
increases its distance with the farmer. The sheep and the farmer can only change either their row or
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column by at most one at each step. As in Section 6.1.1, sheep stops moving once it is in the desired
location. With this explanation, the set of environment transitions is

δe =
{
(s0, s1)|¬(rs(s0) = 0∧ cs(s0) = n− 1)∧

(r f (s0) = r f (s1) ∧ c f (s0) = c f (s1))∧
(cs(s0) = cs(s1) ∨ rs(s0) = rs(s1))∧((

c f (s0) < cs(s0) ∧ cs(s0) < n− 1∧ cs(s1) = cs(s0) + 1
)
∨(

c f (s0) > cs(s0) ∧ cs(s0) > 0∧ cs(s1) = cs(s0)− 1
)
∨(

c f (s0) = cs(s0) ∧ cs(s0) < n− 1∧ cs(s1) = cs(s0) + 1
)
∨(

c f (s0) = cs(s0) ∧ cs(s0) > 0∧ cs(s1) = cs(s0)− 1
)
∨(

r f (s0) < rs(s0) ∧ rs(s0) < n− 1∧ rs(s1) = rs(s0) + 1
)
∨(

r f (s0) > rs(s0) ∧ rs(s0) > 0∧ rs(s1) = rs(s0)− 1
)
∨(

r f (s0) = rs(s0) ∧ rs(s0) < n− 1∧ rs(s1) = rs(s0) + 1
)
∨(

r f (s0) = rs(s0) ∧ rs(s0) > 0∧ rs(s1) = rs(s0)− 1
))}

Also, the set of program restrictions is

δr = {(s0, s1)| |c f (s0)− c f (s1)|+ |r f (s0)− r f (s1)| > 1}.

Like one-dimensional case discussed in Section 6.1.1, with a poorly designed farmer, here is also
possible to chase the sheep forever and never reach the desired state. Table 1 shows the repair time
using JavaRepair for this problem for different sizes.

Table 1. Average Time of Addition of Stabilization for Shepherding Problem.

Size Addition Time (s)

1D Shepherding 2D Shepherding

4 0.008 0.025
5 0.023 0.119
6 0.007 0.231
7 0.007 0.164
8 0.007 0.115
9 0.014 0.656
10 0.038 1.141
11 0.013 1.310
12 0.011 0.802
13 0.010 1.952
14 0.012 2.776
15 0.012 2.514
16 0.010 0.680
17 0.024 7.636
18 0.029 16.826
19 0.026 16.361
20 0.020 9.655
30 0.128 42.137
40 0.119 46.789

6.2. Addition of Fault-Tolerance

In this section, we use the JavaRepair package to repair/synthesis fault-tolerant programs for
two other variations of the shepherding problem. We first create a failsafe fault-tolerant program in
Section 6.2.1. Next, we create a masking fault-tolerant program in Section 6.2.2.
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6.2.1. Failsafe Fault-Tolerant Shepherding Problem

For this variation, we change the two-dimensional version described in Section 6.1.2 as follows:
there is no requirement of steering the sheep to the desired location. Instead, we require that the
farmer must be always close to the sheep. Specifically, we require that the farmer and sheep can be far
apart at most by one row or one cell. We model this requirement as a safety property with the set of
bad transitions

δb =
{
(s0, s1)|

¬
((

rs(s1) = r f (s1) ∧ cs(s1) = c f (s1)
)
∨(

|rs(s1)− r f (s1)| = 1∧ cs(s1) = c f (s1)
)
∨(

rs(s1) = r f (s1) ∧ |cs(s1)− c f (s1)| = 1
))}

.

The invariant, the set of environment transitions δe and the set of program restrictions δr are the
same as those for two-dimensional case explained in Section 6.1.2. For addition of fault-tolerance we
have a set of faults as the input. We consider two sets of faults and try to repair the program with each
of them. The first set captures faults that can change the state of the program arbitrary, that is, for any
state the program may change to any other state. We denote this set by farbitrary. The second set of
fault transitions that we consider captures faults that cause the system transition to a state where both
farmer and sheep co-locate in one of the cells except the desired cell. We model this transition as a set
of fault transitions

fsame−location =
{
(s0, s1)|

rs(s0) = 0∧ cs(s0) = n− 1∧
rs(s1) = r f (s1) ∧ cs(s1) = c f (s1)∧
¬(rs(s1) = 0∧ cs(s1) = n− 1)

}
We modeled this problem using JavaRepair for different sizes. The Algorithm 2 does not find any
solution for the case of arbitrary faults, farbitrary. From the completeness of Algorithm 2, we know that
there is no solution for this case. On the other hand, the algorithm finds a solution for fsame−location.
Table 2 shows the repair time for different sizes.

6.2.2. Masking Fault-Tolerant Shepherding Problem

In this section, we add the requirement of steering the sheep to the desired location to the failsafe
version explained in Section 6.2.1. Note that this requirement is weaker than the one specified in the
stabilization version explained in Section 6.1.2 where we required that the farmer must steer the sheep
to the desired location starting from any arbitrary state. On the other hand, in this section, we require
that the farmer should steer the sheep to the goal state once the program starts in states reached by
the fault transitions (i.e., fault-span). The invariant, the set of environment transitions and the set of
program restrictions are the same as those defined in Section 6.2.1. Like Section 6.2.1, we consider two
sets of fault transitions farbitrary and fsame−location. Like failsafe case, there is no solution for arbitrary
faults but for same-location faults, Algorithm 3 finds a solution. Table 2 shows the addition time for
this problem.
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Table 2. Average Time of Addition of Fault-tolerance for Shepherding Problem.

Size
Addition Time (s)

Failsafe Masking

Arbitrary Fault Same-Location Fault Arbitrary Fault Same-Location Fault

4 0.006 0.009 0.009 0.057
5 0.019 0.027 0.043 0.176
6 0.006 0.018 0.023 0.129
7 0.007 0.017 0.016 0.197
8 0.004 0.012 0.013 0.181
9 0.019 0.027 0.025 0.340

10 0.014 0.029 0.020 0.424
11 0.007 0.024 0.018 0.547
12 0.004 0.033 0.015 0.493
13 0.005 0.035 0.016 0.698
14 0.005 0.021 0.018 0.807
15 0.006 0.019 0.025 0.928
16 0.004 0.015 0.014 0.735
17 0.032 0.081 0.074 1.142
18 0.017 0.281 0.116 1.273
19 0.019 0.284 0.036 1.416
20 0.014 0.049 0.099 1.245
30 0.886 1.137 0.973 4.995
40 1.204 1.287 1.246 5.232

7. Discussion and Extensions of Algorithms

In this section, we consider problems related to those addressed in Sections 3 and 5. Our first
variation focuses on Definition 6. In this definition, we assumed that the environment is fair. Specifically,
at least k−1 actions execute between any two environment actions. We consider variations where (1)
this property is satisfied eventually. In other words, for some initial computation, environment actions
may prevent the program from executing. However, eventually, fairness is provided to program
actions and (2) program actions are given even with reduced fairness. Specifically, we consider the case
where several environment actions can execute in a row but program actions execute infinitely often.

Our second variation is related to the invariant of the revised program, S′ and the invariant of the
original program, S. In the case of adding stabilization, we considered S′ = S whereas, in the case of
adding fault-tolerance, we considered S′ ⊆ S.

Changes for adding stabilization and fault-tolerance with an eventually fair environment.
No changes are required to Algorithm 1 even if the environment is eventually fair. This is due
to the fact that this algorithm constructs programs that provide recovery from any state, that is, it will
provide recovery from the state reached after the point when fairness is restored. For Algorithm 2
and Algorithm 3, we should change the input f to include δe ∪ δ f . The resulting algorithm will ensure
that the generated program will allow unfair execution of the program in initial states. However,
fault-tolerance will be provided when the fairness is restored.

Changes for adding stabilization and fault-tolerance with multiple consecutive environment
actions. If environment actions can execute consecutively, we can change input δe to be its transitive
closure. In other words, if (s0, s1) and (s1, s2) are transitions in δe, we add (s0, s2) to δe. With this
change, the constructed program will provide stabilization or fault-tolerance even if environment
transitions can execute consecutively.

Changes for adding stabilization and fault-tolerance based on relation between S′ (invariant
of the fault-tolerant program) and S (invariant of the fault-intolerant program). No changes are
required to Algorithm 1 even if we change the problem statement to allow S′ ⊆ S without affecting
soundness or completeness. Regarding soundness, observe that the program generated by this
algorithm ensures S′ = S. Hence, it trivially satisfies S′ ⊆ S. Regarding completeness, the intuition
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is that if it was impossible to recover to states in S then it is impossible to recover to states that are a
subset of S. Regarding Algorithm 2 and Algorithm 3, if S′ is required to be equal to S then they need to
be modified as follows: in these algorithms if any state S is removed (due to it being in ms2, deadlocks,
etc.) then they should declare failure.

Other applications of our algorithms. In this paper, we considered the shepherding application
as a way to illustrate the role of environment actions. The shepherding program is an instance of
several other programs. For example, consider a smart cruise controller. In this example, we have
two cars, A and B where car A is the car in front and car B is trying to match the speed of car A
and maintain a safe distance. Now, considering from the perspective of car B, actions of car A are
environment actions that are unchangeable. These actions are essential (without these actions, car B
will not be able to satisfy its objectives) and disruptive. In other words, car A plays the same role as
the sheep and car B plays the same role as the farmer.

It is also applicable in an example such as merging on a highway. In this example (when
viewed from the perspective of the car that is merging), actions of other cars are the same as the role
played by sheep in the shepherding problem. More generally, if we have a system with multiple
components/processes where only some components are changeable, then these components would
be modeled as farmer actions whereas unchangeable actions play the role of the sheep.

8. Related Work

This paper focuses on the addition of fault-tolerance properties in the presence of unchangeable
environment actions. This problem is an instance of model repair where some existing model/program
is repaired to add new properties such as safety, liveness, fault-tolerance and so forth. Model repair
with respect to CTL properties was first considered in [11] and abstraction techniques for the same are
presented in [12]. Previously, Bonakdarpour et al. [13] has considered the problem of model repair
for UNITY specifications [14]. These results identify complexity results for adding properties such
as invariant properties, leads-to properties and so forth. Repair of probabilistic algorithms has also
been considered in the literature [15]. Roohitavaf and Kulkarni [16] provide repair algorithms for cases
where the new desired properties are in conflict with existing properties.

The problem of adding fault-tolerance to an existing program has been discussed in the absence
of environment actions. This work includes work on controller synthesis [17–20]. A tool for automated
addition of fault-tolerance to distributed programs is presented in [1]. This work utilizes BDD based
techniques to enable the synthesis of programs with state space exceeding 10100. However, this work
does not include the notion of environment actions that cannot be removed. Hence, applying it in
contexts where some processes/components cannot be changed will result in unacceptable solutions.
Model repair for distributed programs using a two-phase lazy approach is proposed in [21].

The work on game theory [22–24] has focused on the problem of repair with the 2-player game
where the actions of the second player are not changed. However, this work does not address the
issue of fault-tolerance. Also, the role of the environment in our work is more general than that in
[22–24]. Specifically, in the work on game theory, it is assumed that the players play in an alternating
manner. By contrast, we consider more general interaction with the environment. In [25], authors have
presented an algorithm for adding recovery to component-based models. They consider the problem
where we cannot add to the interface of a physical component. However, it does not consider the issue
of unchangeable actions considered in our work.

Hajisheykhi et al. [26,27] focus on the notion of auditable events which captures special events
for which the program must first transition to a special state called auditable state where every process
is aware of the auditable events, before returning to the normal states. Thus, compared with fault-span
considered in this paper (cf. Definition 14), the set of states that a program may reach other than its
states includes states that can be reached by fault transitions and those that can be reached by auditable
transitions. Considering the problem of auditable restoration in presence of environment actions is an
interesting future work.
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9. Conclusions

In this paper, we focused on the problem of adding fault-tolerance to an existing program which
consists of some actions that are unchangeable. These unchangeable actions arise due to interaction
with the environment, inability to change parts of the existing program, constraints on physical
components in a cyber-physical system and so on. We presented algorithms for adding stabilization
and fault-tolerance. These algorithms are sound and complete and run in polynomial time (in the
state space).

We considered the cases where (1) all fault-free behaviors are preserved in the fault-tolerant
program, or (2) only a nonempty subset of fault-free behaviors are preserved in the fault-tolerant
program. We also considered the cases where (1) environment actions can execute with any frequency
for an initial duration and (2) environment actions can execute more frequently than programs. In
all these cases, we demonstrated that our algorithm can be extended while preserving soundness
and completeness. We provided a Java package including the implementation of our algorithm using
BDDs. We presented some of our experimental results of adding stabilization and fault-tolerance
using JavaRepair.

There are several future extensions to this work. One of the extensions has to deal with partial
observability in distributed or embedded systems. Algorithms in this paper need to be revised by
taking into account scenarios where, due to partial observability, one transition added or removed
corresponds to a group of transitions [28]. Another extension is to extend the JavaRepair package
so that it can be used efficiently and with a reduced learning curve. Yet another extension is to deal
with the issue of time in embedded and cyber-physical systems. Specifically, in a CPS, we expect
physical components to execute at a certain speed. In other words, an action of the physical component
can be thought of to take some time between ε1 and ε2. In turn, this affects the number of steps a
computational component can execute in the middle. Note that this maps to the value of k used in
our algorithms. Also, our definition of computation requires that the environment cannot execute too
frequently. We also intend to extend to cases where a similar restriction also applies to computational
components.
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Appendix A. Soundness, Completeness and Complexity of Algorithm 2

Appendix A.1. Soundness

The following lemma splits condition C1 into easily verifiable conditions that assist in proving
the soundness of Algorithm 2.

Lemma A1. The condition C1 in the problem definition of addition of fault-tolerance is satisfied for k = 2 if
conditions below are satisfied:

1. S′ ⊆ S
2. δ′p|S′ ⊆ δp|S
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3. ∀s1 :
(
∃s0, s2, s3 : s0 ∈ S′ ∧ (s0, s1), (s1, s2) ∈ δe ∧ (s1, s3) ∈ δp

)
:
(
∃s4 :: (s1, s4) ∈ δ′p

)
4. ∀s0 :: (∃s1 :: (s0, s1) ∈ δp ∪ δe)

Proof. We show by induction that if all conditions of the lemma are satisfied, then every prefix of any
p′[]2δe computation that starts from a state in S′ is a prefix of a p[]2δe computation which starts in S.
Base case: Let 〈s0〉 be the prefix of a p′[]2δe computation that starts from S′. Since S′ ⊆ S, s0 ∈ S. Thus,
〈s0〉 is also a prefix of a p[]2δe computation that starts from S.
Induction hypothesis: The theorem holds for 〈s0, s1, . . . , si〉.
Induction step: We show theorem holds for 〈s0, s1, . . . , si+1〉. Since p′ ∪ δe is closed in S′, we know
that si+1 ∈ S′. We have two cases for (si, si+1):

Case 1 (si, si+1) ∈ δ′p
From δ′p|S′ ⊆ δp|S′, we have (si, si+1) ∈ δp. Therefore, if 〈s0, s1, . . . , si〉 is a prefix of p[]2δe, then
〈s0, s1, . . . , si, si+1〉 is a prefix of p[]2δe.

Case 2 (si, si+1) ∈ δe :
Two sub-cases are possible below this case:

Case 2.1 (si−1, si) ∈ δ′p
In this case, as we have reached si by a program transition, even with the fairness assumption, (si, si+1)

can occur in p[]2δe, Therefore, if 〈s0, s1, . . . , si〉 is a prefix of p[]2δe, then 〈s0, s1, . . . , si, si+1〉 is a prefix of
p[]2δe.

Case 2.2 (si−1, si) ∈ δe

In this case, there does not exist s′ such that (si, s′) ∈ δ′p (otherwise, because of fairness (si, si+1) cannot
be in any prefix of p′[]2δe). Now, according to condition 3, we know there does not exist state s′′ such
that (si, s′′) ∈ δp. Thus, even with the fairness assumption (si, si+1) can occur in p[]2δe. Therefore, if
〈s0, s1, . . . , si〉 is a prefix of p[]2δe, then 〈s0, s1, . . . , si, si+1〉 is a prefix of p[]2δe.

Since every prefix of p′[]2δe that starts from a state in S′ is a prefix of p[]2δe which starts in S, C1 is
satisfied.

Theorem A1. Algorithm 2 is sound.

Proof. To show the soundness of our algorithm, we need to show that the three conditions of the
addition problem are satisfied.

C1: Consider a computation c of p′[]2δe that starts from a state in S′. By construction, c starts
from a state in S and δ′p|S′ is a subset of δp|S′. Therefore, the first two requirements of Lemma A1
are satisfied. Regarding the third requirement of Lemma A1, suppose that there exists s1 in S′

such that
(
∃s0, s2, s3 : s0 ∈ S′ ∧ (s0, s1), (s1, s2) ∈ δe ∧ (s1, s3) ∈ δp

)
but @s4 :: (s1, s4) ∈ δ′p. From

∃s2, s3 :: (s1, s2) ∈ δe ∧ (s1, s3) ∈ δp and @s4 :: (s1, s4) ∈ δ′p we can conclude that s1 is in ms3. Then,
from (s0, s1) ∈ δe , we know that s0 is in ms4, which is contradiction as s0 is in S. Finally, the fourth
condition is satisfied by the fact that S′ does not include any deadlock state. Since all conditions of
Lemma A1 are satisfied, condition C1 holds.

C2: We need to show that p′ is a failsafe fault-tolerant revision for p. Thus, we need to show
constraints of Definition 15 are satisfied.

From C1, S′ ⊆ S, the assumption that p[]2δe satisfies spec from S, S′ 6= ∅ and S′ is closed in p′ ∪ δe,
all constrains of Definition 10 are satisfied. Thus, p′[]2δe 2-satisfies spec from S′.

Let spec be 〈S f , Lv〉. Consider prefix c of p′[]2δe[] f such that c starts from a state in S′. If c does not
satisfy S f then there exists a prefix of c, say 〈s0, s1, . . . , sn〉, such that it has a transition in δb. W.l.o.g.,
let 〈s0, s1, · · · , sn〉 be the smallest such prefix. It follows that (sn−1, sn) ∈ δb, hence, (sn−1, sn) ∈ mt. By
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construction, p′ does not contain any transition in mt. Thus, (sn−1, sn) is a transition of f or δe. If it is in
f then sn−1 ∈ ms1 (i.e., sn−1 ∈ ms2). If it is in δe then sn−1 ∈ ms2. Therefore, in both cases, sn−1 ∈ ms2

and (sn−2, sn−1) ∈ mt. Again, by construction, we know that δ′p does not contain any transition in mt,
so (sn−2, sn−1) is either in f or δe. If it is in f then sn−2 ∈ ms1 (i.e., sn−2 ∈ ms2). If it is in δe two cases
are possible:

(1) (sn−1, sn) ∈ f . In this case, as stated before, sn−1 ∈ ms1, so sn−2 ∈ ms2.
(2) (sn−1, sn) ∈ δe. Since (sn−1, sn) ∈ δe ∩ δb, from the fact the original program satisfies spec from

S, we conclude that sn−1 /∈ S (i.e., sn−1 /∈ S′). In this case, all transitions starting from sn−1 should
be in mt. If this is not the case then this implies that there exists a state s such that (sn−1, s) is not in
mt and we would have added it to δ′p by Line 22, as Sn−1 is outside S′. Since all transitions from sn−1

are in mt, sn−1 is in ms1 (by Line 7). Hence, sn−2 is in ms2. Continuing this argument further leads to
the conclusion that s0 ∈ ms2. This is a contradiction, as we know S′ does not include any state in ms2.
Thus, any prefix of p′[]2δe[] f satisfies S f . Thus, C2 holds.

C3: Any (s0, s1) ∈ δr, is in mt. By construction, δ′p does not have any transition in mt. Hence, C3
holds.

Appendix A.2. Completeness

Now, we focus on showing that Algorithm 2 is complete, that is, if there is a solution that
satisfies the problem statement for adding failsafe fault-tolerance, Algorithm 2 finds one. The proof of
completeness is based on the analysis of states that were removed from S. First, we note the following
observation:

Observation 4. For every state s0 in ms2 one of three cases below is true:

1. s0 ∈ ms1

2. ∃s1 :: (s0, s1) ∈ δe ∧ s1 ∈ ms1

3. ∃s1 :: (s0, s1) ∈ δe ∩ δb

Now, for the rest of our discussion in this section, we assume that Algorithm 2 has declared failure
for finding a failsafe fault-tolerant revision of program p = 〈Sp, δp〉 with invariant S. Let p′′ = 〈Sp, δ′′p 〉
with invariant S′′ be any revision for program p. Also, let f and δe be a set of fault transitions and a set
of environment transitions for p (i.e., p′′), respectively. If there exists a computation prefix that reaches
a state in ms2, there exists a computation with that prefix that either reaches a state in ms1, or executes
a transition in δb (i.e., violates safety). Specifically, we have the following lemma.

Lemma A2. If α is a prefix of a p′′[]2δe[] f computation and α = 〈si, . . . , sm〉 such that si ∈ ms2, or α =

〈s0 . . . , si−1, si〉 such that si ∈ ms2 and (si−1, si) ∈ f ∪ δ′′p , then, there exists a suffix β such that αβ is a
p′′[]2δe[] f computation and

• ∃j : j ≥ i : ((sj−1, sj) ∈ δb), or
• ∃j : j ≥ i : (sj ∈ ms1).

Proof. From Observation 4, we know there are three cases for si. The first case is si ∈ ms1. The theorem
trivially holds for this case. In the second and the third case, there is an environment transition that
either is a bad transition, or reaches a state in ms1. This transition can occur even with the fairness
assumption, as the computation has started in sj, or we have reached sj with a fault or program
transition.

For states in ms1 we have the following lemma that says in any given revision p′′ for p, if there
exists a computation prefix that reaches a state in ms1, then there exists a computation with that prefix
that executes a transition in δb.
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Lemma A3. If α = 〈s0, . . . , si−1, si〉 where si ∈ ms1 is a prefix of a p′′[]2δe[] f computation, then, there exists
a suffix β = 〈si+1, si+2, . . .〉 such that αβ is a p′′[]2δe[] f computation and ∃j : j ≥ i : (sj, sj+1) ∈ δb.

Proof. We prove this inductively as we expand ms1:
Base case: ms1 = {s0|∃s1 :: (s0, s1) ∈ f ∩ δb}

Let β be any p′′[]2δe[] f computation starting from s1. Since fault transitions can execute in any
state, αβ is a p′′[]2δe[] f computation such that (s0, s1) ∈ δb.
Induction hypothesis: Theorem holds for current ms1.
Induction step: We show when we add a state to ms1, the theorem still holds for ms1. A state s0 is
added into ms1 in three cases:

Case 1 ∃s1 : s1 ∈ ms2 : (s0, s1) ∈ f
In this case according to Lemma A2, a transition in δb may occur, or a state in ms1 can be reached.
Hence, according to the induction hypothesis, a transition in δb can occur in both cases.

Case 2 ∃s1 :: (s1 ∈ ms1 ∧ (s0, s1) ∈ δe) ∧ (∀s2 :: (s0, s2) ∈ mt)
In this case, if according to fairness, (s0, s1) can occur, state s1 ∈ ms1 can be reached by (s0, s1) and
according to the induction hypothesis, the theorem is proved. However, if (s0, s1) cannot occur, some
other transition in δ′′p ∪ f should occur but we know such transition is in mt and reaches a state in
ms2. Thus, according to Lemma A2, either a transition in δb can occur, or a state in ms1 can be reached.
Hence, according to the induction hypothesis, a transition in δb can occur in both cases.

Case 3 ∃s1 :: ((s0, s1) ∈ δe ∩ δb) ∧ (∀s2 :: (s0, s2) ∈ mt)
In this case, if, according to fairness, (s0, s1) can occur, by its occurrence a transition in δb has occurred.
However, if (s0, s1) cannot occur, some other transition in δ′′p ∪ f should occur but we know such a
transition is in mt and reaches a state in ms2. Thus, according to Lemma A2, either a transition in δb
can occur or a state in ms1 can be reached. Hence, according to the induction hypothesis, a transition
in δb can occur in both cases.

The last lemma that we use to prove the completeness of Algorithm 2 is Lemma A4. This lemma
states that having any state in ms4 in the invariant of any give revision p′′ of program p results in
having new computation in the invariant that was not in the original program.

Lemma A4. Let p′′ = 〈Sp, δ′′p 〉 with invariant S′′ be any revision for program p = 〈Sp, δp〉 with invariant S
such that, S′′ ⊆ S′ and δ′′p |S′′ ⊆ δ′p|S′ for S′ and δ′p at the beginning of the loop on Lines 13–21. If S′′ includes
any state in ms4 in any iteration of the loop on Lines 13–21, then there is a p′′[]2δe computation that starts from
S′′ that is not a p′′[]2δe.

Proof. Suppose there exists state s0 ∈ S′′ ∩ms4. Then, there is a state, s ∈ ms3 such that (s0, s) ∈ δe and(
∃s1, s2 :: (s, s1) ∈ δe ∧ (s, s2) ∈ δp

)
∧
(
@s3 :: (s, s3) ∈ δ′p

)
. Since δ′′p |S′′ ⊆ δ′p|S′, (@s3 :: (s, s3) ∈ δ′′p

)
.

Since S′′ is closed in p′′ ∪ δe, s and s1 are in S′′, as well. Now, observe that 〈s0, s, s1, · · · 〉 is p′′[]2δe

computation but it is not a p[]2δe computation, as because of fairness, (s, s1) ∈ δe cannot occur when
there exists (s, s2) ∈ δp.

Theorem A2. Algorithm 2 is complete.

Proof. Suppose program p′′ with invariant S′′ solves the addition problem. We show that at any point
of Algorithm 2, S′′ must always be a subset of S′. We prove this by looking at lines where we set S′.
According to Lemma A2 and Lemma A3, S′′ cannot have any transition in ms2, because by starting
from a state in ms2, a computation may execute a bad transition. In addition, S′′ must be closed in
δ′′p and cannot have any deadlock state. Thus, S′′ ⊆ S′ for S′ of Line 12. According to Lemma A4, S′′
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cannot include any state in ms4, because otherwise there is a p′′[]2δe computation that is not p[]2δe

(contradiction to C1). Thus, S′′ ⊆ S′ for S′ of Line 20. Thus, always we have S′′ ⊆ S′. Our algorithm
declares failure only when S′ = ∅. Thus, if our algorithm does not find any solution, from S′′ ⊆ S′, we
have S′′ = ∅ (contradiction to Definition 11).

Appendix A.3. Time Complexity

Theorem A3. Algorithm 2 is polynomial (in the state space of p)

Proof. The proof follows from the fact that each statement in Algorithm 2 is executed in polynomial
time and the number of iterations is also polynomial.

Appendix B. Soundness, Completeness, and Complexity of Algorithm 3

Appendix B.1. Soundness

First, we show that the program constructed by Algorithm 3 never reaches a state in ms1.
Specifically,

Lemma A5. For any p′[]2δe[] f computation 〈s0, s1, . . .〉 where s0 ∈ S′, there dose not exist si such that si is
in ms1.

Proof. Consider a computation 〈s0, s1, . . .〉 of p′[]2δe[] f where s0 ∈ S′. We proof by induction that for
all i ≥ 0, si /∈ ms1:
Base case: i ∈ {0, 1}

It is clear s0 /∈ ms1, because ms1 ⊆ ms2 and s0 ∈ S′ and by construction, we know S′ ∩ms1 = ∅
(see Line 33). Also, s1 /∈ ms1, because otherwise s0 ∈ ms2 that is contradiction to S′ ∩ms2 = ∅.
Induction hypothesis: ∀i : 0 ≤ i ≤ n : si /∈ ms1

Induction step: sn+1 /∈ ms1

Suppose sn+1 ∈ ms1. Then, (sn, sn+1) ∈ mt. By construction, the program does not have any
transition in mt. Thus, we have two cases for (sn, sn+1):

Case 1: (sn, sn+1) ∈ f
In this case, sn ∈ ms1 (by Line 28) that is contradictory to the induction hypothesis.

Case 2: (sn, sn+1) ∈ δe

In this case, sn ∈ ms2. If n = 0, then s0 ∈ ms2 that is contradiction to S′ ∩ ms2 = ∅. If n > 0, then
(sn−1, sn) ∈ mt. By construction, the program does not have any transition in mt. Thus, we have two
cases for (sn−1, sn)

Case 2.1: (sn−1, sn) ∈ f :
In this case, sn−1 ∈ ms1 that is contradictory to the induction hypothesis.

Case 2.2: (sn−1, sn) ∈ δe:
In this case, as both (sn−1, sn) and (sn, sn+1) are in δe, according to the fairness assumption, there

does not exist a transition δ′p starting from sn and it means that sn is added to ms1 by Line 28 which is
in contradiction with the induction hypothesis.

Since we never reach any state in ms1 starting from S′ and since any state in ¬(R ∪ Rp) is in ms1

by Line 23, we conclude we never reach ¬(R ∪ Rp). Thus, we have the following corollary:

Corollary A1. R ∪ Rp in the last iteration of loop on Lines 6–43 is a f -span for the program resulted by
Algorithm 3.
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The following lemma states that in every computation of the repaired program that starts from its
invariant (i.e., S′), if the program reaches a state in R, in the rest of the computation it will reach S′.
Specifically,

Lemma A6. For every δ′p[]2δe[] f computation 〈s0, s1, . . .〉 such that s0 ∈ S′, for S′ and R in the last iteration
of the loop on Lines 6–43, we have:
∀si : si ∈ R : (∃j : j ≥ i : sj ∈ S′).

Proof. We prove this lemma by induction as we expand set R:
Base case: R = S′

The proof is trivial.
Induction hypothesis: Theorem holds for current R.
Induction step:
For any state s0 that is added to R we have(

@s2 : s2 ∈ (¬(R ∪ Rp) ∪ms1) : (s0, s2) ∈ δe

)
∧((

∃s1 : s1 ∈ (R ∪ Rp)−ms1 : (s0, s1) ∈ δe) ∧ (@s2 :: (s0, s2) ∈ (δe ∩ δb))
)

∨s0 ∈ Rp

)
Thus, any environment transition either reaches R or Rp. In the second case, since we have

reached a state in Rp by an environment transition, and since from any state in Rp there is a program
transition to R (cf. Line 17), based on the fairness assumption, the computation will reach R. Thus, in
either case, we reach R. Since in the last iteration of loop on Lines 6–43, we do not change the set of
transitions for states in R of the previous iteration, based on the induction hypothesis, the lemma is
proved.

The following lemma states that when the repaired program starts at its invariant S′, if it reaches
a state in Rp − R, in the rest of the its computation it will reach a state in S′. Specifically,

Lemma A7. For every δ′p[]2δe[] f computation 〈s0, s1, . . .〉 such that s0 ∈ S′, for S′, Rp and R in the last
iteration of loop on Lines 6–43, we have:
∀si : si ∈ Rp − R : (∃j : j ≥ i : sj ∈ S′).

Proof. Let si ∈ (Rp − R). Any state that is not in R is in ms2. Thus, (si−1, si) ∈ mt. By construction, the
program does not have any transition in mt. Thus, (si−1, si) ∈ f ∪ δe. If (si−1, si) ∈ f , then si−1 ∈ ms1

that is a contradiction to Lemma A5. Thus, (si−1, si) ∈ δe. Since we have reached si by an environment
transition and si ∈ Rp, the computation will reach R and according to Lemma A6, the computation
will reach S′.

Based on Lemmas A6 and A7, we have the following corollary that guarantees recovery to the
invariant from R ∪ Rp.:

Corollary A2. For every δ′p[]2δe[] f computation 〈s0, s1, . . .〉 such that s0 ∈ S′, for S′, Rp and R in the last
iteration of loop on Lines 6–43, we have:
∀si : si ∈ R ∪ Rp : (∃j : j ≥ i : sj ∈ S′).

Theorem A4. Algorithm 3 is sound.

Proof. In order to show the soundness of our algorithm, we need to show that the three conditions of
the problem statement are satisfied.
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C1: Satisfaction of C1 for Algorithm 3 is the same as that for Algorithm 2 stated in the proof of
the Theorem A1.

C2: We need to show that p′ is a masking fault-tolerant revision for p. Thus, we need to show
the constraints of Definition 16 are satisfied. From C1, S′ ⊆ S, the assumption that p[]2δe satisfies spec
from S, S′ 6= ∅ and S′ is closed in p′ ∪ δe, all constraints of Definition 10 are satisfied. Thus, p′[]2δe

2-satisfies spec from S′.
Let spec = 〈S f , Lv〉. Consider prefix c of p′[]2δe[] f such that c starts from a state in S′. If c does

not satisfy S f , there exists a prefix of c, say 〈s0, s1, . . . , sn〉, such that it has a transition in δb. W.l.o.g.,
let 〈s0, s1, · · · , sn〉 be the smallest such prefix. It follows that (sn−1, sn) ∈ δb. Hence, (sn−1, sn) ∈ mt.
By construction, p′ does not contain any transition in mt. Thus, (sn−1, sn) is a transition of f or δe. If
it is in f then sn−1 ∈ ms1 which is a contradiction to Lemma A5. If it is in δe then sn−1 ∈ ms2 and
(sn−2, sn−1) ∈ mt. Again, by construction, we know that δ′p does not contain any transition in mt, so
(sn−2, sn−1) is either in f or δe. If it is in f then sn−2 ∈ ms1 (contradiction to Lemma A5). If it is in δe,
as both (sn−2, sn−1) and (sn−1, sn) are in δe, according to the fairness assumption, there does not exist
a transition of δ′p starting from sn−1 and it means that sn−1 ∈ ms1, which is again a contradiction to
Lemma A5. Thus, each prefix of c does not have a transition in δb. Therefore, any prefix of p′[]2δe[] f
satisfies S f .

As p′ 2-satisfies spec from S′ in environment δe, any prefix of p′[]2δe[] f 2-satisfies S f and according
to Corollary A1 and Corollary A2, p′ is masking 2- f -tolerant to spec from S′ in environment δe with
fault-span R ∪ Rp for R and Rp in the last iteration of the loop on Lines 6–43.

C3: Any (s0, s1) ∈ δr, is in mt. By construction, p′ does not have any transition in mt, so C3
holds.

Appendix B.2. Completeness

Like the proof of the completeness of Algorithm 2, the proof of the completeness of Algorithm 3
is based on the analysis of states that are removed from S. For Algorithm 3, we focus on the iterations
of the loop on Lines 6–43.

Similar to Observation 1, we have the following observation for Algorithm 3:

Observation 5. In any given iteration i of loop on 6–43, let R, Rp and ms1 be R, Rp and ms1 at the end of
iteration i. Then, for any s0 such that s0 /∈ R and ∃s1 :: (s0, s1) ∈ δe, we have
(∃s2 : s2 ∈ ¬(R ∪ Rp) ∪ms1 : (s0, s2) ∈ δe)∨
(∃s2 :: (s0, s2) ∈ δe ∩ δb).

We also note the following observation:

Observation 6. For any s0 such that s0 /∈ R, either s0 ∈ ¬(R ∪ Rp), or ∃s2 : s2 ∈ ¬(R ∪ Rp) ∪ ms1 :
(s0, s2) ∈ δe.

Lemmas A8, A9, A10 and A11, Corollary A3 and Theorem A5 provided in the following, hold
for any given iteration i of loop on Lines 6–43 assuming Algorithm 3 has declared failure. For these
results, let p′′ = 〈Sp, δ′′p 〉 with invariant S′′ be any revision for program p = 〈Sp, δp〉 with invariant S
such that S′′ ⊆ S′, δ′′p ⊆ δ′p and δ′′p ∩mt = ∅. Consider S′, δ′p and mt at the beginning of iteration i and
ms1, ms2, R and Rp at the end of the iteration. Also, let f and δe be a set of fault transitions and a set of
environment transitions for p (i.e., p′′), respectively.

The following lemma focuses on the situation where a given revision p′′ reaches a state that our
algorithm marks as ¬(R ∪ Rp).

Lemma A8. For every p′′[]2δe[] f prefix α = 〈s0, . . . , si〉 such that si ∈ ¬(R ∪ Rp), there exists a suffix β

such that αβ is a p′′[]2δe[] f computation and
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• (si, si+1) ∈ δb, or
• si+1 ∈ ms1, or
• si+1 ∈ ¬(R ∪ Rp), or
• si+1 ∈ (Rp − R) ∧ si+2 ∈ ¬(R ∪ Rp).

Proof. There are two cases for si:

Case 1: si is environment-enabled (see Definition 18) in prefix α = 〈s0, s1, . . . , si〉:
According to Observation 5, there exists s ∈ ¬(R ∪ Rp) ∪ ms1 such that (si, s) ∈ δe, (si, s) ∈ δe ∩ δb.
Any suffix that starts from s proves the theorem.

Case 2: si is not environment-enabled in prefix α = 〈s0, s1, . . . , si〉
The proof for this case is identical to the proof of Case 2 of Lemma 2.

Corollary A3. For every p′′[]2δe[] f prefix α = 〈s0, . . . , si〉 such that si ∈ ¬(R ∪ Rp), there exists a suffix β

such that αβ is a p′′[]2δe[] f computation and

• ∃j : j ≥ i : (sj−1, sj) ∈ δb, or
• ∃j : j ≥ i : sj ∈ ms1, or
• ∀i : i ≥ 0 : si /∈ S′.

The following lemma focuses on states that are marked as ms2.

Lemma A9. If α is a prefix of a p′′[]2δe[] f computation and α = 〈si, . . . , sm〉 such that si ∈ ms2, or α =

〈s0 . . . , si−1, si〉 such that si ∈ ms2 and (si−1, si) ∈ f ∪ δ′′p , then, there exists a suffix β such that αβ is a
p′′[]2δe[] f computation and

• ∃j : j ≥ i : ((sj−1, sj) ∈ δb), or
• ∃j : j ≥ i : (sj ∈ ms1), or
• ∀i : i ≥ 0 : si /∈ S′.

Proof. We prove this lemma by looking at lines where we expand ms2:
Line 4: ms2 = ms1 ∪ {s0|∃s1 : (s0, s1) ∈ δe ∩ δb}

In this case, we add s0 to ms2 if either it is in ms1, or it has a (s0, s1) transition that is in δb. If s0 ∈ ms1,
any computation starting from s0 proves the theorem. Otherwise, any computation 〈s0, s1, . . .〉 proves
the theorem.

Line 24: ms2 = ms2 ∪ ¬R:
According to Observation 6, there is a suffix (possibly 〈〉) that reaches ¬(R ∪ Rp). According to
Corollary A3 there is a computation that either reaches ms1, or never reaches S′.

Line 29: ms2 = ms2 ∪ms1 ∪ {s0|∃s1 : s1 ∈ ms1 : (s0, s1) ∈ δe)}
In this case, we add state s0 to ms2, if s0 is in ms1 or can reach state s1 ∈ ms1 with an environment

transition. If s0 ∈ ms1, any computation starting from s0 proves the theorem. Otherwise, any
computation 〈s0, s1, . . .〉 proves the theorem. Note that, since we have started the computation from
s0, or we have reached s0 with a fault or program transition, even with the fairness assumption, the
environment transition (s0, s1) can execute.

The following lemma states that reaching any state in ms1 will result in bad consequences that
can be either executing a bad transition or never recovering to the invariant. Specifically,

Lemma A10. If α = 〈s0, . . . , si−1, si〉 where si ∈ ms1 is a prefix of a p′′[]2δe[] f computation, then, there exists
a suffix β = 〈si+1, si+2, . . .〉 such that αβ is a p′′[]2δe[] f computation and

• ∃j : j ≥ i : (sj, sj+1) ∈ δb, or
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• ∀j : j ≥ 0 : sj /∈ S′.

Proof. We prove this theorem inductively based on where we expand ms1:
Base Case: ms1 = {s0|(s0, s1) ∈ f ∩ δb}
Let β be any p′′[]2δe[] f computation starting from s1. Since fault transitions can execute in any state,
αβ is a p′′[]2δe[] f computation such that (s0, s1) ∈ δb.
Induction hypothesis: Theorem holds for current ms1.
Induction step: We look at lines where we add a state to s0:

Line 23: ms1 = ms1 ∪ ¬(R ∪ Rp)

According to Corollary A3, there is a suffix that either runs a transition in δb, never reaches S′, or
reaches a state in ms1. Thus, the theorem is proved by the induction hypothesis.

Line 28: ms1 = ms1 ∪ {s0| ∃s1 : s1 ∈ ms2 : (s0, s1) ∈ f } ∪ {s0|
(
∃s1 : s1 ∈ ms1 : (s0, s1) ∈

δe) ∨ (s0, s1) ∈ (δe ∩ δb)
)
∧
(
@s2 :: (s0, s2) ∈ δ′p

)
}

We add state s0 to ms1 in three cases in this line:

Case 1 ∃s1 : s1 ∈ ms2 : (s0, s1) ∈ f
In this case according to Lemma A9, a transition in δb may occur, or there is a suffix that never reach S′,
or a state in ms1 can be reached. Thus, according to the induction hypothesis, the theorem is proved.

Case 2 ∃s1 :: (s1 ∈ ms1 ∧ (s0, s1) ∈ δe) ∧ (@s2 :: (s0, s2) ∈ δ′p)

In this case, if according to fairness, (s0, s1) can occur, state s1 ∈ ms1 can be reached by (s0, s1) and
according to the induction hypothesis, the theorem is proved. However, if (s0, s1) cannot occur,
some other transition t ∈ δ′′p ∪ f occurs. Since ∃s1 : s1 ∈ ms1 : (s0, s1) ∈ δe, we know that s0 /∈ R. By
construction, δ′p contains any transition from states ¬R to R. Since @s2 :: (s0, s2) ∈ δ′p, we conclude t
goes to a state in ¬R (i.e., ms2). Thus, according to Lemma A9 either a transition in δb can occur, or
there is a suffix that never reaches S′, or a state in ms1 can be reached. Thus, according to the induction
hypothesis, the theorem is proved.

Case 3 ∃s1 :: ((s0, s1) ∈ δe ∩ δb) ∧ (@s2 :: (s0, s2) ∈ δ′p)

In this case, if according to fairness, (s0, s1) can occur, by its occurrence a transition in δb has occurred.
However, if (s0, s1) cannot occur, some other transition in δ′′p should occur. Since ∃s1 :: ((s0, s1) ∈
δe ∩ δb), s0 /∈ R. Our algorithm add any possible program transition that is not mt and goes to a state
in R to s0 in Line 17. Since there is no such transition, any transition in δ′′p either is in mt or goes to ¬R.
In either case, we have a computation that reaches a state in ms2 starting from s0. Thus, according to
Lemma A9, either a transition in δb can occur, or there is suffix that never reaches S′, or a state in ms1

can be reached. Thus, according to the induction hypothesis, the theorem is proved.

Like Lemma A4 for Algorithm 2, we have following lemma for ms4 for Algorithm 3.

Lemma A11. If S′′ includes any state in ms4 in any iteration of the loop on Lines 13–21, then there is a p′′[]2δe

computation that starts from S′′ that is not a p′′[]2δe.

Proof. The proof of this lemma is very similar to that of Lemma A4.

Theorem A5. Algorithm 3 is complete.

Proof. Suppose program p′′ and invariant S′′ solve transformation problem. We show that at any
point of Algorithm 3, S′′ must always be a subset of S′. We prove this by looking at lines where we
set S′.



Future Internet 2019, 11, 144 33 of 34

In the first iteration of the loop on Lines 6–43, S′ = S. According to constraint C1 of the problem
definition in Section 5.1, S′′ ⊆ S. Thus, S′′ ⊆ S′ for the S′ at the beginning of the first iteration of the
loop on Lines 6–43. According to Lemmas A9 and A10, S′′ cannot have any transition in ms2 in first
iteration of the loop on Line 6–43, because by starting from a state in ms2, a computation may execute
a bad transition, or reach a state outside S′′ from which there is a computation that never reaches S′

(i.e., never reaches S′′). In addition, S′′ must be closed in δ′′p and cannot have any deadlock state. Thus,
S′′ ⊆ S′ for S′ at Line 33.

According to Lemma A11, S′′ cannot include any state in ms4 in the first iteration of the loop of
Lines 6–43, because otherwise there is a p′′[]2δe computation that is not p[]2δe (contradiction to C1).
Thus, S′′ ⊆ S′ for S′ at the end of the first iteration of the loop on Lines 6–43.

With the induction, we conclude that S′′ cannot include any states in ms2 or ms4 in next iterations
of the loop of Lines 6–43. Thus, always we have S′′ ⊆ S′. Our algorithm declares failure only when
S′ = ∅. Thus, if our algorithm does not find any solution, from S′′ ⊆ S′, we have S′′ = ∅ (contradiction
to Definition 11).

Appendix B.3. Time Complexity

Theorem A6. Algorithm 3 is polynomial (in the state space of p)

Proof. t The proof follows from the fact that each statement in Algorithm 3 is executed in polynomial
time and the number of iterations is also polynomial.
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