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Abstract: This paper aims to propose a new fog cloud architecture that performs a joint energy-
efficient task assignment (JEETA). The proposed JEETA architecture utilizes the dynamic 
application-partitioning algorithm (DAPTS), a novel algorithm that efficiently decides and switches 
the task to be offloaded or not in heterogeneous environments with minimal energy consumption. 
The proposed scheme outperforms baseline approaches such as MAUI, Think Air and Clone Cloud 
in many performance aspects. Results show that for the execution of 1000 Tasks on fog, mobile 
offloaded nodes, JEETA consumes the leas, i.e., 23% of the total energy whereas other baseline 
approaches consume in between 50%–100% of the total energy. Results are validated via real test-
bed experiments and trice are driven efficient simulations. 

Keywords: MECA; offloading system; augmented reality; application partitioning; dynamic 
applications 

 

1. Introduction 

Applications of the Internet of things (IoT) such as e-healthcare, e-vehicle, e-commerce, etc. have 
been growing progressively since the last decade [1]. Fog computing is an extension of cloud 
computing. Cloud services are available on the pay per use, but the distance of end-user from cloud 
increase the network latency, which degrades the service perception and increase energy usage [2,3]. 
Fog computing (FC) is a promising paradigm that offers cloud services with lower end-to-end latency 
at the edge of the Internet [4,5] as illustrated in Figure 1. In the FC network, the fog nodes are servers, 
which are placed at the edge of the Internet [6,7]. In general, terms, fog nodes are the subset of public 
cloud, and fog nodes have limited capacity as compared to the public cloud [8,9]. As a reason, 
computation offloading is a method used to transfer resources intensive computation tasks of an 
application to the external server for processing [10,11]. Each IoT application is partitioned into local 
tasks and remote tasks so that the entire application executed efficiently [12]. Whereas, resource-
constrained devices (i.e., storage, computation power, battery) only process lightweight tasks of an 
application, wherein, computation intensive tasks of an application are more likely to be offloaded 
to the FC for processing [13]. 



Future Internet 2019, 11, 141 2 of 15 

 

However, the applications above generate real time data; it is difficult to execute them on local 
devices with energy efficiency in FC [14]. Existing studies [15,16] proposed their strategies to save 
device energy. However, the energy consumption of FC resource due to the process of large tasks has 
been ignored for many years. This poses the following research challenges to be addressed when the 
workload of IoT application to efficient assignment on the fog cloud network is under consideration. 

1. How to develop the data flow and data process in a fog cloud paradigm for the workflow IoT 
application? Due to the fact that it is different from traditional data flow and data process 
mechanism, which have been adopted by many cloud architectures to process the real time data 
[17]. 

2. How to make the assignment of local tasks on devices without degrading application 
performance and device energy must be under given threshold value? 

3. How to make the assignment of remote tasks on the fog nodes efficiently with minimal consumption 
of the fog resources and without degrading the quality of experience (QoE) of the application? 

 
Figure 1. Fog computing: The general architecture [5]. 

This paper is based on the energy efficient task assignment in devices and FC networks. Every 
IoT application is represented as a workflow application. FC is comprised of heterogeneous virtual 
machines (VMs); each VM is different in the context of speed and storage from each other. The 
objective of the paper is to efficiently perform the assignment of local and remote tasks on devices 
and FC-VMs so that the total energy can be minimized. The total energy, in general, is the 
combination of local devices and FC resources, energy consumption, which incurs due to the 
execution of the local tasks and remote tasks, respectively. Apart from existing studies in terms of 
data flow and data and the process when assignments of tasks are mapped on the FC networks, this 
paper has the following contributions in response to challenges as mentioned earlier. 

1. This paper proposes new fog cloud architecture (FCA), which efficiently manages the data flow 
and data processing mechanism for all IoT applications without losing any generosity of the 
system. FCA exploited many profiling technologies to regularly monitor the entire system 
performance in term of resource utilization and energy management. The propose FCA 
architecture will be explained in the proposed description section. 

2. A joint energy efficient task assignment (JEETA) method is proposed to cope up with the 
problem in the fog cloud environment. 
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3. In order to minimize the total energy consumption of the entire system, a dynamic application 
partitioning task assignment algorithm (DAPTS) is presented. This DAPTS determines how to 
perform the assignment of local tasks on the devices and remote tasks on the fog nodes. 

4. DAPTS exploits dynamic voltage frequency scaling (DVFS) method to manage and reduce the 
entire energy consumption of the FCA after task assignment phase without degrading any 
system performance. 

The rest of the paper is organized as follows. Section 2 elaborates related work and Section 3 
explains the proposed model and formalizes the problem under study. A heuristic is proposed for 
the considered problem in Section 4, which describes the proposed algorithm and sequences. Section 
5 evaluates the simulation part, and Section 6 presents the conclusive remarks. 

2. Related Work 

The energy efficient task assignment problem in the mobile fog-cloud computing has been 
investigated widely to achieve different goals. The author in [14] proposed a fog-cloud architecture 
to reduce the energy consumption of the resources. The goal was to process real time data generated 
by different sensors at the fog-nodes. These nodes are separated by long distances and need to 
transmit so much energy to the multiple hops away cloud computing. An energy-aware optimal task 
assignment for mobile heterogeneous embedded systems in cloud computing has proposed in [18]. 
This research work focused on the assignment of different tasks on heterogeneous resources of the 
public in order to execute them with a given deadline. The DVFS technique is exploited by prior 
works in order to manage energy consumption in cloud resources. K. Gai. et al. [18] in the extended 
version [19] proposed additional phases to assign the workload among different cloud servers in 
order to manage load and energy consumption for all offloaded tasks to the cloud system. Exploiting 
massive D2D collaboration for energy-efficient mobile edge computing algorithm is proposed in [20] 
where all application tasks are executed between devices in order to minimize devices energy 
utilization. Fog cloud and device computing environment and an energy-efficient with incentive-
aware task offloading framework via network-assisted D2D has been investigated in [21], to observe 
the application performance and energy consumption tradeoffs. The present works [22,23] have 
proposed fog-cloud architecture and energy efficient task assignment and task scheduling methods 
emphasizing that all applications can be executed in a parallel manner in cloud-fog architecture. [24] 
stresses the same task assignment and scheduling approach via network-assisted D2D collaboration. 

Several researchers have done work on energy efficiency in a cloud computing environment by 
considering different parameters, such as VM migration, device offloading and algorithms of 
allocation of VMs [25]. One such work provided by Verma et al. and proposed three heuristic models 
namely Maximum Fill (MF), Smallest Void Detection (SVD) and Median Migration Time (MeMT) for 
energy reduction with a slight change in SLA [26]. During the experiment, the energy problem of 
resource utilization was analyzed and cloud-computing model for energy consumption was 
developed. This work focused on the linear relationship between resource utilization and energy 
consumption. Focusing VM migration and resource allocation a technique was considering for 
synchronization oriented shorter stop-and-copy phase. The algorithms were developed for complete 
operation step for energy-aware heuristic models, including MeMT, SVD, and MF. The evaluation of 
data of VMs was employed in PlanetLab servers. The results show that the proposed approaches can 
reduce power consumption during host shutdown and VM migration while maintaining the high 
performance of the system. 

The author proposed an adaptive heuristic based threshold algorithm for detecting the 
overloaded hosts in the cloud data center by gradient descent regression model using a statistical 
analysis of past CPU utilization data [27]. This algorithm sets a dynamic upper threshold for detecting 
overloaded host, thereby minimizing the performance degradation, which directly affects SLA. They 
also introduced the VM selection algorithm called bandwidth-aware selection policy. This algorithm 
selects a VM based on network traffic, which directly affects migration cost. Therefore, it significantly 
minimizes the VM migration cost from one host to another host. Proposed energy-aware methods 
for detecting overloaded host and VM selection from an overloaded host are minimizing energy 
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consumption and SLA violation of a cloud data center. After detecting underloaded hosts, all VM 
should be migrated from underloaded host to the most appropriate host and turn all idle host to 
energy saving mode. This would directly minimize the energy consumption of the cloud data center. 

Rahul et al. proposed an adaptive energy-efficiency algorithm for overloaded host detection and 
VM selection from overloaded or underloaded hosts in the cloud data center [28]. They introduced 
the overloaded host’s detection method based on a least median square regression model using a 
statistical analysis of past CPU utilization traces. The analysis of this real-time CPU utilization 
algorithm traces and sets an upper threshold for detecting overloaded hosts. This minimizes 
performances degradation of hosts in the cloud-computing environment. They used cloudsim 
simulator for implementing the proposed algorithm and used five performance efficiency matrices, 
namely, total energy consumption, percentage of SLA violation, number of host’s shutdowns, and 
number of VM migration. They also introduced VM selection scheme based on the size of memory 
allocated to the particular VM. This scheme significantly minimizes the overall migration cost and 
SLA violation of the VM from overloaded hosts to appropriate hosts. 

With the best knowledge, joint energy efficient task assignment problem for IoT workflow 
application has not been studied yet. Related literature reveals that IoT applications are divided into 
local and remote tasks but are limited to focus on one part, i.e., fog-cloud resource energy or device 
energy that does not meet the requirement of applications. On the other hand, IoT workflow 
applications data flow and data process model is quite different from existing workflow. Overall, 
existing studies have ignored this aspect for computation offloading and task assignment fog cloud 
architecture. The proposed FCA determines efficient data flow and data process mechanism in which 
workflow application local and remote tasks are effectively assigned to the local devices and fog 
nodes, which minimizes device and cloud resources energy simultaneously. The proposed JEETA 
has two phases, such as the assignment phase and energy minimization phase, respectively. The 
detailed analysis of the contributions is presented in the following sections. 

3. Proposed Model 

The data flow of the proposed architecture FCA is simple. The user submits the application to 
the system, based on different profiling technologies where tasks are sequenced according to 
estimation time in the master node. Figure 2 illustrates this. The master node in the proposed 
architecture is the FCA central controller, which is responsible for managing the priority of task 
sequencing and performance in the system. The data processing of tasks on devices and fog resources 
is scheduled by a scheduler. The scheduler maps their sources to the remote tasks on different 
heterogeneous VMs and local tasks are mapped on the devices. However, the data dependencies 
incur some extra communication cost due to the computation being held in different places. For 
instance, local tasks are computationally executed on devices and remote tasks are computationally 
executed on the fog VMs. 

3.1. Offloading Cost 

Workflow application tasks are closely linked to each other and follow by precedence constraints 
rules. According to the offloading system, rule partitions an application into two disjoint sets, for 
example, local disjoint set 𝑉  and remote disjoint set 𝑉 . In the work flow application, the offloaded 
disjoint set in the cloud via wireless network incurred with communication cost. The total cost 𝐶  of an application partitioning, is formulated in the following equation. 𝐶 = 𝑃𝑟 . 𝑤 (𝑣) +∈ (1 − 𝑃𝑟 ). 𝑤 (𝑣) +∈ 𝑃𝑟 . 𝑤(𝑒 𝑣 , 𝑣 ) ( , )∈  (1) 

However, partitioning 𝑃  total cost is 𝐶 , ∑ 𝑃𝑟 . 𝑤 (𝑣)∈  denotes the local execution cost 
and ∑ (1 − 𝑃𝑟 ). 𝑤 (𝑣)∈  denotes server execution cost. In the end ∑ 𝑃𝑟 . 𝑤(𝑒 𝑣 , 𝑣( , )∈ ) is 
the communication cost between tasks 𝑣  and 𝑣 . 
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Figure 2. Mobile cloud architecture. 

3.2. System Model and Problem Formulation 

A mobile edge capture and analytics (MECA) is the combination of the wireless network, mobile 
edge server and cloud server [29]. The mathematical notations are marked in Table 1. In MCA a work 
flow, mobile health care application is modeled as consumption weighted directed acyclic graph 
(DAG), i.e., G (V, E). Whereas, each task 𝑣  is represented by a node 𝑣 ∈ 𝑉. An edge e(𝑣 , 𝑣 ) ∈ E 
represents communication between 𝑣  to 𝑣 . A task 𝑣  could be started until all associated 
predecessors complete [30]. 𝑣  and 𝑣  are two dummy tasks (i.e., entry task and exist task). A task 
could be started until associated predecessors complete. In simple words 𝑣  cannot be started in 
anticipation of 𝑣  to get the job done and 𝑖 < 𝑗 . A set of servers can be represented by 𝐾 ={𝑘 , … . , 𝑘  }. It is presupposed that each k server holds different VM type, that all VM instances are 
heterogeneous, every VM has dissimilar computation speed which are illustrated as 𝜁 = (𝑗 =1, … . . , 𝑀). A set of VM instances can be shown by 𝑉 = (𝑣 , … . . , 𝑣 ), in which 𝐾  is the VM 
assignment for task 𝑣 . Each workflow application task has workload 𝑊 = (𝑖 = 1, … . . , 𝑁) with 
deadline 𝐷   . To minimize the power consumption of the submitted workflow tasks, each 
application task is assigned to the lower speed VM while meeting the deadline 𝐷 , because the lower 
speed VMs always leads to lower power consumption [31]. Since a task 𝑣   can only be performed 
by one VM j, a decision variable 𝑥 ∈ {0,1} is utilized, 𝑥 = 1 only if the task 𝑣  is assigned to the 
VM 𝑣 . The task 𝑣  has two execution costs (i.e., local and cloud), one cloud execution time is 
determined by the speed 𝜁  and power consumption 𝑃  e.g., 𝑇 , i.e., 𝐶 =∑ 𝑥𝑖𝑗 × 𝜁𝑗 × 𝑃𝑐𝑤 and 

task execution time on mobile 𝑀 =∑ 𝑥𝑖𝑗← × 𝜁𝑚 × 𝑃𝑚𝑤. 

Table 1. Mathematical notation. 

Notation Description 
N Number of tasks v 
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Ω. 𝜆 Application partitioning factor during offloading 𝐷  Deadline of the application 𝜁𝑢  Speed rate of jth virtual machine VM 𝜁𝑢  Speed rate of mobile processor 𝑣  𝐶  Execution cost of the task 𝑣  on cloudlet k 𝑀  Execution cost of the task 𝑣  on mobile 𝑃  Power consumption rate at cloudlet virtual machine VM 𝑃  Power consumption rate at the mobile device 𝑃  Assignment of task 𝑣  on virtual machine VM, j 𝐵  Begin time of the task 𝑣  𝐹  Finish time of the task 𝑣  
G (V, E) DAG call graph 

3.3. Application Energy Consumption 

The total power consumption of workflow application is a merger of computation time and 
communication time. Since computation cost could include location and remote execution after 
application partitioning. The communication cost is determined by the weight of data transport and 
available network bandwidth. The average power consumption of workflow application due to 
offloading is expressed as follows: 𝐸𝐺 = 𝑃𝑟 . 𝐸𝐺 +∈ (1 − 𝑃𝑟 ). 𝐸𝐺 +∈ 𝑃𝑟 . 𝑇  ( , )∈  (2) 

whereas Equation (2) describes the average consumption of the workflow application, which is the 
sum of local and remote computation cost and communication cost. In the same way, the vector 𝑌 ={𝑦 : 𝑣 ∈ 𝑉, 𝑗 ∈ 𝑀} with variable 𝑥  indicates either task offload or not, namely: 𝑥 = 1, if 𝑣 ∈ 𝑣0, if 𝑣 ∈ 𝑣   (3) 

According to Equation (4), the communication cost is determined by 𝐸 = 1, otherwise same 
location tasks have no communication cost. 𝑃 = 1, if 𝑒 ∈ 𝐸0, if 𝑒 ∉ 𝐸   (4) 

The considered problem is mathematically modeled as below: 

𝑚𝑖𝑛𝑍 = 𝑥 𝜆 × 𝜁 × 𝑃 × 𝐶 + 𝑇 + 𝑥 𝜆 × 𝜁 × 𝑃 × 𝑀  (5) 

𝑃𝑟 . 𝐸𝐺∈ =  𝑀 = 𝑥 𝜆 × 𝑊𝜁  (6) 

(1 − 𝑃𝑟 ). 𝐸𝐺∈ =  𝐶 = 𝑥 𝜆 × 𝑊𝜁  (7) 

𝑃𝑟 . 𝑇 =  𝑤 𝑒 𝑣 , 𝑣 = 𝑖𝑛𝐵 + 𝑜𝑢𝑡𝐵  , ∈  (8) 

𝑇 , = 0,  

𝑇 , = 𝑇 , + 𝑥 𝜆 𝐶 , (9) 
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𝐶 =  𝑥 𝜆 × 𝑊𝜁 , 𝑀 = 𝑥 𝜆 × 𝑊𝜁 , (10) 

𝐹 = 𝑇 , 𝑥 , (11) 

𝑥 = 1, 𝑥 𝜆 = 1, 𝑥 𝜆 = 1, (12) 

𝐹 ≤ 𝐷 ,𝑥 {0,1}, (13) 

Equation (5) is proposed for the measurement of power consumption of all tasks from start to 
end on clouds and local nodes on execution. Equation (6) is given for power consumption of mobile 
devices that how much power consumed during the execution of a particular task. Energy 
consumptions at the cloud side can be calculated by using Equation (7) and the same way for the cost 
of communication in power consumption Equation (8) is given. According to Equation (9) initial time 
for any VM machine is assumed to be zero. The finish time of a task 𝑣  on VM j is 𝑇 ,  determined 
by the previous task 𝑣  execution time that is ∑ 𝑥 𝐶 is shown in Equation (10). Equation (11) 
determines the execution cost of a task on the cloud and mobile device according to their speed and 
weight. The task finish time is determined by Equation (12). Equation (13) demonstrates that each 
task can be only assigned to one VM and each VM can be only assigned to one task. According to 
Equation (14) finish time of all tasks (𝑉  and 𝑉 ) should be less than a given deadline 𝐷 . 

4. Proposed Algorithm DAPTS 

The proposed DAPTS algorithm will work on the transfer of tasks on local as well as on fog 
heterogeneous devices to optimize the overall energy consumption in fog/cloud environment. The 
proposed DAPTS algorithm is based on the task assignment and minimizes energy consumption. 
Initially, task assignment has two strategies, for instance, local task assignment and remote task 
assignment strategy. Both tasks determine the optimal assignment of tasks on their resource. After 
the assignment of all tasks, DAPTS exploits DVFS technique to reduce the energy consumption of the 
entire system in the FCA, which is given in Algorithm 1 JEETA framework. 

Algorithm 1: JEETA Framework  

  Input : 𝑣 ∈ V ;  
  Output: min Z; 
1 begin  
2    Z ←0; 3    ;  
3    for each 𝑣 ∈ V do  
4       Call Local assignment of 𝑣  ;   //assignment of local task in JEETA 
5       Call Remote assignment of 𝑣 ;  // assignment of remote task in JEETA 
6       Z ← 𝑍 −Z;  
7    Call DVFS;  
8    return Z; 

4.1. Local Task Assignment 

The purpose of the local task assignment algorithm is to transfer tasks they required low 
resources, which are available nearby location. This will support the fast execution of tasks as well as 
minimize energy consumption during the process. The local tasks assignment algorithm starts with 
input, i.e., v_i∈V_loc, put in Algorithm 2. These tasks are likely to map on the devices. These tasks 
are lightweight in size and require lower computation as compared to remote tasks. 
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Algorithm 2: Local Task Assignment 

  Input : 𝑣 ∈ 𝑉  ;                 //tasks to be mapped 
1 begin  
2    thm←profile;                   //current energy level of the device 
3    𝑑  ← 𝐷  ;                     //system divides the deadline among all tasks 
4    𝑀  ← 0 ;                      //execution of each task on the device 
5    for each 𝑣 ∈ 𝑉  do  
6        if 𝑀  ≤ 𝑑  then           //execution of local tasks under a given deadline 
7          𝑊  ← 𝑣 ;  
8          𝑀 = 𝜁𝜇𝑚 ;               //time on a device resource 

9          thm ← 𝑀 . 𝑝  ;  
10       thm← initial energy after assignment; 
11   return thm; 

4.2. Remote Task Assignment 

The purpose of the remote task assignment algorithm is to transfer tasks they required more 
resources, which are available on other fog/cloud network location which far away from the client. 
This will support the more fast execution of tasks as compared to local task assignment but also 
required more middle network involved during the remote task assignment, which also adds cost 
and energy consumption as compared to local task assignment, but more efficient compared to 
previously proposed algorithms for task assignment and energy efficiency. The remote tasks 
assignment algorithm starts with input, i.e., 𝑣 ∈ 𝑉 , put in Algorithm 3. These tasks are likely to be 
mapped on the fog nodes resources. These tasks are heavyweight in size and required higher 
computation as compared to local tasks. 

Algorithm 3: Remote Task Assignment 

  Input : 𝑣 ∈ 𝑉  ;                 //tasks to be mapped 
1 begin  
2    thf←profile;                    //current energy level of the device 
3    𝑑  ← 𝐷  ;                     // system divides the deadline among all tasks 
4    𝐶  ← 0 ;                      //execution of each task on the device 
5    for each 𝑣 ∈ 𝑉  do  
6        if 𝑀  ≤ 𝑑  then          //execution of remote tasks under a given deadline 
7          𝑊  ← 𝑣 ;  
8          𝐶 =  ;  

9           thf ← 𝐶 . 𝑝  ;        // energy consumption of record task execution 
10        thf ← initial energy after assignment; 
11   return thf ; 

4.3. Energy Efficiency Phase 

It is noteworthy that the presented approach uses energy minimization after initial task 
assignment, i.e., all tasks have already been done. Based on Algorithm 4, offloading engine module 
would try to re-shuffle tasks among different mobile cores without degrading application 
performance. Further, the DVFS technique is employed in the algorithm to create a balance between 
the execution frequency of a high efficiency with maximum frequency core. Thus, high potential cores 
have similar performance as a small core, the assigned kth core consumes more energy than the small 
performance core. So, DVFS Algorithm 4 is used after the task re-shuffling. However, the algorithm 
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determines each unit of execution for each task before applying the DVFS algorithm for task 
switching among different cores. 

Algorithm 4: DVFS Technique 

  Input : 𝑣 ∈ 𝑉  ;  
  Output: min E; 
1 begin  
2    flag ← 0;  
3    flag ← 0;  
4    for each 𝑣 ∈ 𝑉  do  
5       while (flag = = 0 and m < M) do  
6          calculate new execution on 𝑘 core 𝑇   if 𝑣  task using 𝑘  frequency;  
7          𝐸 , = 𝑃 . 𝑇  ;    
8          if 𝐸 , < 𝐾 then  
9              𝐸 , = 𝑃 . 𝑇  ;    
10             flag = 1; 
11          if (flag = = 1) then  
12            update new execution for task 𝑣  ;  
13      𝐸 , = 𝑃 . 𝑇  Apply DVFS technique for all task; 
14       update ∑ 𝐸 , = 𝑃 . 𝑇𝑽𝒍𝒐𝒄𝒊  
11   return min E; 

5. Performance Evaluation 

To evaluate the performance of the proposed method JEETA, this paper presents an 
implementation of three baseline approaches in the mobile cloud computing environment. The 
baseline approaches are MAUI, Clone Cloud, and Think Air implemented within the simulation. The 
simulation parameters are used in the experiment system are illustrated in Table 2. Six benchmark 
applications are deployed in the mobile fog cloud environment, listed in Table 3 as workload analysis. 
The mobile fog cloud resource specification is illustrated in Table 4. 

Table 2. Simulation parameters. 

Experiment Parameters Values 𝜆  user arrival time 5 s 
Languages JAVA 
Workload A-G, Health-care 

Experiment time 12 h 
Replication Repetition 12 
No. of Mobile devices 100 to 1000 
Location user Mobility Trajectory function 

No. of VMs. 10–200 

Table 3. Workload analysis. 

Workload 𝑾𝒊 (byte) 𝑻𝒊𝒌 (MI) N 
Healthcare 825 5.8 700 

Augmented Reality 525 4.8 800 
Business 525 4.8 800 
3D-Game 325 2.8 1000 

Face-Recognition 725 7.8 700 
Social Net 625 9.8 800 
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Table 4. VMs Specifications. 

Fog Node VM CORE MIPS/CORE Storage (GB) 
VM1 1 200 200 
VM2 1 400 400 
VM3 1 600 600 
VM4 1 800 800 
VM5 1 1000 1000 

Public Cloud VM CORE MIPS/CORE Storage (GB) 
VM1 1 500 500 
VM2 1 1000 1000 
VM3 1 1500 1500 
VM4 1 2000 2000 
VM5 1 3000 3000 

5.1. Workflow Complex Application 

The experiments are conducted on augmented reality application and complex health-care 
application to determine the effectiveness and efficiency of the proposed algorithm. The application 
source code is available at [32,33]. 

5.2. Profiling Technologies 

A workflow application can be shown as a call graph in an open source connection scrutiny tool 
which shows that the energy profiling for upload and download of the data. This is also available at 
[34]; energy profiling one can use this tool mentioned in [35]. The health-care workflow application 
is partitioned into local and remote execution. Each task 𝑣  is represented by a node, whereas, each 
node has exactly two costs (i.e., local execution and cloud execution cost). Further, the application is 
partitioned under F = 2 speedup factor and available bandwidth = 1 M/B respectively. Whereas, blue 
nodes are performed locally, and red nodes are offloaded to the cloud for performing. Among this, 
the proposed JEETA method will re-partition the application if the wireless bandwidth B or the 
speedup factor F diverges. 

Figure 3 shows the individually mobile computing and the fog node energy consumption due 
to the execution of the benchmark application. JEETA manipulates all applications with minimum 
energy consumption as compared to baseline approaches because of JEETA partitions the application 
at run-time between device and fog in order to minimize energy consumption. Tasks divided into 
parts and performance of the proposed algorithm is tested. 

 
Figure 3. Energy consumption of entire mob-cloud. 

0
10
20
30
40
50
60
70
80
90

100
110

100 200 300 400 500 700

En
er

gy
 C

on
su

m
pt

io
n 

(k
J)

Tasks

Fog Nodes
JEETA
Mobile Device



Future Internet 2019, 11, 141 11 of 15 

 

Results show that in Figure 4 the proposed algorithm performs better on different speedup factor 
F and B bandwidth than existing heuristic techniques such as MAUI, ThinkAir, and Clone Cloud in 
application partitioning. It is also noted that on a higher number of applications, MAUI has nearly 
the same energy consumption as JEETA. 

 
Figure 4. Application partitioning performance based on speed up factor F and bandwidth B. 

Figure 5 illustrates the comparison of all three heuristic techniques against JEETA in terms of 
number of tasks completed within a given deadline. Results in Figure 6 show that JEETA consumes 
less energy as per the number of tasks are increased. MAUI consumes less energy on a low number 
of tasks, but when the number of the task increased then it consumes more energy. Clone Cloud 
consumes more energy as compared to all others in this figure. The proposed algorithm performs 
better on different speedup factor F and B bandwidth than existing heuristic techniques. 

 
Figure 5. Workflow application: Number of tasks completed within a given deadline. 
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Energy consumption of the mobile device and fog nodes is measured in terms of a kilowatt (kW) 
while executing the benchmark applications on the mobile cloud system; each mobile device has two 
interfaces such as local execution interface and network interface. Moreover, a previously mentioned 
interface directly affects the mobile device energy consumption during local execution and offloading 
application tasks. Thus, the tradeoff balance between local energy consumption and offloaded energy 
consumption in the proposed mobile fog environment is achieved. Whereas, the aim of a proposed 
joint energy efficient algorithm allows applications to execute application tasks among multiple 
resources such as local resource, network resource and fog resources in such way that total energy 
consumption is minimized. 

Figure 7 shows that JEETA outperforms and minimizes the tradeoff energy consumption for all 
application tasks to the baseline approaches such as MAUI, CloneCloud, and Think Air. These 
approaches are just on minimizing the energy consumption of the mobile device by the offloading 
technique in the mobile cloud environment. They ignored the fog nodes or server energy 
consumption during execution. JEETA technique can optimize both user and provider end energy 
efficiency instead of partial optimization, which is done in existing studies. 

  
(a) (b) 

Figure 7. Energy consumptions. (a) Network ; (b) Processing. 

Figure 8 illustrates that; total energy consumption and mobile energy consumption can be saved 
efficiently by proposed JEETA algorithm as compared to the prior studies. This idea is unique, to 
optimize the energy consumption from both user and providers for a similar application which will 
be executed partially among a mobile, a network, and a 231 cloud resource simultaneously. Previous 
research on offloading mechanisms is based on the code development, app performance increment, 
resource discovery and allocation, and Elastic execution between mobile devices and clouds [36]. 
While adapting the application partitioning, JEETA model is based on data flow and task assignment 
with less energy consumption on the same number of tasks as compared to fog nodes and offloaded 
mobile nodes. 
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Figure 8. Augmented application performance. (a) Without mobility; (b) with mobility. 

6. Conclusions 

This paper presents a new fog cloud architecture that utilizes a joint energy-efficient task 
assignment (JEETA) method to cope up with the problem in the fog cloud environment. Additionally, 
a dynamic application-partitioning algorithm is proposed for this new architecture for real time 
healthcare application. The proposed algorithm evaluated in the healthcare workflow application 
and compared with benchmark heuristics such as MAUI, Clone Cloud and Think Air, and results 
show that JEETA finishes all workflow tasks within a given deadline. During the research, two goals 
were achieved, the first assignment of remote tasks to the fog nodes, which executed with minimal 
energy consumption of the fog resources. Second, it maintains the QoE of users for the application. 
In future work, response time and energy consumption minimization in the dynamic application 
partitioning and task-scheduling problem appear to be challenging and will be addressed in the 
future research. 
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