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Abstract: Vehicle speed estimation is an important problem in traffic surveillance. Many existing
approaches to this problem are based on camera calibration. Two shortcomings exist for camera
calibration-based methods. First, camera calibration methods are sensitive to the environment,
which means the accuracy of the results are compromised in some situations where the environmental
condition is not satisfied. Furthermore, camera calibration-based methods rely on vehicle trajectories
acquired by a two-stage tracking and detection process. In an effort to overcome these shortcomings,
we propose an alternate end-to-end method based on 3-dimensional convolutional networks
(3D ConvNets). The proposed method bases average vehicle speed estimation on information from
video footage. Our methods are characterized by the following three features. First, we use non-local
blocks in our model to better capture spatial–temporal long-range dependency. Second, we use
optical flow as an input in the model. Optical flow includes the information on the speed and
direction of pixel motion in an image. Third, we construct a multi-scale convolutional network.
This network extracts information on various characteristics of vehicles in motion. The proposed
method showcases promising experimental results on commonly used dataset with mean absolute
error (MAE) as 2.71 km/h and mean square error (MSE) as 14.62.

Keywords: vehicle speed estimation; 3D ConvNets; non-local blocks; optical flow; multi-scale

1. Introduction

Intelligent transportation systems (ITS) are of practical importance and interest for traffic
regulators and supervisors. They provide support for government departments in traffic management,
commuting improvement, traffic congestion relief, traffic accident prevention, etc. A critical component
of traffic management practice and a popular topic in ITS research is vehicle speed estimation [1],
which is widely applied to identify traffic congestion or other events of interest. In this paper, we focus
on the average vehicle speed estimation problem, which is defined as the average speed of all the
vehicles in a scene.

One family of approaches to vehicle speed estimation is based on additional specialized hardware.
Three commonly used devices are induction-coil loop detectors, laser detectors, and radar detectors [2].
They all have shortcomings in practice. The inductive loop detector method requires installing
a loop detector in the ground. The installation process is complex and can adversely affect road
condition (accelerate asphalt deterioration) [3]. Laser detectors and radar detectors do not cause these
problems, yet they need frequent and expensive maintenance. Furthermore, radar detectors need to be
meticulously positioned in consideration of installation angle.

Another family of approaches to vehicle speed estimation is based on surveillance camera
information. Nowadays, high-resolution digital cameras are ubiquitous, which provide economic
and accessible sources of data. However, it is a challenging problem to extract relevant information
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on traffic form video footage [4]. A conventional practice for information extraction is to install two
cameras in specifically chosen locations and process the data collected by the two cameras with
particularly designed algorithms. In contrast, monocular cameras are not currently in extensive use
for traffic information extraction. However, there are two primary benefits in using single monocular
cameras. First, monocular cameras are standard infrastructure for most of the established surveillance
camera systems. Thus, it does not require substantial investment in infrastructure. Second, monocular
cameras have wider coverage compared to two-camera systems. In particular, monocular cameras can
simultaneously monitor multiple lanes.

One existing monocular camera-based method to vehicle speed estimation utilizes the technique of
Camera Calibration [1,5,6]. In short, this method obtains the algorithm-generated scale and calculates
the speed based on the vehicle trajectories acquired by a two-stage process including detection and
tracking. The camera calibration process require the input of the intrinsic and extrinsic parameters.
Due to different camera models, shooting angles and installation positions, camera calibration
is required for each camera. Some camera calibration-based methods need the multiple manual
measurements on the road [5,7,8]. Some algorithms have limitations in camera placement [1,5,9,10].
Besides, the accuracy of the speed estimate heavily relies on the accuracy of algorithms for detection
and tracking. A variety of suboptimal environments (illumination variation, motion blur, background
clutter and overlapping, etc.) could result in problems in vehicle detection and tracking, including
detection missing, false detection, tracking loss, etc. [11]. When the vehicle detection or tracking is
subpar, the error of speed estimation will be significant. More detailed analyses are presented in
Section 2.1.

As an attempt to ameliorate the aforementioned limitations of camera calibration- based methods,
we propose an automatic approach to average vehicle speed estimation based on video footage.
Figure 1 is a schematic illustration of our method. The inputs: RGB images and optical flow from
a short video. The outputs: the average speed of the vehicles in the video. The input images only
need to be standardized and scaled. RoI (Region of Interest) in images can be defined to do average
vehicle speed estimation on a single lane. Our method has no limitation on the position of the camera
installation, and it does not needs to know the parameters of the camera, nor to detect or track the
vehicles. Given enough scenes covered by the constructed training set, we can estimate the vehicle
average speed in any scene. Therefore, our method is simple to operate, with high maneuverability
and wide application range.

Figure 1. Flow Chart of Our Method.

As with video action recognition, vehicle speed estimation task is also a problem about video
understanding. Inspired by the successful application of 3D ConvNets in video action recognition,
we use 3D ConvNets as the base model. The base model yields promising results on the test set with
mean absolute error (MAE) as 2.73 km/h and mean squared error (MSE) as 14.62. Although numerical
experiments suggest an inferior accuracy level of our method to that of hardware-based methods.
Yet our method is sufficiently accurate for most practical purposes such as vehicle flow computation
and traffic congestion identification.

Our work can be summarized as follows:



Future Internet 2019, 11, 123 3 of 16

• We propose 3D ConvNets to estimate average vehicle speed based on video footage. In contrast to
camera calibration-based methods, our method is an end-to-end method, independent of external
factors. In particular, our method does not entail detecting or tracking vehicles.

• We propose to include non-local blocks so as to capture spatial-temporal information with a ‘global’
perspective.

• We propose to add optical flow from video as an input to the model. Optical flow contains useful
information on the vehicle motion, which can be used to improve the model accuracy.

• We propose to employ the multi-scale convolution to extract the information of vehicles with
different scales contours. This design resolves the problem of vehicle size varying due to their
different distances from the camera.

2. Related Work

Deep learning has been extensively studied and applied as a high efficiency approach to a wide
range of problems. In recent years, this method has brought revolutionary changes to the fields
of image recognition [12], object detection [13], and video action recognition [14]. The success of
3D ConvNets application in video action recognition gives us inspiration to apply 3D ConvNets to
average vehicle speed estimation. In this section, we present relevant academic work on vehicle speed
estimation including camera calibration, video action recognition, and the non-local algorithm.

2.1. Methods Based on Camera Calibration

Methods that use camera calibration to estimate vehicle speed typically consist of the
following steps:

1. Camera Calibration: A projection matrix is obtained P = K [R|T], where K represents intrinsic
camera parameters, while R and T are extrinsic parameters, representing camera rotation and
camera translation, respectively. The internal camera parameters related to the characteristics
of the camera itself, such as the focal length, pixel of the camera. The external calibration
parameters are the position and orientation of the camera relative to some fiducial coordinate
system. The orientation of the camera often changes slightly due to weather and other reasons,
so the parameters need to be reset frequently.

2. Detection-Tracking: Detect the contours of the vehicle in the image; then track the vehicle by the
detected contours. This step is to plot the trajectory of the vehicle on the road.

3. Vehicle Speed Calculation: Calculate the traveling distance of the vehicle based on the
information obtained at stage one and two. Trivially, measure the elapsed time during the
traveling period. With the distance and time duration, calculate the vehicle speed by the basic
formula: v = s/t.

Camera Calibration-based methods can be categorized into semi-automatic and fully-automatic.
In the first case, the computation is automatic except for the camera calibration part, where manual
manipulation required is usually in the form of measuring certain distances in the scene and certain
camera parameters. For example, Pin Hole Model [5] requires the camera height from the ground
plane is used for camera calibration, and Gaussian Mixture Model and Kalman Filter are used for
detection and tracking. Some methods make use of line markings on the road to deal with perspective
projection [15–17]. In [18], the width of lane and road white strips length are essential information for
camera calibration. In this study, Mask-RCNN and deep-SORT [19] are vehicle detector and tracker,
respectively. Huang [4] uses warping with the linear perspective transformation to convert the distance
from pixel to the real world. Besides, this study uses Faster R-CNN to do multi-object detection,
and the tracking algorithm is based on histogram comparison. To sum up, some externally acquired
information is necessary for semi-automatic camera calibration-based methods. Dubská et al. [20]
present a fully-automatic method which is used for an arbitrary view. This method calibrates the
camera by determining three vanishing points which define the stream of vehicles and then computes
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the 3D bounding box around the vehicle blobs. Finally, they use the Kalman Filter to track the 3D
bounding box of the vehicle. Sochor et al. [21] improve the previous method based on two detected
vanishing points. Besides, a multi-objective evolutionary algorithm is applied for camera calibration
in [22], and vehicle tracking is done by license plate recognition.

In summary, methods based on camera calibration are highly dependent on external conditions
and the effectiveness of detection and tracking algorithms [23]. Most of them require manual
intervention and the camera can not be placed at any position above the road. Besides, because of the
complex outdoor environment the parameters need to be reset frequently. Although deep learning
significantly improves detection and tracking results, these two tasks still remain as challenges in
practice. Especially when the traffic flow is large, the overlapping between vehicles is easy to occur,
which makes the extracted feature information incomplete and incurs false detection, missing detection
or tracking loss. Therefore, plotting vehicle motion trajectories with a satisfactory level of accuracy is
challenging in complex and dynamic environments.

2.2. Video Action Recognition

The primary objective of Video Action Recognition is to identify human behavior from video
footage. Naturally, it is sometimes referred to as Human Action Recognition. Some methods to average
vehicle speed estimation entail video analysis, thus we borrow ideas from video action recognition
models to apply to the vehicle speed estimation problem.

In particular, 3D ConvNets is very useful technique for capturing spatial-temporal features.
In contrast to 2D ConvNets, 3D ConvNets, characterized by 3D convolution and 3D pooling in
3D ConvNets, can effectively capture spatial-temporal information. Specifically, 3D convolution is
carried out by convolving a 3D kernel with a cuboid formed by several contiguous frames stacked
together [24]. By this means, the motion and timing information in continuous frames can be extracted.
Tran et al. [25] propose a C3D model that includes eight convolutions, five max-poolings, and two fully
connected layers. This C3D model yields better results than 2D ConvNets in video action recognition.
Inspired by the C3D model, 3D ConvNets have been extensively studied. Feichtenhofer et al. [26]
propose Spatiotemporal Residual Networks which integrates two stream ConvNets [27] and 3D ResNet
together. In [28], the R3D network is constructed based on ResNet [12]. Recognizing that temporal and
spatial dimensions are not symmetric, Qiu et al. [29] propose a P3D model, and Tran et al. [30] propose
a R(2+1)D model. Both models reduce 3D convolutions into 2D convolution operations in space
domains and 1D convolution operations in time domains. This technique increases the non-linearity of
the network and improves the performance compared to the original 3D ConvNets.

Even though 3D ConvNets can capture features and motion information encoded in image
sequences, it is difficult to train the models due to the great number of parameters. In an effort to solve
this problem [14], inflates 3D ConvNets (I3D). More specifically, it initializes the parameters of a model
by inflating the 2D pre-trained weight from ImageNet to 3D. Subsequently, the pre-trained 2D k× k
kernel weights are repeated along the temporal dimension t times and rescaled by 1/t.

2.3. Non-Local Algorithm

The non-local algorithm [31] was initially designed for image denoising, which is carried out by
averaging of all pixels in an image. It assign the distant pixels the same weights in computing the
filtered responses. Subsequently, the Non-local mean technique was developed into block-matching
3D (BM3D) [32], which groups similar 2D image fragments (e.g., blocks) into 3D data arrays.
Moreover, Wang et al. [33] pinpoint that non-local operations have a desirable feature of capturing
long-range dependencies by computing interactions between any two positions, regardless of their
positional distance. Thus, including non-local blocks into neural networks improves the result of
image recognition, video action recognition, object detection, and so on. Particularly, self-attention [34]
in machine translation is a specific form of non-local algorithm. Inspired by these works, we include
non-local blocks into our model to effectively capture long-range dependencies between space and time.
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3. Model

In this section, we describe the detailed configuration of spatial-temporal model and the flow of
our method. According to the specifics of the actual application, we modify the 3D Resnet50 model in
the following regards:

• Recognizing the asymmetry of the spatial and temporal information, we introduce (2+1)D
convolution to more effectively extract the spatiotemporal features;

• We embed non-local blocks to the network to take into consideration ‘global’ information;
• We employ multi-scale convolution to better capture the information of vehicles’ varying sizes

due to the varying distances between the vehicles and the camera.

Since average vehicle speed estimation is a regression problem, we use Mean Square Error as the
loss function:

loss =
1
N

N

∑
i=1

(
Yi − Ŷi

)2. (1)

where N is the number of samples, while Yi and Ŷ are the estimated value and ground-truth of sample
i, respectively. The loss is the mean of the squared Euclidean distances between all the real sample
values and the predicted values.

We discuss the model in greater detail in the following part of the paper.

3.1. Inflated (2+1)D Convolution

In generally, 2D convolutions are applied to capture spatial features. In addition to spatial features,
it is essential to consider the temporal relationship between frames. Conceptually, 3D convolution is
achieved by convolving a 3D kernel to a cube that is formed by stacking multiple contiguous frames
together [24]. Comparatively, 3D convolution is superior to 2D convolution in that 3D convolution
can extract both spatial and temporal information, whereas 2D convolution can only extract spatial
information. We use 3D ResNet50 to capture spatial-temporal features from videos.

3D ConvNets, like C3D [25], have significantly more parameters than the corresponding 2D
ConvNets by reason of the new convolution kernel of the time dimension. With the large number
of parameters, they are hard to train [14]. We attempt to work around this issue by inflating 2D
convolution weights from ImageNet pre-training to 3D. We initialize all 3D convolution kernels with
2D convolution kernels, which are pre-trained on ImageNet. For instance, if a 3D convolution kernel
size is t× k × k, we initialize them by repeating the pre-trained 2D k × k kernel weights along the
temporal dimension t times and then rescale by 1/t.

The 2D convolution contains directions x and y. Roughly speaking, the step sizes in these two
directions are the same (kernel size and stride). However, in 3D convolution, the time dimension cannot
be reduced too fast or too slow because it relies on image dimensions and frame rates. If it changes
too quickly relative to space in time, it may confuse the edges of different objects, thus undermining
the early feature detection. If the time dimension changes too slowly, it may not be able to effectively
capture the scene dynamics. With this tradeoff in mind, we set the kernel of the first convolution layer
as 5× 7× 7; the first Maxpooling layer’s kernel as 1× 3× 3, and the second Maxpooling layer’s kernel
as 2× 1× 1.

Due to the asymmetry between time and space domains , the convolutions of these two domains
are carried out separately [29,30]. The new spatial-temporal convolutional block is called (2+1)D
Convolution. 3D convolution is solved with two consecutive operations: 1. a 1D temporal operation;
2. a 2D spatial operation. In other words, the spatial-temporal convolution consists of one temporal
convolution and one spatial convolution. An illustration of this process is given in Figure 2. The full
3D convolution kernel size is t× k× k, where t is the temporal width and k denotes the spatial width
and height.
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(a) 3D convolution (b) (2+1)D convolution

Figure 2. 3D Conv VS (2+1)D Conv.

Based on the aforementioned idea, continuous 1 × 1 and 3 × 3 convolutional kernels in 2D
ResNet50 are changed into 3× 1× 1 and 1× 3× 3 in 3D. Table 1 shows the structural differences across
the 2D ResNet, the R3D50, and the R(2+1)D50 network structures.

Table 1. 2D ResNet50 vs R3D50 vs R(2+1)D50.

Name 2D ResNet50 R3D50 R(2+1)D50

Conv1 7× 7, 64 7× 7× 7, 64 5× 7× 7, 64
Pooling 3× 3 3× 3× 3 1× 3× 3

Conv2_x

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1× 1, 64
3× 3× 3, 64
1× 1× 1, 256

× 3

 3× 1× 1, 64
1× 3× 3, 64
1× 1× 1, 256

× 3

Conv3_x

 1× 1, 128
3× 3, 128
1× 1, 512

× 4

 1× 1× 1, 128
3× 3× 3, 128
1× 1× 1, 512

× 4


 3× 1× 1, 128

1× 3× 3, 128
1× 1× 1, 512

 1× 1× 1, 128
1× 3× 3, 128
1× 1× 1, 512

× 2

Conv4_x

 1× 1, 256
3× 3, 256

1× 1, 1024

× 6

 1× 1× 1, 256
3× 3× 3, 256

1× 1× 1, 1024

× 6


 3× 1× 1, 256

1× 3× 3, 256
1× 1× 1, 1024

 1× 1× 1, 256
1× 3× 3, 256

1× 1× 1, 1024

× 3

Conv5_x

 1× 1, 512
3× 3, 512

1× 1, 2048

× 3

 1× 1× 1, 512
3× 3× 3, 512

1× 1× 1, 2048

× 3

 1× 1× 1, 512
1× 3× 3, 512

1× 1× 1, 2048

 3× 1× 1, 512
1× 3× 3, 512
1× 1× 1, 2048

 1× 1× 1, 512
1× 3× 3, 512

1× 1× 1, 2048


Avgpooling 7× 7 1× 7× 7 1× 7× 7

3.2. Non-Local Blocks

The Non-local block expands the receptive field of the model to capture long-range dependency.
We first present the mathematical expression for the non-local operation. Then, we detail how to add
non-local blocks to our model.

A non-local operation computes the response in one position as a weighted sum of the features in
all positions. According to the non-local methods [31,33], the generic non-local operation in neural
networks is presented as:

yi =
1
C (x) ∑

∀j
f
(
xi, xj

)
g
(

xj
)
. (2)

where xi is the input signal, which could be in the form of images, sequences, and video features, while
yi is the output signal of position i. f is a pairwise function that computes the correlation between
xi and all xj. The function g conducts a transformation on xj. The summation of f and g is then
normalized by a factor C (x).

From Equation (2), we know that the non-local operation considers all position (∀j) of inputs.
In contrast, a standard 1D convolution sums up the local neighborhood weight (e.g., i− 1 ≤ j ≤ i + 1,
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in the case of kernel size equal to 3), and the recurrent operation at time i is often based only on the
current and the preceding time steps (e.g., j = i or i− 1).

There are several candidates for the pairwise function f , such as the Dot product, the Gaussian,
and the Embedded Gaussian. According to the experiments in [33], the non-local models are
not sensitive to the choice of f , so we randomly choose the Embedded Gaussian function for f .
Mathematically:

f
(
xi, xj

)
= eθ(xi)

Tφ(xj). (3)

Here, xi and xj are same in Equation (2). θ (xi) and φ
(
xj
)

are two embeddings. For the sake
of brevity, we set g as a linear embedding, g

(
xj
)
= Wgxj, where Wg is a learned weight matric.

Taken together, C (x) = ∑
∀j

f
(

xi,xj
)
.

The non-local operation in Equation (2) is flexible and can be incorporated into any existing
network architectures. We warp it into a non-local block as follows:

zi = Wzyi + xi. (4)

Here, yi is the same as Equation (2), and ‘+xi’ denotes a residual [12]. Due to the residual
connection, we can insert a non-local block into any pre-trained model without adversely affect its
structure and results.

We include the non-local block in our model to capture more vehicle spatial-temporal features from
video footage, as shown in Figure 3. X is the input tensor and Z is the output tensor. T×H×W× 1024
refers to the dimensions of the input tensor X. ’⊗’ represents the matrix multiplication, and ’⊕’ stands
for the element-wise sum. The blue rectangle indicates a 1× 1× 1 convolution. Details of the specific
implementation are presented in Section 4.

Figure 3. Non-local block.
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3.3. Multi-Scale Convolution

One simple observation is that a vehicle closer to the camera appears larger that one of the same
actual size yet further from the camera. Put differently, the vehicle size on camera is not necessarily
in proportion with its actual size. With our goal of estimating vehicle speed in mind, it is important
to consider the differences of vehicle size on camera due to their different distances from the camera.
Different distances from the camera give rise to different scales for vehicles, which makes determining
the size of convolution kernel difficult. Our way of tackling this issue is to input the convolution kernels
of different sizes to the first layers separately of the network, of which the outputs are concatenated
to be the inputs of the next layer. The information with different scales is considered in multiple
convolution kernels, making the network adaptive. Figure 4 shows our multi-scale CNN. The box on
the left indicates the input of the model. The three boxes in the middle respectively represent the three
different convolutional layers of convolutional kernels as 5× 7× 7, 3× 5× 5 and 1× 3× 3. The large
cuboid on the right represents that the resulting concatenated output, which is used as the input of the
next layer.

Figure 5 illustrates our final model. ‘Multi-scale conv’ refers to the multi-scale CNN we propose.
On the basis of the IR(2+1)D50, we build non-local blocks into the second and third residual modules.
The input of the model includes RGB images and optical flow images. In practice, the video stream
can be directly decoded by OpenCV; the corresponding optical flow snippet can be extracted by the
traditional optical flow algorithm or the deep learning method. Specifically, the optical flow used in
this paper is obtained by dense optical flow [35]. After obtaining the RGB and optical flow frames,
the data need to be standardized and resized to a fixed size. Finally, the RGB images and optical flow
images can be stacked together as the input of the network.

Figure 4. Multi-scale CNN.

Figure 5. Model Architecture.
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4. Experiments and Analysis

In this section, we explain the experiments with variations of 3D ConvNets to estimate average
vehicle speed in the video. The results are encouraging. In addition to variations of models,
we comparatively experiment with different inputs. One notable finding is that the model result is
sensitive to optical flow. To make the model more robust, we include non-local blocks and multi-scale
convolution into IR(2+1)D model. Following is the details of the experiments.

4.1. BrnoComSpeed Dataset

The dataset used is adapted from the BrnoCompSpeed Datase [23], which is a new benchmark
dataset including 18 full-HD traffic monitoring videos. The traffic videos in this dataset were filmed
in six different locations with three cameras (Panasonic HDC-SD90, Sony Handycam HDR-PJ410,
Panasonic HC-X920) from different angles in each site. Each camera recorded an approximate
a one hour-long video. The frame rate of the videos is 50 FPS, while the resolution is 1080p.
The 20,865 vehicles recorded in the videos have been accurately annotated by LIDAR and verified
by several reference GPS tracks. The videos in BrnoCompSpeed Dataset cover all typical traffic
surveillance cameras angles and various traffic situations (small traffic flow in Session 3, large traffic
flow in Sessions 5 and 6). Figure 6 is the sample images taken by six cameras in BrnoComSpeed
Dataset. To show the environment clearly, we intentionally select the pictures with carless lanes.

(a) session1_center (b) session2_left (c) session3_right

(d) session4_center (e) session5_letf (f) session6_right

Figure 6. Data sample.

Vehicle Speed Dataset: We split each of the 18 original videos from the BrnoCompSpeed Dataset
into multiple short videos t seconds long each. Each t-second video clip is uesd as a sample. We then
calculate the average vehicle speed in each of the t-second videos.Subsequently, we label each short
video with the calculated average vehicle speed. The consideration behind splitting original videos
is the tradeoff of time information length. It is understood that 3D ConvNets’ receptive field in time
domain is limited, which means 3D ConvNets cannot process time information of a long length. On the
other hand, too short videos are not sufficiently informative. On balance, we set t = 10 in building the
VehSpeedDataset10. Table 2 is on dataset partition over training and test sets. We distribute 80% of the
total 5332 short videos to training set and the remaining 20% to test set.

Table 2. Illustration of the Vehicle Speed Dataset named VehSpeedDataset10.

Dataset Training Set Test Set Amount

VehSpeedDataset10 4266 1066 5332

4.2. Implementation Details

We use AdamW [36] as the optimizer. We initialize the model parameters by inflating the
2D ImageNet pre-trained weights to 3D. The initial setting is as follows: learning rate 1× 10−4;
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weight decay in AdamW 5× 10−2; dropout 0.5; training epoch 200. All experiments are implemented
in Pytorch over 5-folds.

In the training phase, we estimate average vehicle speed in each short period based on the
motion of the vehicle. Therefore, we select frame sequence at equal intervals from the video samples.
This process is different from that in video action recognition, where successive frames are extracted
from video footage. The input of 16 frames remains unchanged in the training and test phases.

Data Augmentation: It is acknowledged that data augmentation is of great importance in deep
neural networks. Thus, we apply data augmentation in our model. In the training phase, we first
resize a video image to 256× 256 and then randomly crop a 224× 224 patch from the 256× 256 image.
We randomly choose the starting frame among video images with the consideration that the starting
frame is sufficiently early so that a desired number of frames is guaranteed. The time intervals between
frames, chosen as model inputs, are fixed and uniform. We also apply random left-right flipping for
each video in the training phase. In the test phase, we resize an image to 256× 256 and then take the
224× 224 center patch.

4.3. 3D ConvNets and Non-Local Neural Networks

In this section, we compare the experimental performance across various 3D ConvNets on the
dataset VehSpeedDataset10. The mean absolute error (MAE) and the mean squared error (MSE)
are used as the model performance measures. Let Ŷi denote a vector of predictions generated from
a sample i including N data points and Yi denote the corresponding vector of ground-truth in sample
i. The MAE of the predictor is thus defined as:

MAE =
1
N

N

∑
i=1

∣∣Yi − Ŷi
∣∣. (5)

And the MSE of the predictor is defined as:

MSE =
1
N

N

∑
i=1

(
Yi − Ŷi

)2. (6)

4.3.1. Different 3D ConvNets

Table 3 comparatively displays the performance across various 3D ConvNets on VehSpeedDataset10.
The model input is a sequence of RGB images. From the table, it can be seen that IR3D50 outperforms
IR3D18 and IR3D34 in terms of MAE and MSE. In short, more layers in the 3D convolution network
correspond to better results. These results are analogous to those in ImageNet [12].

Table 3. The results of different 3D ConvNets on the VehSpeedDataset10.

3DConvNets MAE MSE

IR3D18 5.04 44.35
IR3D34 4.97 42.21
IR3D50 4.83 41.14

I3D(inception-v1) 4.58 38.00
IR(2+1)D50 3.76 25.80

For the 2D convolutional neural network, it is known that ResNet50 is better than Inception-V1 in
the image classification problem. Nevertheless, we see from Table 3 that inception-v1 outperforms
ResNet50 in the video-based speed estimation problem. One explanation is that 3D ConvNets are
much more complicated than 2D ConvNets and the 2D ConvNets convolution is inadequate for
3D ConvNets.
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Another inspection from the Table 3 is IR(2+1)D50 shows the best performance on the test set.
The MAE of IR(2+1)D50 is 1.07 lower than that of IR3D50, while the MSE 15.43 lower. This striking
comparison suggests that in the video-based vehicle speed estimation problem, the results can
significantly improve with spatial and temporal dimensions considered separately in a 3D convolution.
The rationale is that spatial domain and time domain are not symmetrical. Thus, the features in image
sequences are better captured with the two domains considered separately. Furthermore, 3D ConvNets
are significantly more complicated than 2D, which necessitates appropriate modifications in converting
the 2D network structure to the 3D counterpart.

4.3.2. Adding Optical Flow Information

Optical flow is the observed motion pattern of objects, surfaces, and edges in a visual scene
caused by relative motion between an observer and a scene [37,38]. It can also be defined as apparent
velocity of brightness patterns in an image. As optical flow reflects the velocity of pixel points, and the
velocity of a vehicle is closely related to that of all the pixel points comprising the vehicle, optical flow
information is a logical and useful additional input to our model.

As show in Table 4, we experiment with various input resolutions of 56× 56, 112× 112, 224× 224
on IR(2+1)D50, corresponding to the original video frames resized to 64× 64, 128× 128, 256× 256,
respectively. Because the last pooling layer is Adaptive Pooling, the network produces the same sized
output for different input sizes. From Table 4, we inspect that input size of 56× 56 gives the highest
MAE and MSE. That is because resizing images too small causes a loss of useful information. As the
input size grows, the information in input accordingly increases. So that error measure consistently
decreases as the input size increases. However, increase in input size also brings redundant information,
which causes increase in error measures. Thus, the marginal improvement diminishes as the input size
increases due to this tradeoff.

Table 4. Influence of different input on the IR(2+1)D50.

Input 56 × 56 112 × 112 224 × 224
MAE MSE MAE MSE MAE MSE

RGB 3.99 28.91 3.80 25.87 3.76 25.80
Optical flow 3.60 23.39 3.16 18.15 3.02 17.35

cat 3.50 21.60 3.08 17.92 3.01 17.24

Experimental results in Table 4 suggest that input size and form have a significant impact on
the performance of the model. Here, “cat” means that RGB images and optical flow images are
concatenated together as input. Table 4 shows the model results for three input forms in three rows.
More specifically, the first row corresponds to the RGB images sequence used as the input; the second
corresponds to optical flow images as the input; the third corresponds to “cat” as input. It can be
seen that optical flow input gives significantly better results than that of RGB input, everything else
equal. Clearly, optical flow information is more suitable an input form for our model in vehicle speed
estimation problem. One explanation for this observation is since optical flow reflects the motion of
pixel points, it incorporates more useful vehicle speed information.

An interesting observation is that in the video action classification problem, RGB input
outperforms optical flow [14]. In contrast, the results are reverse in the vehicle speed estimation
problem. Problems differ in terms of structure. It is crucial to propose a fitting solution supported by
a deep understanding and consideration of the particular structure of the problem of interest.

4.3.3. Non-Local Blocks and Multi-Scale

It is known that the convolutional neural network is mainly concerned with local information.
However, the vehicle speed estimation problem requires consideration of the vehicle trajectory change
throughout the entire video footage. In order to focus on more global information, we add non-local
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blocks to the second and third residual blocks of the network. Besides, we add a convolutional layer
whose kernel is (3, 5, 5), the stride is (1, 2, 2) after the first convolutional layer to reduce video memory.
Moreover, we also change the first layer of the ConvNet to the multi-scale convolution detailed in
Section 3.3.

Comparative experimental results across model configurations are presented in Table 5.
To facilitate understanding, we adopt straightforward naming conventions, e.g., ’conv_add’ indicates
the convolutional layer with the convolution kernel size of (3, 5, 5) and the stride size of (1, 2, 2),
which are added after the first layer. The numerical results are shown in Table 6.

Table 5. Different configurations of models.

Configurations Conv_Add Non-Local Multi-Scale Conv

IR(2+1)D50 × × ×
IR(2+1)D50-c

√
× ×

IR(2+1)D50-cNL
√ √

×
IR(2+1)D50-cNLms

√ √ √

Table 6. Influence of non-local blocks and multi-scale convolution.

Input IR(2+1)D50 IR(2+1)D50-c IR(2+1)D50-cNL IR(2+1)D50-cNLms
MAE MSE MAE MSE MAE MSE MAE MSE

Optical flow 3.02 17.35 2.97 16.61 2.85 15.55 2.81 14.81
cat 3.01 17. 24 2.95 16.30 2.85 15.30 2.73 14.62

From Table 6, it can be seen that the additional layer of convolution in the network does not reduce
the useful information and model performance does not degrade with the addition of the convolutional
layer. The incorporation of non-local blocks into the IR(2+1)D model leads to improved model results,
suggesting that non-local and 3D ConvNets are complementary, which can be understood that 3D
ConvNets capture local features and the additional non-local blocks shed light on global information.
Additionally, the model performance further improves with multi-scale convolution being used.
The reason is that multi-scale convolution can increase the richness and diversity of features, thus better
capture different sizes of vehicle motion information in the video.

4.3.4. Comparison of Different Methods

Table 7 shows the comparative experimental results of our method and other methods. Among the
other methods, OPtCalib, OPtCalibVP2, OPtScale, OPtScaleVP2 are presented in [23] and the scale is
computed as the mean of scale values obtained from the distance measurements on the road.

Table 7. Comparison of different Methods on the same dataset.

Methods MAE MSE Automatic Detection-Tracking

GPS 1.64 –
√

×
RADAR 1.07 –

√
×

FULLACC [20] 8.59 104.98
√ √

OPtScale [23] 1.71 9.66 ×
√

OPtScaleVP2 [23] 15.66 411.67 ×
√

OPtCalib [23] 1.43 8.71 ×
√

OPtCalibVP2 [23] 2.43 15.63 ×
√

Ours 2.73 14.62
√

×

It can be seen from the table our method underperforms OptScale, OptCalib, and OptCalibVP2.
The main reason is the different error measure calculation. There are two sources of error to the camera
calibration-based methods: (1) the error from camera calibration; (2) the error from detection and
tracking. The error calculation of camera calibration-based methods presented here only contains the
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first error source, i.e., the error from camera calibration, whereas does not take account of the second
error source, i.e., the detection and tracking cause error.

However, the detection and tracking caused errors are not negligible. Since the speed calculation
by camera calibration-based methods heavily relies on the results from the detection and tracking,
an error in detection or tracking can greatly distort the vehicle trajectory, which in turn will lead to
significantly off speed or even make the speed calculation undoable. It is clear that the errors that
arise in detection and tracking will be carried on and compounded in the subsequent calculations.
Besides, detection and tracking are prone to errors. In practice, a variety of common suboptimal
environments (illumination variation, motion blur, background clutter and overlapping, etc.) could
cause errors in the detection and tracking phases, including detection missing, false detection, tracking
loss, etc. Considering the prevalence and significance of the detection and tracking errors, it is
believed that the error results of the calibration-based methods would be profoundly greater with the
neglected detection and tracking errors included. In contrast, our methods do not utilize detection
and tracking, which means there are no the detection and tracking errors. Therefore, if detection and
tracking-included error is taken into consideration, the error measure of the calibration-based methods
would be higher than that of our methods.

Our deep learning-based method to the average vehicle speed estimation problem heavily relies
on data. In other words, a large quantity of labeled data needs to be accessible for the method to
be effective. With extensive high quality data in place, our method is effective regardless of the
environmental and weather conditions. In other words, our method is a self-closed end-to-end
framework, which does not need manual intervention and does not rely on any other external factors
nor subprocesses such as detection and tracking. However, there is an appreciable gap between the
error measure of our method and that of GPS and RADAR.

5. Conclusions and Future Work

This paper proposes a deep learning-based method to the average vehicle speed estimation
problem. This method has a desirable feature of not requiring manual intervention. Compared with
other common vehicle estimation methods, the proposed method is not dependent on external
environment factors, nor does it on vehicle detection and tracking processes. In summary, it is
a self-closed end-to-end framework.

Based on ResNet50, we propose an end-to-end IR(2+1)D50-cNLms model to estimate average
vehicle speed based on video footage. The modified method IR(2+1)D50-cNLms has a global
spatial-temporal perspective on the information in the video. We experiment with different 3D
ConvNets on VehSpeedDataset10. The experiments suggest that optical flow is crucial information
for the vehicle speed estimation problem. By using both RGB images and optical flow as inputs,
our IR(2+1)D50-cNLms model performs exceedingly well.

A limitation on our model is lack of quality data. As noted previously, deep learning-based models
require extensive labeled data, which is lacking. The lack of data could lead to 3D ConvNets overfitting.
In the future, we can try to expand our dataset to improve the model performance. Inspired by [39]
using multi-sensor data fusion to construct the model, we can also try to integrate RGB images and
optical flow for more effective features extraction with the understanding of the marked differences
between the two input types.
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supervision, Z.Y.; project administration, Z.Y.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.



Future Internet 2019, 11, 123 14 of 16

Abbreviations

The following abbreviations are used in this manuscript:

3D ConvNets 3-dimensional convolutional networks
MAE Mean absolute error
MSE Mean square error
RoI Region of Interest
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