
future internet

Article

The Next Generation Platform as A Service:
Composition and Deployment of Platforms
and Services

Angelos Mimidis-Kentis 1,* , Jose Soler 1 , Paul Veitch 2 , Adam Broadbent 2,
Marco Mobilio 3 , Oliviero Riganelli 3 , Steven Van Rossem 4 , Wouter Tavernier 4 and
Bessem Sayadi 5

1 Department of Photonics, Technical University of Denmark, 2800 Lyngby, Denmark; joss@fotonik.dtu.dk
2 British Telecom, Ipswich IP53RE, UK; paul.veitch@bt.com (P.V.); adam.broadbent@bt.com (A.B.)
3 Department of Informatics, University of Milano Bicocca, 20125 Milano, Italy;

marco.mobilio@disco.unimib.it (M.M.); oliviero.riganelli@unimib.it (O.R.)
4 IMEC, University of Ghent, 9000 Ghent, Belgium; steven.vanrossem@ugent.be (S.V.R);

wouter.tavernier@ugent.be (W.T.)
5 Nokia Bell Labs France, 91620 Nozay, France; bessem.sayadi@nokia-bell-labs.com
* Correspondence: agmimi@fotonik.dtu.dk

Received: 9 April 2019; Accepted: 17 May 2019; Published: 21 May 2019
����������
�������

Abstract: The emergence of widespread cloudification and virtualisation promises increased flexibility,
scalability, and programmability for the deployment of services by Vertical Service Providers (VSPs).
This cloudification also improves service and network management, reducing the Capital and
Operational Expenses (CAPEX, OPEX). A truly cloud-native approach is essential, since 5G will
provide a diverse range of services - many requiring stringent performance guarantees while
maximising flexibility and agility despite the technological diversity. This paper proposes a workflow
based on the principles of build-to-order, Build-Ship-Run, and automation; following the Next
Generation Platform as a Service (NGPaaS) vision. Through the concept of Reusable Functional
Blocks (RFBs), an enhancement to Virtual Network Functions, this methodology allows a VSP to
deploy and manage platforms and services, agnostic to the underlying technologies, protocols, and
APIs. To validate the proposed workflow, a use case is also presented herein, which illustrates both
the deployment of the underlying platform by the Telco operator and of the services that run on top
of it. In this use case, the NGPaaS operator facilitates a VSP to provide Virtual Network Function as a
Service (VNFaaS) capabilities for its end customers.

Keywords: 5G; Cloud; Cloud-native; PaaS; NFV; SDN; Telco-grade; CORD

1. Introduction

5G is expected to be the ubiquitous fabric to provide reliable, low-latency and high-speed
connectivity for a wide variety of services (Internet of Things (IoT), mobile, Industry 4.0, automotive,
etc.). However current network architectures are not yet able to provide these characteristics, mainly
due to their monolithic nature which limits their flexibility, scalability, and programmability. To
facilitate the adoption of 5G, the consensus in the industry is to utilise technologies and workflows from
the field of Information Technology (IT), such as the cloudification and virtualisation of services [1].
This way, network services that previously comprised dedicated and monolithic hardware appliances
(e.g., Firewalls) will now be virtualised instances in commodity servers in the cloud. This shift is
expected to offer a much higher degree of flexibility, scalability, and automation to service providers,
as they will be able to modify the virtual setups dynamically and programmatically.

Future Internet 2019, 11, 119; doi:10.3390/fi11050119 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
https://orcid.org/0000-0002-6238-3858
https://orcid.org/0000-0002-7729-6976
https://orcid.org/0000-0002-1775-3450
https://orcid.org/0000-0002-3499-0159
https://orcid.org/0000-0003-2120-2894
https://orcid.org/0000-0002-7160-3541
http://www.mdpi.com/1999-5903/11/5/119?type=check_update&version=1
http://dx.doi.org/10.3390/fi11050119
http://www.mdpi.com/journal/futureinternet

Future Internet 2019, 11, 119 2 of 20

To fully reap the benefits provided by virtualisation and cloudification, the deployment and
management of services must be decoupled from the underlying computing and networking
infrastructure. A paradigm that can facilitate this requirement is the Platform as a Service (PaaS),
as it provides a centralised and reliable environment, with high degrees of agility and automation,
on which services can be deployed and managed. The benefits provided by the PaaS model can
be further enhanced by incorporating the paradigms of Software Defined Networking (SDN) and
Network Function Virtualisation (NFV). The scope of SDN would be to facilitate the control and
programmability of the network infrastructure while NFV would allow for the efficient virtualisation
and management of services on commodity servers.

In contrast with IT services, 5G services are more diverse and stringent in terms of their network
and computing requirements. These requirements imply the need for a more flexible and customisable
PaaS model [2] than the currently available non 5G oriented solutions. One such model is the Next
Generation Platform as a Service (NGPaaS) [3,4], which is built around the principles of micro-services,
modularity, and build-to-order. In short, NGPaaS allows for the deployment of custom-built platforms
and services, on a diverse set of infrastructure technologies, using automated and technology agnostic
workflows. Through the same workflow, any Vertical Service Provider (VSP) (e.g., a Telco provider or
IoT provider) can deploy either a custom platform on the available infrastructure or services on top of
an existing platform.

The content of this paper is structured as follows. At first, a study of related work is presented
in Section 2. Section 3 presents the implementation of the requirements and architecture of NGPaaS,
as conceptualised in references [3,4]—specifically, it provides the NGPaaS architectural design, the
concept of Reusable Functional Blocks (RFBs) and introduces the RFB Description and Composition
Languages Design, Deploy and Direct (RDCL 3D) tool [5]. Later in Section 4, the NGPaaS workflow
is practically validated through a use case. This use case (Telco PaaS) is based on the Central Office
Re-architected as a Datacentre (CORD) [6] platform and provides Virtual Network Function (VNF) as a
Service (VNFaaS) capabilities to a VSP. In addition to describing the use case and the components that
comprise it, this paper also details the process of how these components were made NGPaaS-ready in
Section 5. Later, in Section 6 a brief description of another use case targeted by NGPaaS (5G Public
Safety) is provided. Finally, Section 7 provides a critical conclusion of the presented work.

2. Related Work

As mentioned in the introduction, most telco-grade platform environments have originated from
existing IT-based cloud technologies (e.g., OpenStack, Kubernetes), but have been extended with new
features to be suitable for telco environments, such as edge, access, and core networks. The scope of
this section is to contextualise telco-grade platform solutions with recent PaaS and NFV related work.

The most prominent standardisation effort in the NFV platform area is the ETSI NFV Management
and Orchestration (MANO) specification [7], which details an NFV-based platform architecture. There,
a fixed set of PaaS related features is coupled tightly to the underlying infrastructure managers.
However, unlike NGPaaS, ETSI NFV MANO lacks the option to customise which specific PaaS
components are included in a deployment, consequently, the supported virtualisation technologies
and infrastructure types cannot be modified easily or swapped. Instead, the MANO functionality
focuses on the lifecycle management of specific services, controlled by pre-integrated infrastructure
managers and PaaS functions. Different flavours of MANO platforms are available (e.g., OSM [8]
or 5GTANGO [9]), and each one may have proprietary interfaces and service descriptor formats,
which can act as a barrier to the integration of other PaaS solutions. The authors in reference [10] and
reference [11] show that the characteristics might differ significantly when comparing existing MANO
solutions. It may be necessary, depending on the targeted use-case, to augment an existing MANO
platform and integrate new functionalities ([10,12]).

In addition to MANO platforms, there are many advances are being made in the NFV technology
space. One such example is that in addition to common x86 server hardware, the use of FPGAs in

Future Internet 2019, 11, 119 3 of 20

data centre infrastructure is being presented as virtualised resources, as demonstrated in reference [13].
In reference [14], a management framework is presented for using FPGA resources in data centres,
also enabling FPGAs to run Virtual Network Functions (VNFs). The authors of reference [15]
have implemented a framework to design network functions running on split CPU and FPGA
architectures—this provides a method to offload computationally–intensive processing of the network
functions to the FPGA.

The development of improved algorithms to assist in the deployment and operation of virtualised
network functions is a highly active research area. A method for customised VNF placement is
proposed in 5G networks [16], showing that due to the diverse performance requirements among
different 5G scenarios, an adaptive VNF placement approach is needed to accommodate service-specific
requirements automatically. In addition to placement, scaling algorithms can also enhance the operation
of VNFs. In reference [17], a formal method is described to predict VNF traffic and optimally scale
the VNF resources accordingly in an elastic way. Similarly, in reference [18], a novel analytical model
based on Stochastic Network Calculus is presented to investigate the end-to-end performance bound of
chained VNFs quantitatively. By modelling (non-)bursty network traffic, the proposed analytical model
provides an efficient method for service providers to determine which service chaining and placement
configuration are more beneficial to meet the SLA requirements in terms of violation error and latency
performance. Another operational enhancement is an optimised load balancing system for VNFs,
presented in reference [19] and the placement of multiple VNFs in geo-distributed infrastructures is
investigated in reference [20]. The latter is particularly applicable in a telecom scenario, where an
optimal choice must be made in which central offices the VNFs should run.

In additional to VNF placement and scaling, automated healing actions also need to be
implemented to quickly analyse and solve any issues with the running network service before
performance is degraded. Autonomous healing actions in reference [21] are based on pre-defined
workflows developed by experts. The primary idea behind the adopted approach is to transfer the
current expert domain knowledge and manual action triggers into a rule-based self-healing solution.
Moreover, in reference [22], it is shown that deep learning can be used to identify anomaly events
from NFV system logs reliably. A technique using a supervised machine learning method for online
classification of anomaly states based on similarities between anomaly type-specific density grid
patterns is presented in reference [23]. The detection is done by analysing CPU, memory and network
usage; the procedure used, the density grid mapping, is inherited from the theory of grid-based
clustering. Operational procedures such as healing combine techniques from various research areas
and gather information from a wide range of data, implying the integration of a diverse set of tools
and libraries. The above-described references show that the PaaS should cater for quick and easy
upgradeability, in order to incorporate the rapid evolutions happening in the NFV area and to allow
easy customisation for a Telco or other use-case. The platform should follow a modular approach,
and a relevant PaaS architecture for this method is advised in reference [3]. Later, in Section 4, we
exemplify this modular setup by showing how we implemented in NGPaaS the functional blocks
of the orchestration mechanism, network control, monitoring framework and the analysis of VNF
anomalies to trigger healing actions.

According to reference [24], a unified PaaS interface can be derived from existing PaaS Application
Programming Interfaces (APIs), or put another way, a common set of functionalities regarding service
instantiation and configuration can be grouped under a standard API. This allows for a unified interface
for application deployment and management, among different cloud platforms, avoiding technology
lock-in effects. Unfortunately, considerable effort is needed to maintain and translate the unified API
to the proprietary PaaS APIs; a common trade-off between the overhead and benefits of using an
API abstraction layer. In contrast to reference [24], NGPaaS adopts a workflow-based orchestration
mechanism [3], hence the API or descriptor format of the targeted PaaS or infrastructure manager is
addressed natively in the workflow and thus minimises the effort required to integrate support for
new APIs.

Future Internet 2019, 11, 119 4 of 20

The NGPaaS architecture is innovative in the sense that both PaaS and service components are
considered as the same module type, using the same generic orchestration mechanism based on the
RFB model. As argued in reference [25], if software suppliers adopt the generic RFB descriptor model,
DevOps-based integration strategies will be greatly facilitated. The NGPaaS framework, therefore,
facilitates customisation and the creation of a custom PaaS solution, with functionality targeted at
specific use cases. Given the vast range of possible services, it can be challenging to integrate all existing
options into a one-size-fits-all platform solution. NGPaaS implements the complete service lifecycle
using build-ship-run actions: (1) What is needed in terms of service offering (build), (2) How the
service can be deployed (ship) and (3) Where the service should be deployed (run). These fundamental
design questions facilitate the mapping of the right PaaS technologies to the available IaaS and the
requirements of the service that should be executed. Each PaaS can be enhanced with unique features
related to network state, Quality of Service, high availability, auto-scaling or SDK toolsets [25]. The
deployed set of PaaS features is then customisable and use-case dependent. Before exemplifying this
through the Telco PaaS use case, we first elaborate on the different processes and workflows which
enable this modular NGPaaS framework.

3. The Next Generation PaaS: Architecture, Concepts, Processes, and Workflows

The scope of this section is to provide the reader with an understanding of the NGPaaS. More
specifically this section introduces the overall NGPaaS architecture, the concept of RFBs, how RFB
graphs can be composed via the RDCL 3D tool, and finally introduces the workflow through which
platforms and services can be composed and deployed in NGPaaS.

3.1. The NGPaaS Architecture

NGPaaS consist of a multi-layer architecture, with each layer being responsible for a specific
functionality. In total, six layers are defined as: (1) The Business Registration Layer, (2) The Business
as a Service (BaaS) Layer 3) The Business and Operation Support System (BSS/OSS) Layer, (4) The
Dev-for-operations Layer, (5) The Platform as a Service (PaaS) Layer and finally (6) The Infrastructure
as a Service (IaaS) Layer. The details and scope of each of these layers can be found in Table 1, while
Figure 1 provides a simplified view of the NGPaaS architecture and also of the cross-layer interactions.

Table 1. Layers of the NGPaaS architecture.

NGPaaS Layer Description

Business Registration Registers all stakeholders that participate in NGPaaS (VSPs, Vendors, etc.). It
also includes the resolution of access and execution rights.

BaaS A customisable catalogue from which to order service or platform workloads.

BSS/OSS
Responsible for inventory registration, global supervision, and deployment of
services and platforms on their execution environments. In our prototype, the
BSS/OSS role [26] is fulfilled by the RDCL 3D tool.

Dev-for-Operations

An environment to support the innovative NGPaaS Dev-for-Operations
model—an evolution of the existing DevOps model to facilitate new types of
interaction and development methods between multiple stakeholders. This
environment is where staging and development are performed to bring new
PaaS or service components into NGPaaS [27].

PaaS

PaaS components are deployed on the available (declared) infrastructure.
These PaaS components form the framework to manage the VNFs included in
the requested services. More than one PaaS instances can be active and
managed at the same time by the OSS/BSS.

IaaS This layer relates to the cloud infrastructure available to the NGPaaS operator.

Future Internet 2019, 11, 119 5 of 20

Future Internet 2019, 11, x FOR PEER REVIEW 4 of 21

RFB model. As argued in reference [25], if software suppliers adopt the generic RFB descriptor model,
DevOps-based integration strategies will be greatly facilitated. The NGPaaS framework, therefore,
facilitates customisation and the creation of a custom PaaS solution, with functionality targeted at
specific use cases. Given the vast range of possible services, it can be challenging to integrate all
existing options into a one-size-fits-all platform solution. NGPaaS implements the complete service
lifecycle using build-ship-run actions: 1) What is needed in terms of service offering (build), 2) How
the service can be deployed (ship) and 3) Where the service should be deployed (run). These
fundamental design questions facilitate the mapping of the right PaaS technologies to the available
IaaS and the requirements of the service that should be executed. Each PaaS can be enhanced with
unique features related to network state, Quality of Service, high availability, auto-scaling or SDK
toolsets [25]. The deployed set of PaaS features is then customisable and use-case dependent. Before
exemplifying this through the Telco PaaS use case, we first elaborate on the different processes and
workflows which enable this modular NGPaaS framework.

3. The Next Generation PaaS: Architecture, Concepts, Processes, and Workflows

The scope of this section is to provide the reader with an understanding of the NGPaaS. More
specifically this section introduces the overall NGPaaS architecture, the concept of RFBs, how RFB
graphs can be composed via the RDCL 3D tool, and finally introduces the workflow through which
platforms and services can be composed and deployed in NGPaaS.

3.1. The NGPaaS Architecture

NGPaaS consist of a multi-layer architecture, with each layer being responsible for a specific
functionality. In total, six layers are defined as: 1) The Business Registration Layer, 2) The Business
as a Service (BaaS) Layer 3) The Business and Operation Support System (BSS/OSS) Layer, 4) The
Dev-for-operations Layer, 5) The Platform as a Service (PaaS) Layer and finally 6) The Infrastructure
as a Service (IaaS) Layer. The details and scope of each of these layers can be found in Table 1, while
Figure 1 provides a simplified view of the NGPaaS architecture and also of the cross-layer
interactions.

Figure 1. Simplified view of the NGPaaS architecture.

Business Registration Layer
IaaS Provider Registration

VSP Registration
Vendor Registration

Access Control

BaaS Layer BSS/OSS Layer
Infrastructure registration

Orchestration of PaaS into IaaS
Orchestration of Services into PaaS
Deployment of Dev-for-Operations

Service Catalogue
Platform Catalogue

PaaS 1 PaaS 2PaaS Layer

IaaS LayerContainers VMs Switches

GPU x86 x64 ...

e.g. CORD based
Telco PaaS

e.g. Kubernetes
based 5G PaaS

Dev-for-Operations Layer
Test and Validate new PaaS and service components

VSP

IaaS
Provider

Vendor

Figure 1. Simplified view of the NGPaaS architecture.

3.2. Reusable Functional Blocks

RFBs are a core concept of NGPaaS, as they have a significant influence in its architecture and
workflows. RFBs are a logical representation of functions that can decompose a complex system into
simple sub-functions. In a sense, RFBs are a generalisation of the Virtual Network Function (VNF)
concept proposed by ETSI [28]. There are however some core differences between ETSI VNFs and
NGPaaS RFBs. The main difference is that RFBs are recursive and thus can be arbitrarily decomposed
into other RFBs, while VNFs in the ETSI model cannot be decomposed into other VNFs (the composition
stops at the level of VNF Component). In addition, RFBs can be mapped into both software and
hardware execution environments [28], while VNFs can only be mapped into Virtual Machines (or
Containers) in traditional cloud infrastructures. RFBs can also be paired with metadata during their
composition, which allows for high degrees of configuration, with reduced complexity. Figure 2
illustrates the RFB concept. Additionally, NGPaaS is a higher-level orchestration framework when
compared to ETSI NFV, as it facilitates the deployment and management of multiple heterogeneous
platforms. For example, it could be the case that an Open Source MANO (OSM) platform, a reference
implementation of ETSI NFV, is deployed and managed by NGPaaS. A detailed comparison between
the ETSI NFV and NGPaaS proposal is also provided in reference [3].

Future Internet 2019, 11, x FOR PEER REVIEW 5 of 21

Table 1. Layers of the NGPaaS architecture.

NGPaaS
Layer

Description

Business
Registration

Registers all stakeholders that participate in NGPaaS (VSPs, Vendors, etc.). It also
includes the resolution of access and execution rights.

BaaS A customisable catalogue from which to order service or platform workloads.

BSS/OSS
Responsible for inventory registration, global supervision, and deployment of
services and platforms on their execution environments. In our prototype, the
BSS/OSS role [26] is fulfilled by the RDCL 3D tool.

Dev-for-
Operations

An environment to support the innovative NGPaaS Dev-for-Operations model—
an evolution of the existing DevOps model to facilitate new types of interaction
and development methods between multiple stakeholders. This environment is
where staging and development are performed to bring new PaaS or service
components into NGPaaS [27].

PaaS

PaaS components are deployed on the available (declared) infrastructure. These
PaaS components form the framework to manage the VNFs included in the
requested services. More than one PaaS instances can be active and managed at
the same time by the OSS/BSS.

IaaS This layer relates to the cloud infrastructure available to the NGPaaS operator.

3.2. Reusable Functional Blocks

RFBs are a core concept of NGPaaS, as they have a significant influence in its architecture and
workflows. RFBs are a logical representation of functions that can decompose a complex system into
simple sub-functions. In a sense, RFBs are a generalisation of the Virtual Network Function (VNF)
concept proposed by ETSI [28]. There are however some core differences between ETSI VNFs and
NGPaaS RFBs. The main difference is that RFBs are recursive and thus can be arbitrarily decomposed
into other RFBs, while VNFs in the ETSI model cannot be decomposed into other VNFs (the
composition stops at the level of VNF Component). In addition, RFBs can be mapped into both
software and hardware execution environments [28], while VNFs can only be mapped into Virtual
Machines (or Containers) in traditional cloud infrastructures. RFBs can also be paired with metadata
during their composition, which allows for high degrees of configuration, with reduced complexity.
Figure 2 illustrates the RFB concept. Additionally, NGPaaS is a higher-level orchestration framework
when compared to ETSI NFV, as it facilitates the deployment and management of multiple
heterogeneous platforms. For example, it could be the case that an Open Source MANO (OSM)
platform, a reference implementation of ETSI NFV, is deployed and managed by NGPaaS. A detailed
comparison between the ETSI NFV and NGPaaS proposal is also provided in reference [3].

Figure 2. The concept of Reusable Functional Blocks.

Execution Enviroment

Microservice 1 Microservice 2

IaaS

Metadata

Metadata Metadata

RFB Parent

RFB ChildRFB Child

Figure 2. The concept of Reusable Functional Blocks.

Future Internet 2019, 11, 119 6 of 20

The figure shows how an RFB parent is decomposed into two RFB children, each of which is
mapped to the deployment of a micro-service into the execution environment. For these RFBs to be
properly configured, they are each paired with some metadata. The NGPaaS RFB model supports
inheritance from an RFB parent to its children; this means that, unless overwritten by an RFB child,
metadata from the parent will be propagated to all its children.

3.3. RFB Description and Composition Languages Design, Deploy and Direct Tool

To fully exploit the RFB concept, NGPaaS is utilising the RDCL 3D tool: a web-based framework
that allows the composition of RFB graphs. By composing graphs comprising multiple RFBs, it is
possible for a VSP to define complex platforms and services for deployment. Apart from composing
RFB graphs, the RDCL 3D tool is also responsible for “shipping” them to an RDCL agent. Every
RDCL agent is tied to an execution environment (e.g., an infrastructure or a platform) and its role is to
deploy the services/platforms composed by the graph into this execution environment. To facilitate
this action, each RFB leaf in an RFB graph is mapped to an Ansible-based [29] workflow which is
executed onto the execution environment of the RFB by the agent. By selecting different execution
environments for different RFBs of an RFB graph, it is possible for a deployment to span multiple
execution environments. For example, a platform deployment can span across a public and private
cloud infrastructure. For the RFBs to be executed in the desired order, a priority mechanism is used in
which each RFB is assigned a priority value. The RDCL 3D tool was initially developed in the 5G-PPP
Superfluidity [30] project but has been heavily extended to meet the requirements of NGPaaS. Figure 3
illustrates the operation of the RDCL 3D tool in greater detail.

Future Internet 2019, 11, x FOR PEER REVIEW 6 of 21

The figure shows how an RFB parent is decomposed into two RFB children, each of which is
mapped to the deployment of a micro-service into the execution environment. For these RFBs to be
properly configured, they are each paired with some metadata. The NGPaaS RFB model supports
inheritance from an RFB parent to its children; this means that, unless overwritten by an RFB child,
metadata from the parent will be propagated to all its children.

3.3. RFB Description and Composition Languages Design, Deploy and Direct Tool

To fully exploit the RFB concept, NGPaaS is utilising the RDCL 3D tool: a web-based framework
that allows the composition of RFB graphs. By composing graphs comprising multiple RFBs, it is
possible for a VSP to define complex platforms and services for deployment. Apart from composing
RFB graphs, the RDCL 3D tool is also responsible for “shipping” them to an RDCL agent. Every
RDCL agent is tied to an execution environment (e.g., an infrastructure or a platform) and its role is
to deploy the services/platforms composed by the graph into this execution environment. To facilitate
this action, each RFB leaf in an RFB graph is mapped to an Ansible-based [29] workflow which is
executed onto the execution environment of the RFB by the agent. By selecting different execution
environments for different RFBs of an RFB graph, it is possible for a deployment to span multiple
execution environments. For example, a platform deployment can span across a public and private
cloud infrastructure. For the RFBs to be executed in the desired order, a priority mechanism is used
in which each RFB is assigned a priority value. The RDCL 3D tool was initially developed in the 5G-
PPP Superfluidity [30] project but has been heavily extended to meet the requirements of NGPaaS.
Figure 3 illustrates the operation of the RDCL 3D tool in greater detail.

Figure 3. Overview of the RDCL 3D tool.

A VSP uses the web-based interface of the RDCL 3D tool to describe the desired service or
platform using an RFB graph; this comprises of RFBs from the catalogue of RFBs made available by
the NGPaaS operator. The RDCL 3D tool provides a full separation between platform and service
deployments by assigning each RFB to either a service or platform category. Then when composing
a service or platform graph, the VSP will be only presented with the corresponding RFBs. Once the
composition of the RFB graph is completed, the VSP selects an appropriate RDCL agent (In this case
the service agent of IaaS A). The RFB graph is encoded as a JSON string and is shipped to the agent.
Once the agent receives the deployment request, it initiates the execution of the corresponding
Ansible roles, each mapping to an individual RFB leaf of the RFB graph. Finally, these Ansible roles
are executed into the appropriate execution environment (Platform A in this case) and the desired
service is provisioned. Figure 3 also illustrates the possibility to control multiple RDCL agents, via a
single RDCL 3D instance.

VSP

Platform A

IaaS A IaaS B

Service Agent
Ansible
Roles

Ansible
Roles

Platform Agent

RDCL 3D tool
Service
RFBs

Platform
RFBs

Service
Graph

Execute Role
@Platform A

Deploy Service

Composes
Service Graph

Figure 3. Overview of the RDCL 3D tool.

A VSP uses the web-based interface of the RDCL 3D tool to describe the desired service or platform
using an RFB graph; this comprises of RFBs from the catalogue of RFBs made available by the NGPaaS
operator. The RDCL 3D tool provides a full separation between platform and service deployments
by assigning each RFB to either a service or platform category. Then when composing a service or
platform graph, the VSP will be only presented with the corresponding RFBs. Once the composition of
the RFB graph is completed, the VSP selects an appropriate RDCL agent (In this case the service agent
of IaaS A). The RFB graph is encoded as a JSON string and is shipped to the agent. Once the agent
receives the deployment request, it initiates the execution of the corresponding Ansible roles, each
mapping to an individual RFB leaf of the RFB graph. Finally, these Ansible roles are executed into the
appropriate execution environment (Platform A in this case) and the desired service is provisioned.
Figure 3 also illustrates the possibility to control multiple RDCL agents, via a single RDCL 3D instance.

Future Internet 2019, 11, 119 7 of 20

Figure 4 depicts a simple example of an RFB graph as it appears in the RDCL 3D tool web interface.
A root RFB (service1_fb) comprises two RFB children (Service A, Service B) each corresponding to a
different logical subcomponent of the parent service. Each of these RFB comprises of two RFB leaves
(VNF A, VNF B, VNF C, and VNF D) -these leaf RFBs are the ones directly mapped to the deployment
micro-services (e.g., containers) in the execution environment. Finally, the figure also shows as an
example the metadata tied to leaf RFB VNF B (two key-value pairs).

Future Internet 2019, 11, x FOR PEER REVIEW 7 of 21

Figure 4 depicts a simple example of an RFB graph as it appears in the RDCL 3D tool web
interface. A root RFB (service1_fb) comprises two RFB children (Service A, Service B) each
corresponding to a different logical subcomponent of the parent service. Each of these RFB comprises
of two RFB leaves (VNF A, VNF B, VNF C, and VNF D) -these leaf RFBs are the ones directly mapped
to the deployment micro-services (e.g., containers) in the execution environment. Finally, the figure
also shows as an example the metadata tied to leaf RFB VNF B (two key-value pairs).

Figure 4. Example of RFB graph from the RDCL 3D tool.

3.4. Processes and Workflows

The ability to deploy, in a modular way, both the platform and service components is one of the
key features of NGPaaS. This allows the creation of an eco-system where telco operators can easily
cooperate and integrate with multiple software vendors. By using an aligned descriptor format
between the vendor and operator side, such as the RFB model, it becomes easier to share both service
components and their related execution environments (PaaS). The processes defined in this section,
enables the deployment of a customisable set of PaaSes and service components, empowering the
support of many use-cases. The most critical processes between layers mentioned above are
illustrated in Figure 5 and also analysed in Table 2.

Table 2. Processes of the NGPaaS architecture.

NGPaaS Process Details

Infrastructure
registration

A generic provisioning process to support the broad spectrum of available
infrastructure technologies. According to the use-case and the required
services, the appropriate infrastructure nodes are leased and registered in
the OSS.

PaaS orchestration

Refers to the deployment of selected PaaS components on the appropriate
IaaS. The PaaS could be Kubernetes, CORD, or any other platform. The PaaS
components can be aggregated flexibly and modelled as RFBs. This
capability could not be implemented using ETSI MANO, which is focused
only on VNFs and assumes the platform is already deployed.

Service
orchestration

A service is provided by deploying VNFs as sets of RFBs. The target
execution environment of each VNF is included in the metadata of the
related RFBs, which also specify the runtime aspect: VM, container,
Unikernel, FPGA Bitstream, etc. The execution environment of a service
component is a pre-deployed PaaS which supports the runtime aspects of
the RFB.

Figure 4. Example of RFB graph from the RDCL 3D tool.

3.4. Processes and Workflows

The ability to deploy, in a modular way, both the platform and service components is one of
the key features of NGPaaS. This allows the creation of an eco-system where telco operators can
easily cooperate and integrate with multiple software vendors. By using an aligned descriptor format
between the vendor and operator side, such as the RFB model, it becomes easier to share both service
components and their related execution environments (PaaS). The processes defined in this section,
enables the deployment of a customisable set of PaaSes and service components, empowering the
support of many use-cases. The most critical processes between layers mentioned above are illustrated
in Figure 5 and also analysed in Table 2.

Future Internet 2019, 11, x FOR PEER REVIEW 8 of 21

Onboarding new
components

The design rule in NGPaaS is “everything is an RFB” (VNF, ancillary
services like orchestration, SDN controller, etc.). Therefore, all the
components could be updated, upgraded, swapped, etc. This can be done
through the usage of the Dev-for-Operations processes.

Before requesting any platform or service deployment, (1) the required infrastructure for the
VSP must be reserved by the NGPaaS operator. Once the appropriate infrastructure has been
registered, then, (2) the VSP can request the deployment of the desired service. This is done by the
composition of two RFB graphs, one for the underlying platform (if not already present) and one for
the service itself. Once the RFB graphs have been composed then PaaS (3), or service workloads (4)
can be orchestrated on their corresponding execution environments. A relatively similar workflow
(5) – (8) is also available to software vendors through their dedicated Dev-for-Operations layer, which
allows them (5)–(7) to test new software components that can be later (8) included as RFBs in the
available RFB catalogue.

Figure 5. NGPaaS processes, to enable a customisable platform.

4. Virtual Network Function as A Service, Overview

The scope of this section is to illustrate the operation of the NGPaaS workflow, via a
demonstrable use case. It outlines a service scenario called “VNF-as-a-Service” (VNFaaS), which is
based on the CORD platform. More specifically, this section highlights the composition of both the
platform and services as RFB graphs and their subsequent deployment in their corresponding
execution environment (IaaS for CORD, PaaS for the services).

4.1. The Telco PaaS Use Case: Virtual Network Function as A Service (VNFaaS)

In the Telco PaaS use case, the NGPaaS operator (e.g., a Tier 1 Telco operator) hosts VNFs on
behalf of a Service Provider (the VSP). These VNFs could be virtual Routers and Firewalls, which the
Service Provider can configure accordingly depending on the desired service (business VPNs,
Internet access, etc.). In a “pre-NGPaaS” NFV architecture, the on-boarding of VNFs, to be made
available in the service catalogue, is done by the Telco operator (based on the preferences of the
Service Provider).

Figure 5. NGPaaS processes, to enable a customisable platform.

Future Internet 2019, 11, 119 8 of 20

Table 2. Processes of the NGPaaS architecture.

NGPaaS Process Details

Infrastructure registration

A generic provisioning process to support the broad spectrum of
available infrastructure technologies. According to the use-case and the
required services, the appropriate infrastructure nodes are leased and
registered in the OSS.

PaaS orchestration

Refers to the deployment of selected PaaS components on the
appropriate IaaS. The PaaS could be Kubernetes, CORD, or any other
platform. The PaaS components can be aggregated flexibly and
modelled as RFBs. This capability could not be implemented using ETSI
MANO, which is focused only on VNFs and assumes the platform is
already deployed.

Service orchestration

A service is provided by deploying VNFs as sets of RFBs. The target
execution environment of each VNF is included in the metadata of the
related RFBs, which also specify the runtime aspect: VM, container,
Unikernel, FPGA Bitstream, etc. The execution environment of a service
component is a pre-deployed PaaS which supports the runtime aspects
of the RFB.

Onboarding new components

The design rule in NGPaaS is “everything is an RFB” (VNF, ancillary
services like orchestration, SDN controller, etc.). Therefore, all the
components could be updated, upgraded, swapped, etc. This can be
done through the usage of the Dev-for-Operations processes.

Before requesting any platform or service deployment, (1) the required infrastructure for the VSP
must be reserved by the NGPaaS operator. Once the appropriate infrastructure has been registered,
then, (2) the VSP can request the deployment of the desired service. This is done by the composition of
two RFB graphs, one for the underlying platform (if not already present) and one for the service itself.
Once the RFB graphs have been composed then PaaS (3), or service workloads (4) can be orchestrated
on their corresponding execution environments. A relatively similar workflow (5)–(8) is also available
to software vendors through their dedicated Dev-for-Operations layer, which allows them (5)–(7) to
test new software components that can be later (8) included as RFBs in the available RFB catalogue.

4. Virtual Network Function as A Service, Overview

The scope of this section is to illustrate the operation of the NGPaaS workflow, via a demonstrable
use case. It outlines a service scenario called “VNF-as-a-Service” (VNFaaS), which is based on the
CORD platform. More specifically, this section highlights the composition of both the platform and
services as RFB graphs and their subsequent deployment in their corresponding execution environment
(IaaS for CORD, PaaS for the services).

4.1. The Telco PaaS Use Case: Virtual Network Function as A Service (VNFaaS)

In the Telco PaaS use case, the NGPaaS operator (e.g., a Tier 1 Telco operator) hosts VNFs on
behalf of a Service Provider (the VSP). These VNFs could be virtual Routers and Firewalls, which the
Service Provider can configure accordingly depending on the desired service (business VPNs, Internet
access, etc.). In a “pre-NGPaaS” NFV architecture, the on-boarding of VNFs, to be made available in
the service catalogue, is done by the Telco operator (based on the preferences of the Service Provider).

Using the NGPaaS workflow, the Telco operator instead utilises a PaaS-oriented approach instead.
While the Telco provider still deploys the platforms, the Service Providers can onboard and administer
specific VNFs on their own (e.g., vRouter, vFirewall) and also enable Value-added Service (VAS)
capabilities. These VASs could be Telco-grade enhancements to the basic service (e.g., monitoring,
healing, policy-based network control, etc.). This way, a pre-existing “VNF App Store” can be
supplemented by allowing the Service Provider to onboard new VNFs via direct interactions with
preferred vendors, resulting in a more diverse set of capabilities than could be obtainable with the

Future Internet 2019, 11, 119 9 of 20

pre-NGPaaS model. There many benefits associated with the adoption of the VNFaaS use case for both
the VSP and its end customers. Most of these benefits are due to the nature of the VNFaaS use case, for
example, the Service Provider does not need to ship hardware to the premises of its end customer,
allowing for a more flexible and scalable business and service model.

Figure 6 illustrates the VNFaaS use case in more detail. There, a VSP has deployed two service
graphs through the RDCL 3D tool, each comprising of two VNFs. Deploying these two graphs has
resulted in the deployment of two service chains onto the CORD platform. Both service chains comprise
an interconnected virtual router and firewall and are associated with a unique end user. The figure also
illustrates the possibility to onboard and deploy VNFs of different vendors, thus providing flexibility
to the end user.

Future Internet 2019, 11, x FOR PEER REVIEW 9 of 21

Using the NGPaaS workflow, the Telco operator instead utilises a PaaS-oriented approach
instead. While the Telco provider still deploys the platforms, the Service Providers can onboard and
administer specific VNFs on their own (e.g., vRouter, vFirewall) and also enable Value-added Service
(VAS) capabilities. These VASs could be Telco-grade enhancements to the basic service (e.g.,
monitoring, healing, policy-based network control, etc.). This way, a pre-existing “VNF App Store”
can be supplemented by allowing the Service Provider to onboard new VNFs via direct interactions
with preferred vendors, resulting in a more diverse set of capabilities than could be obtainable with
the pre-NGPaaS model. There many benefits associated with the adoption of the VNFaaS use case
for both the VSP and its end customers. Most of these benefits are due to the nature of the VNFaaS
use case, for example, the Service Provider does not need to ship hardware to the premises of its end
customer, allowing for a more flexible and scalable business and service model.

Figure 6 illustrates the VNFaaS use case in more detail. There, a VSP has deployed two service
graphs through the RDCL 3D tool, each comprising of two VNFs. Deploying these two graphs has
resulted in the deployment of two service chains onto the CORD platform. Both service chains
comprise an interconnected virtual router and firewall and are associated with a unique end user.
The figure also illustrates the possibility to onboard and deploy VNFs of different vendors, thus
providing flexibility to the end user.

Figure 6. The Virtual Network Function as a Service use-case.

4.2. The VNFaaS Proof of Concept

To validate the NGPaaS workflow through the VNFaaS use case, a Proof of Concept (PoC)
scenario was designed and implemented. To be considered successful, this PoC must be able to
showcase both the provisioning of a Telco-grade platform and the provisioning of services related to
the VNFaaS use case.

Figure 7 illustrates an overview of the desired final status of the PoC. There, a Service Provider
has been granted access to the RDCL 3D tool by the NGPaaS operator. Using this tool, the Service
Provider is then able to compose and deploy service graphs of virtual routers and firewalls, which
will provide the desired service to the provider’s end customers. Through the NGPaaS workflow,
these service graphs are then translated to platform-specific APIs and passed down to the platform
orchestrator. Since a service graph request will usually comprise both compute and network
resources, the platform orchestrator will translate the request to API calls targeting both the
underlying VIM and SDNC components of the platform. The VIM will then provision the required
virtual computing resources and the SDNC will provide the required connectivity. It should also be

Figure 6. The Virtual Network Function as a Service use-case.

4.2. The VNFaaS Proof of Concept

To validate the NGPaaS workflow through the VNFaaS use case, a Proof of Concept (PoC) scenario
was designed and implemented. To be considered successful, this PoC must be able to showcase both
the provisioning of a Telco-grade platform and the provisioning of services related to the VNFaaS
use case.

Figure 7 illustrates an overview of the desired final status of the PoC. There, a Service Provider
has been granted access to the RDCL 3D tool by the NGPaaS operator. Using this tool, the Service
Provider is then able to compose and deploy service graphs of virtual routers and firewalls, which
will provide the desired service to the provider’s end customers. Through the NGPaaS workflow,
these service graphs are then translated to platform-specific APIs and passed down to the platform
orchestrator. Since a service graph request will usually comprise both compute and network resources,
the platform orchestrator will translate the request to API calls targeting both the underlying VIM
and SDNC components of the platform. The VIM will then provision the required virtual computing
resources and the SDNC will provide the required connectivity. It should also be possible for the
service provider to monitor its deployment for specific KPIs. At the same time, an alerting function
should continuously check the collected data and trigger automated healing workflows, when the
state of a deployed service is undesirable.

The next couple of sections will provide more details on how this PoC was developed. More
specifically, the technologies that comprise it will be detailed (e.g., Platform of choice), together with
the steps required to integrate them into the NGPaaS workflow.

Future Internet 2019, 11, 119 10 of 20

Future Internet 2019, 11, x FOR PEER REVIEW 10 of 21

possible for the service provider to monitor its deployment for specific KPIs. At the same time, an
alerting function should continuously check the collected data and trigger automated healing
workflows, when the state of a deployed service is undesirable.

Figure 7. VNFaaS Proof of Concept.

The next couple of sections will provide more details on how this PoC was developed. More
specifically, the technologies that comprise it will be detailed (e.g., Platform of choice), together with
the steps required to integrate them into the NGPaaS workflow.

4.3. The Telco PaaS Platform: Central Office Re-Architected as A Datacentre (CORD)

The selected platform for the Telco PaaS use case is CORD and the current prototype uses
version 6.0 [6]. The primary reason for selecting CORD was that it was designed to provide edge
network access, by acting as a virtualised Central Office. This implies that the core functionalities of
the CORD platform could be effectively reused to fit the needs of the VNFaaS use case. For example,
other platforms (e.g., OSM), have a more generic implementation which would make their
integration into the VNFaaS use case a more complex task.

CORD’s architecture comprises three main functional elements, implemented as open source
projects: (1) The XOS orchestrator, responsible for the joined control of ONOS and OpenStack. This
joined control is facilitated by well-defined service models, which describe the supported services
and service synchronisers. The synchroniser’s role is to align the operational state of CORD with the
desired state, as defined by the administrator, in a programmatic way; (2) The ONOS SDN Controller
(SDNC) is responsible for managing the physical and virtual networks; (3) The OpenStack platform
is responsible for managing the lifecycle and resources of the deployed VNFs. In the used version of
CORD, all the individual CORD components are deployed as sets of Docker containers, managed by
Kubernetes and Helm. Figure 8 illustrates a high-level overview of the CORD architecture.

Platform
Orchestrator

Service Agent
Ansible

Roles

RDCL 3D
Service
RFBs

Service
Graph

Composes Service
Graph

VIM SDNC

Platform APIs

SDNC
APIs

VIM
APIs

Hypervisor
APIs

Network
APIs

Firewall

Network
Monitoring

Alerting
Healing

Observes

Router
Monitor

 data

Reacts

OSS
BSS

PaaS

IaaS

Figure 7. VNFaaS Proof of Concept.

4.3. The Telco PaaS Platform: Central Office Re-Architected as A Datacentre (CORD)

The selected platform for the Telco PaaS use case is CORD and the current prototype uses version
6.0 [6]. The primary reason for selecting CORD was that it was designed to provide edge network
access, by acting as a virtualised Central Office. This implies that the core functionalities of the CORD
platform could be effectively reused to fit the needs of the VNFaaS use case. For example, other
platforms (e.g., OSM), have a more generic implementation which would make their integration into
the VNFaaS use case a more complex task.

CORD’s architecture comprises three main functional elements, implemented as open source
projects: (1) The XOS orchestrator, responsible for the joined control of ONOS and OpenStack. This
joined control is facilitated by well-defined service models, which describe the supported services
and service synchronisers. The synchroniser’s role is to align the operational state of CORD with the
desired state, as defined by the administrator, in a programmatic way; (2) The ONOS SDN Controller
(SDNC) is responsible for managing the physical and virtual networks; (3) The OpenStack platform is
responsible for managing the lifecycle and resources of the deployed VNFs. In the used version of
CORD, all the individual CORD components are deployed as sets of Docker containers, managed by
Kubernetes and Helm. Figure 8 illustrates a high-level overview of the CORD architecture.Future Internet 2019, 11, x FOR PEER REVIEW 11 of 21

Figure 8. High-level overview of the CORD architecture.

4.4. Supported Virtual Network Functions (VNFs) and Value Added Services (VAS)

4.4.1. Core Services: Virtual Firewalls and Virtual Routers

This section gives a brief overview of the VNFs and VASs supported by the Telco PaaS
prototype. As part of the experimental set-up, we use a commercially available router and firewall
VNFs. The Router VNF is an enterprise-class router designed to run on x86 standard servers but
comprising all the same features as equivalent hardware routers [31]. Similarly, the Firewall VNF is
a virtual appliance aimed at enterprise-level security deployments [32]. The implementation of both
VNFs is based on virtual machines and in the presented prototype their running instances are hosted
by OpenStack.

4.4.2. Value Added Services: Monitoring, Alerting, and Healing

In the Telco PaaS, monitoring utilises the ElasticSearch-Logstash-Kibana (ELK) stack [33]. This
stack consists of three main components: (1) Elastic Search: A distributed search and analytics engine
based on REST APIs; (2) Logstash: A server-side data processing tool that can ingest data from
various probes and manipulate it before sending it to ElasticSearch; (3) Kibana: A visualisation tool
provided with ElasticSearch. As noted, in the Telco PaaS prototype the selected VNFs are based on
proprietary VMs, thus deploying monitoring probes internal to the VNFs is not feasible. To overcome
this limitation the probes in the Telco PaaS are deployed in a side-car fashion, externally to the target
service; but can poll the target service for the required using the available interfaces. For this
prototype, we rely on the SNMP protocol and REST interface to monitor the router VNF and ONOS
SDNC respectively. More specifically, SNMP is used to poll the virtual router for its CPU utilisation,
while REST is used to poll ONOS for network traffic information regarding the virtual interfaces of
the deployed VNFs.

As an enhancement to baseline monitoring, this prototype also provides Alerting and Healing
capabilities. The ELK stack can map trends in the CPU utilisation of monitored VNFs to predefined
anomalous behaviours. Once such an anomaly is detected, a Healing function is called, which
redeploys the anomalous VNF with more resources (e.g., more virtual CPUs or RAM). All healing
actions are performed, by the Healing rule via the RDCL 3D tool, thus ensuring alignment between
the state of the deployment and the view of the tool. Figure 9 shows the operation of the monitoring
VAS in detail. As mentioned before, monitoring, alerting, and healing are complementary services
provided selectively to VSPs. As a result, upon deployment of a VNF, the VSP can set a flag in the
RDCL 3D metadata to trigger or not trigger the monitoring capabilities for this VNF.

XOS

OpenStack ONOS

Kubernetes Cluster

Compute Pool Network

Figure 8. High-level overview of the CORD architecture.

Future Internet 2019, 11, 119 11 of 20

4.4. Supported Virtual Network Functions (VNFs) and Value Added Services (VAS)

4.4.1. Core Services: Virtual Firewalls and Virtual Routers

This section gives a brief overview of the VNFs and VASs supported by the Telco PaaS prototype.
As part of the experimental set-up, we use a commercially available router and firewall VNFs. The
Router VNF is an enterprise-class router designed to run on x86 standard servers but comprising all the
same features as equivalent hardware routers [31]. Similarly, the Firewall VNF is a virtual appliance
aimed at enterprise-level security deployments [32]. The implementation of both VNFs is based on
virtual machines and in the presented prototype their running instances are hosted by OpenStack.

4.4.2. Value Added Services: Monitoring, Alerting, and Healing

In the Telco PaaS, monitoring utilises the ElasticSearch-Logstash-Kibana (ELK) stack [33]. This
stack consists of three main components: (1) Elastic Search: A distributed search and analytics engine
based on REST APIs; (2) Logstash: A server-side data processing tool that can ingest data from various
probes and manipulate it before sending it to ElasticSearch; (3) Kibana: A visualisation tool provided
with ElasticSearch. As noted, in the Telco PaaS prototype the selected VNFs are based on proprietary
VMs, thus deploying monitoring probes internal to the VNFs is not feasible. To overcome this limitation
the probes in the Telco PaaS are deployed in a side-car fashion, externally to the target service; but can
poll the target service for the required using the available interfaces. For this prototype, we rely on the
SNMP protocol and REST interface to monitor the router VNF and ONOS SDNC respectively. More
specifically, SNMP is used to poll the virtual router for its CPU utilisation, while REST is used to poll
ONOS for network traffic information regarding the virtual interfaces of the deployed VNFs.

As an enhancement to baseline monitoring, this prototype also provides Alerting and Healing
capabilities. The ELK stack can map trends in the CPU utilisation of monitored VNFs to predefined
anomalous behaviours. Once such an anomaly is detected, a Healing function is called, which redeploys
the anomalous VNF with more resources (e.g., more virtual CPUs or RAM). All healing actions are
performed, by the Healing rule via the RDCL 3D tool, thus ensuring alignment between the state of the
deployment and the view of the tool. Figure 9 shows the operation of the monitoring VAS in detail. As
mentioned before, monitoring, alerting, and healing are complementary services provided selectively
to VSPs. As a result, upon deployment of a VNF, the VSP can set a flag in the RDCL 3D metadata to
trigger or not trigger the monitoring capabilities for this VNF.Future Internet 2019, 11, x FOR PEER REVIEW 12 of 21

Figure 9. Operation of the Monitoring Value Added Service.

Figure 10 illustrates the capability for live network traffic information for each interface of the
provisioned VNFs. As mentioned, this information is collected by the monitoring probe through the
ONOS REST API. On the other hand, Figure 11 shows how live information is reported about the
CPU utilisation of all monitored VNFs. In addition, this segment is configured with three predefined
thresholds (50%, 80%, and 90%)—when any of these thresholds is reached a corresponding alert is
shown to the administrator. In the provided example, the critical threshold of 90% has been exceeded
(94%); exceeding this threshold triggers an automated healing workflow that will re-provision the
VNF with more virtual resources.

Figure 10. Network Monitoring Dashboard of Telco PaaS.

Figure 9. Operation of the Monitoring Value Added Service.

Figure 10 illustrates the capability for live network traffic information for each interface of the
provisioned VNFs. As mentioned, this information is collected by the monitoring probe through the
ONOS REST API. On the other hand, Figure 11 shows how live information is reported about the
CPU utilisation of all monitored VNFs. In addition, this segment is configured with three predefined

Future Internet 2019, 11, 119 12 of 20

thresholds (50%, 80%, and 90%)—when any of these thresholds is reached a corresponding alert is
shown to the administrator. In the provided example, the critical threshold of 90% has been exceeded
(94%); exceeding this threshold triggers an automated healing workflow that will re-provision the VNF
with more virtual resources.

Future Internet 2019, 11, x FOR PEER REVIEW 12 of 21

Figure 9. Operation of the Monitoring Value Added Service.

Figure 10 illustrates the capability for live network traffic information for each interface of the
provisioned VNFs. As mentioned, this information is collected by the monitoring probe through the
ONOS REST API. On the other hand, Figure 11 shows how live information is reported about the
CPU utilisation of all monitored VNFs. In addition, this segment is configured with three predefined
thresholds (50%, 80%, and 90%)—when any of these thresholds is reached a corresponding alert is
shown to the administrator. In the provided example, the critical threshold of 90% has been exceeded
(94%); exceeding this threshold triggers an automated healing workflow that will re-provision the
VNF with more virtual resources.

Figure 10. Network Monitoring Dashboard of Telco PaaS. Figure 10. Network Monitoring Dashboard of Telco PaaS.Future Internet 2019, 11, x FOR PEER REVIEW 13 of 21

Figure 11. CPU Monitoring/Healing Dashboard of Telco PaaS.

4.4.3. Value Added Services: Policy-Based Network Management

In addition to monitoring/alerting/healing, the Telco PaaS supports one more VAS, namely
policy-based network management. This is achieved with the integration of an SDN-based network
policy framework [34] to the ONOS SDNC. By acting as a layer of abstraction between the network
infrastructure and the VSP, the network policy framework allows for simplified control over the
network infrastructure. Also, the network policy framework follows an entirely modular
architecture, consisting of a Policy Manager and multiple separate Policy Type applications, thus
allowing the VSP to add support for new policy types on demand, without affecting the runtime
operation of the policy framework. Figure 12 illustrates a (simplified) example operation of the policy
framework. There an administrator has deployed the policy manager with two policy type
implementations (Firewall and NAT). Subsequently, the administrator issues a request to create a
Firewall policy instance that will drop traffic between hosts H1 and H2. Upon receiving the request,
the policy manager will validate it for correctness, and if successful, it will then request the Firewall
Policy Type implementation to enforce the policy in the network. This will result in the Firewall
Policy Type to install flow rules in the switches adjacent to H1 and H2, which will block traffic
between the two endpoints.

Figure 12. Operation of the Network Policy Framework.

ONOS SDNC

Policy
Manager

Firewall
Policy

NAT
Policy

REST

Firewall Policy
{H1-H2-Block}

1

2
Validate Policy

3 Request Policy
Enforcement

4 Install Flow Rules

H2H1

Figure 11. CPU Monitoring/Healing Dashboard of Telco PaaS.

4.4.3. Value Added Services: Policy-Based Network Management

In addition to monitoring/alerting/healing, the Telco PaaS supports one more VAS, namely
policy-based network management. This is achieved with the integration of an SDN-based network
policy framework [34] to the ONOS SDNC. By acting as a layer of abstraction between the network
infrastructure and the VSP, the network policy framework allows for simplified control over the
network infrastructure. Also, the network policy framework follows an entirely modular architecture,
consisting of a Policy Manager and multiple separate Policy Type applications, thus allowing the VSP
to add support for new policy types on demand, without affecting the runtime operation of the policy
framework. Figure 12 illustrates a (simplified) example operation of the policy framework. There an
administrator has deployed the policy manager with two policy type implementations (Firewall and
NAT). Subsequently, the administrator issues a request to create a Firewall policy instance that will

Future Internet 2019, 11, 119 13 of 20

drop traffic between hosts H1 and H2. Upon receiving the request, the policy manager will validate
it for correctness, and if successful, it will then request the Firewall Policy Type implementation to
enforce the policy in the network. This will result in the Firewall Policy Type to install flow rules in the
switches adjacent to H1 and H2, which will block traffic between the two endpoints.

Future Internet 2019, 11, x FOR PEER REVIEW 13 of 21

Figure 11. CPU Monitoring/Healing Dashboard of Telco PaaS.

4.4.3. Value Added Services: Policy-Based Network Management

In addition to monitoring/alerting/healing, the Telco PaaS supports one more VAS, namely

policy-based network management. This is achieved with the integration of an SDN-based network

policy framework [34] to the ONOS SDNC. By acting as a layer of abstraction between the network

infrastructure and the VSP, the network policy framework allows for simplified control over the

network infrastructure. Also, the network policy framework follows an entirely modular

architecture, consisting of a Policy Manager and multiple separate Policy Type applications, thus

allowing the VSP to add support for new policy types on demand, without affecting the runtime

operation of the policy framework. Figure 12 illustrates a (simplified) example operation of the policy

framework. There an administrator has deployed the policy manager with two policy type

implementations (Firewall and NAT). Subsequently, the administrator issues a request to create a

Firewall policy instance that will drop traffic between hosts H1 and H2. Upon receiving the request,

the policy manager will validate it for correctness, and if successful, it will then request the Firewall

Policy Type implementation to enforce the policy in the network. This will result in the Firewall

Policy Type to install flow rules in the switches adjacent to H1 and H2, which will block traffic

between the two endpoints.

Figure 12. Operation of the Network Policy Framework.

ONOS SDNC

Policy
Manager

Firewall
Policy

NAT
Policy

REST

Firewall Policy
{H1-H2-Block}

1

2
Validate Policy

3
Request Policy
Enforcement

4 Install Flow Rules

H2H1

Figure 12. Operation of the Network Policy Framework.

5. Virtual Network Function as A Service: Component RFBisation

The scope of this section is to highlight how the different platform and service components that
comprise the Telco PaaS use case, have been mapped to individual RFBs and RFB graphs.

5.1. RFBisation of the CORD Platform

In previous versions of the CORD platform (<6.0), there was a very tight integration between the
different components of CORD, since the majority of them were executed either as native services or as
standalone containers and virtual machines. This translated to a very rigid deployment process, with
little to no flexibility. However, in the latest version (6.0), the deployment of CORD is now managed
via higher-level tools like Kubernetes [35] and Helm [36]. Through these tools, deploying, managing
and versioning the different CORD components is easier, more flexible and robust than before. This
new deployment approach greatly facilitated the process of RFBising the CORD platform, mainly due
to the central point of management offered by the Kubernetes and Helm tools.

Deploying CORD via the RDCL 3D tool requires the definition of several RFBs, each of which
implements a specific functionality during the CORD deployment process. However, despite their
differences, all RFBs can be placed in one of three categories Pre-deployment configuration RFBs,
Deployment RFBs and Post-deployment configuration RFBs. Table 3 provides details these categories.

To reduce the complexity of the graph, only the Deployment RFBs are graphically illustrated by
the RDCL 3D tool, while the rest are passed to the agent as metadata. Figure 13 illustrates the RFB
graph that composes the CORD 6.0 platform in the RDCL 3D web interface.

As can be observed in Figure 13, the RFBs have been grouped into five major categories as children
of the root RFB, depending on the role of the component they are responsible for deploying. These five
categories are (1) Message Brokers; (2) Storage Mechanisms; (3) Virtual Infrastructure Managers (VIMs);
(4) Orchestration and (5) Service Models. Additionally, the VIM group of RFBs is also comprised of
sub-groups, namely (1) Kubernetes (2) OpenStack and (3) ONOS. While this grouping does not serve
any functional role, it can significantly simplify the composition of RFB graphs. All the remaining RFBs
are leaf RFBs, meaning that they are directly mapped to the execution/deployment of a micro-service.
It can also be observed that all leaf RFBs are associated with a priority value, ensuring that their

Future Internet 2019, 11, 119 14 of 20

deployment in the execution environment is done in a preferred order. Table 4 provides a detailed list
of all leaf RFBs related to the deployment of the CORD platform.

Table 3. RFB Categories.

RFB Category Details

Pre-deployment Configuration RFBs

Responsible for configuring the target infrastructure node for the
subsequent deployment of the CORD platform. An example is
the cloning of remote source code repositories so that CORD can
be later built from.

Deployment RFBs

These are the core RFBs, that when executed will provide with a
functional CORD deployment on the infrastructure node. The
majority of them are tied to the deployment of groups of
containers, through the Helm tool. An example is the
deployment of the XOS orchestrator or the ONOS SDNC.

Post-deployment configuration RFBs

These configure a CORD deployment for a specific use case or
resolve possible issues that might have risen during the
deployment of the CORD platform. An example is the
registration of the CORD compute node to the ONOS SDNC.

Table 4. List of Deployment RFBs.

RFB Name RFB Role

k8s Deploys Kubernetes, which manages all Docker containers comprising CORD.

Ingress Deploys Ingress, a component related to Kubernetes which facilitates external
access to services running in the cluster.

rabbitMq Deploys RabbitMQ, the message broker used in OpenStack

Ceph A set of RFBs that deploy ceph, the distributed storage component
of OpenStack

marriaDB Deploys marriaDB, the database for OpenStack

memCached Deploys memcached, the distributed memory caching system for OpenStack

Heat Deploys Heat, the OpenStack orchestrator.

Glance Deploys Glance, the OpenStack image registry.

Keystone Deploys Keystone, the OpenStack identity service.

openvSwitch Deploys an OpenvSwitch, instance that connects all OpenStack VMs.

Nova Deploys Nova, the computing service of OpenStack.

Neutron Deploys Neutron, the networking service of OpenStack. In CORD Neutron is
responsible for creating the networks connecting the different VMs.

openstackChart Deploys the OpenStack service synchronizer of CORD.

addressManagerChart Deploys a set of components, which enable public connectivity for VNFs.

onosChart Deploys the ONOS synchronizer in CORD.

xosChart Deploys the XOS synchronizer in CORD.

ngpaasserviceChart Deploys the ngpaasService synchronizer. It also onboards the service model.

localVolumeChart Deploys the persistent storage component of CORD.

clientSetup Deploys the OpenStack client (Command Line Interface).

Libvirt Deploys libvirt, the virtualisation service to be used by OpenStack

Docker Deploys Docker on the target node.

dockerImageDownload Downloads all CORD related Docker Images

Future Internet 2019, 11, 119 15 of 20

Future Internet 2019, 11, x FOR PEER REVIEW 14 of 21

5. Virtual Network Function as A Service: Component RFBisation

The scope of this section is to highlight how the different platform and service components that
comprise the Telco PaaS use case, have been mapped to individual RFBs and RFB graphs.

5.1. RFBisation of the CORD Platform

In previous versions of the CORD platform (<6.0), there was a very tight integration between the
different components of CORD, since the majority of them were executed either as native services or
as standalone containers and virtual machines. This translated to a very rigid deployment process,
with little to no flexibility. However, in the latest version (6.0), the deployment of CORD is now
managed via higher-level tools like Kubernetes [35] and Helm [36]. Through these tools, deploying,
managing and versioning the different CORD components is easier, more flexible and robust than
before. This new deployment approach greatly facilitated the process of RFBising the CORD
platform, mainly due to the central point of management offered by the Kubernetes and Helm tools.

Deploying CORD via the RDCL 3D tool requires the definition of several RFBs, each of which
implements a specific functionality during the CORD deployment process. However, despite their
differences, all RFBs can be placed in one of three categories Pre-deployment configuration RFBs,
Deployment RFBs and Post-deployment configuration RFBs. Table 3 provides details these
categories.

Table 3. RFB Categories.

RFB Category Details

Pre-deployment
Configuration RFBs

Responsible for configuring the target infrastructure node for the
subsequent deployment of the CORD platform. An example is the cloning
of remote source code repositories so that CORD can be later built from.

Deployment RFBs

These are the core RFBs, that when executed will provide with a functional
CORD deployment on the infrastructure node. The majority of them are tied
to the deployment of groups of containers, through the Helm tool. An
example is the deployment of the XOS orchestrator or the ONOS SDNC.

Post-deployment
configuration RFBs

These configure a CORD deployment for a specific use case or resolve
possible issues that might have risen during the deployment of the CORD
platform. An example is the registration of the CORD compute node to the
ONOS SDNC.

To reduce the complexity of the graph, only the Deployment RFBs are graphically illustrated by
the RDCL 3D tool, while the rest are passed to the agent as metadata. Figure 13 illustrates the RFB
graph that composes the CORD 6.0 platform in the RDCL 3D web interface.

Figure 13. RFBisation of the CORD platform via RDCL 3D. Figure 13. RFBisation of the CORD platform via RDCL 3D.

5.2. RFBisation of Services and Value-Added Services

Following a similar approach to the RFBisation of the CORD platform, all services and VAS
supported by the Telco PaaS have also been partially or fully RFBized and integrated into the NGPaaS
workflow. With regards to the deployment of virtual Firewalls, Routers and monitoring probes two
distinct RFB types are available. (1) Instance RFB, which deploys VM based services in the OpenStack
environment of CORD; (2) Network RFB, which deploys networks in the Neutron environment of
CORD. Using these two RFB types, complex deployment scenarios can be expressed by the VSP.
Figure 14 illustrates an RFB graph comprising of three RFB groups: (I) Router (II) Firewall and (III)
Probe and 5 RFB leaves (A) Router Instance (B) Firewall Instance (C) Probe Instance (D) Data Network
and (E) Monitoring Network. Following the associations between the different RFB groups and leaves,
this RFB graph will provide a service chain of a Firewall and Router VNF (through a commonly shared
data network), in addition this graph also expresses that out of the two VNFs the Router is to be
monitored by a probe, via the monitoring network. The side-car probes of the monitoring/healing
infrastructure have been RFBised, while not available at this point, it is also possible to RFBise the
remaining components (e.g., ELK stack, Healer).

Future Internet 2019, 11, x FOR PEER REVIEW 16 of 21

commonly shared data network), in addition this graph also expresses that out of the two VNFs the
Router is to be monitored by a probe, via the monitoring network. The side-car probes of the
monitoring/healing infrastructure have been RFBised, while not available at this point, it is also
possible to RFBise the remaining components (e.g., ELK stack, Healer).

Additionally, the service provider can deploy service instances, networks and connectivity
requests agnostically to the underlying technologies. It is the role of the NGPaaS OSS/BSS to translate
these requests to the technology-specific APIs. More specifically for the case of the deployment of
Figure 14, each of the leaf RFBs will be translated to a TOSCA recipe and then published to the
TOSCA endpoint of the XOS orchestrator. Then XOS will decide how to serve this request best and
translate this set of TOSCA recipes into API calls to OpenStack and ONOS. The API calls to
OpenStack Nova will create the VM instances that will hold the router and firewall VNFs, while API
calls to OpenStack Neutron will create the monitoring and data networks. Finally, through the
dedicated REST API, XOS will instruct ONOS to populate the network with the necessary OpenFlow
rules to facilitate connectivity between the VNFs.

In the Telco PaaS, the VM images used to instantiate the VNFs have all been preconfigured with
an SSH channel, which provides access to their CLI interface. This way any entity with access to the
deployed VNFs (e.g., VSP, end user) could interface with them and configure them on demand,
without the need to re-provision them. However, if more virtual resources are required (e.g., more
vCPUs), then a new VNF deployment will be necessary using the NGPaaS workflow.

Figure 14. RFBisation of service deployment.

The network policy framework has also been RFBised, thus allowing a VSP to either deploy
policy type implementations in the policy framework or request for the enforcement of policy
instances in the network. With regards to deploying the components of the policy framework only
one RFB needed to be defined, namely the ONOSapp RFB. Deploying RFB graphs comprising of
ONOSapp RFBs will result in the desired ONOS applications being installed and activated on the
ONOS SDNC of the CORD platform. In Figure 15 (left), an RFB graph that requests the deployment
of three ONOS applications is illustrated. These applications include the Policy Manager of the policy
framework and two policy type implementations (Firewall and NAT). Once this RFB graph has been
deployed, then the VSP can request the enforcement of Firewall and NAT policy instances. Following
the example of Figure 12, the right side of Figure 15 illustrates an RFB graph that requests the
enforcement of a Firewall policy instance. To facilitate the creation of RFB graphs of this type a
collection of RFB types is available, one for each supported policy type (e.g., Firewall Policy Instance).

Similarly to the deployment of the service graph of Figure 14, the deployment of network
policies through the RDCL 3D tool is also technology agnostic. The service provider need only
provide the necessary metadata with the deployment request (e.g., endpoints to block with the

Figure 14. RFBisation of service deployment.

Additionally, the service provider can deploy service instances, networks and connectivity requests
agnostically to the underlying technologies. It is the role of the NGPaaS OSS/BSS to translate these

Future Internet 2019, 11, 119 16 of 20

requests to the technology-specific APIs. More specifically for the case of the deployment of Figure 14,
each of the leaf RFBs will be translated to a TOSCA recipe and then published to the TOSCA endpoint
of the XOS orchestrator. Then XOS will decide how to serve this request best and translate this set of
TOSCA recipes into API calls to OpenStack and ONOS. The API calls to OpenStack Nova will create
the VM instances that will hold the router and firewall VNFs, while API calls to OpenStack Neutron
will create the monitoring and data networks. Finally, through the dedicated REST API, XOS will
instruct ONOS to populate the network with the necessary OpenFlow rules to facilitate connectivity
between the VNFs.

In the Telco PaaS, the VM images used to instantiate the VNFs have all been preconfigured with
an SSH channel, which provides access to their CLI interface. This way any entity with access to
the deployed VNFs (e.g., VSP, end user) could interface with them and configure them on demand,
without the need to re-provision them. However, if more virtual resources are required (e.g., more
vCPUs), then a new VNF deployment will be necessary using the NGPaaS workflow.

The network policy framework has also been RFBised, thus allowing a VSP to either deploy
policy type implementations in the policy framework or request for the enforcement of policy instances
in the network. With regards to deploying the components of the policy framework only one RFB
needed to be defined, namely the ONOSapp RFB. Deploying RFB graphs comprising of ONOSapp
RFBs will result in the desired ONOS applications being installed and activated on the ONOS SDNC of
the CORD platform. In Figure 15 (left), an RFB graph that requests the deployment of three ONOS
applications is illustrated. These applications include the Policy Manager of the policy framework and
two policy type implementations (Firewall and NAT). Once this RFB graph has been deployed, then
the VSP can request the enforcement of Firewall and NAT policy instances. Following the example
of Figure 12, the right side of Figure 15 illustrates an RFB graph that requests the enforcement of a
Firewall policy instance. To facilitate the creation of RFB graphs of this type a collection of RFB types is
available, one for each supported policy type (e.g., Firewall Policy Instance).

Future Internet 2019, 11, x FOR PEER REVIEW 17 of 21

firewall policy). It is the role of the RDCL 3D tool and agent to translate this request to a JSON string
and ship to the ONOS SDNC. After that, the policy framework within ONOS will validate the policy
request and install the required OpenFlow rules in the network.

Figure 15. RFBisation of the policy framework. (Left) Deploys the ONOS applications comprising
the policy framework (Right) Deploys an instance of a firewall policy.

6. 5G Public Safety Use-Case

As discussed, because the NGPaaS workflow is based on the concepts of build-ship-run and
build-to-order, it allows for the deployment of a wide-range of platforms, services and technologies.
So far, this paper focused on the Telco PaaS use case and the VNFaaS PoC. However, to demonstrate
the flexibility of the NGPaaS workflow another use case has also been considered, namely the 5G
Public Safety use case. This use case is briefly demonstrated herein, through the Mission Critical Push
To Talk (MCPTT) PoC.

The idea of the 5G Public Safety use case is that an end-to-end cloud native mobile network
supporting the MCPTT service is provisioned on-demand, through NGPaaS. Then it can be used by
firemen during an intervention at an emergency incident (e.g., a building fire). Depending on the
location of the Radio Access Network (RAN), this use case could involve different scenarios. In the
prototype presented herein, the fire truck is assumed to have its own, mini, data centre with the
capability to host VNFs. In this way the U-Plane as well as the Cloud RAN and MCPTT related VNFs
can be hosted in the fire truck, while the MCPTT control plane VNFs can be hosted in a centralised
data centre. In this PoC instead of CORD, two separate Kubernetes platforms are deployed: A Core
Kubernetes PaaS and an Edge Kubernetes PaaS, tailored respectively for the Core and RAN service
requirements. Both Kubernetes platforms are fully deployable and configurable through the NGPaaS
workflow, the same workflow used for the Telco PaaS use case. Finally, the VNFs comprising the
MCPTT PoC are deployed on their corresponding platforms, similarly to that of the VNFaaS PoC.
Figure 16 illustrates the architecture and functional elements of this PoC. More details are available
in the technical documentation of the NGPaaS [37].

Figure 15. RFBisation of the policy framework. (Left) Deploys the ONOS applications comprising the
policy framework (Right) Deploys an instance of a firewall policy.

Similarly to the deployment of the service graph of Figure 14, the deployment of network policies
through the RDCL 3D tool is also technology agnostic. The service provider need only provide the
necessary metadata with the deployment request (e.g., endpoints to block with the firewall policy). It
is the role of the RDCL 3D tool and agent to translate this request to a JSON string and ship to the
ONOS SDNC. After that, the policy framework within ONOS will validate the policy request and
install the required OpenFlow rules in the network.

Future Internet 2019, 11, 119 17 of 20

6. 5G Public Safety Use-Case

As discussed, because the NGPaaS workflow is based on the concepts of build-ship-run and
build-to-order, it allows for the deployment of a wide-range of platforms, services and technologies. So
far, this paper focused on the Telco PaaS use case and the VNFaaS PoC. However, to demonstrate the
flexibility of the NGPaaS workflow another use case has also been considered, namely the 5G Public
Safety use case. This use case is briefly demonstrated herein, through the Mission Critical Push To Talk
(MCPTT) PoC.

The idea of the 5G Public Safety use case is that an end-to-end cloud native mobile network
supporting the MCPTT service is provisioned on-demand, through NGPaaS. Then it can be used
by firemen during an intervention at an emergency incident (e.g., a building fire). Depending on
the location of the Radio Access Network (RAN), this use case could involve different scenarios. In
the prototype presented herein, the fire truck is assumed to have its own, mini, data centre with the
capability to host VNFs. In this way the U-Plane as well as the Cloud RAN and MCPTT related VNFs
can be hosted in the fire truck, while the MCPTT control plane VNFs can be hosted in a centralised
data centre. In this PoC instead of CORD, two separate Kubernetes platforms are deployed: A Core
Kubernetes PaaS and an Edge Kubernetes PaaS, tailored respectively for the Core and RAN service
requirements. Both Kubernetes platforms are fully deployable and configurable through the NGPaaS
workflow, the same workflow used for the Telco PaaS use case. Finally, the VNFs comprising the
MCPTT PoC are deployed on their corresponding platforms, similarly to that of the VNFaaS PoC.
Figure 16 illustrates the architecture and functional elements of this PoC. More details are available in
the technical documentation of the NGPaaS [37].Future Internet 2019, 11, x FOR PEER REVIEW 18 of 21

Figure 16. The 5G Public Safety Use Case.

7. Discussion and Conclusions

This paper highlights some of the inherent complexities and challenges associated with service
and platform deployment in cloud-based environments, as required for the successful adoption of
5G technologies. This complexity can be mainly attributed to the broad spectrum of available
infrastructure and platform technologies, each of which brings their own interfaces and
communication protocols. As a possible solution to this problem, this paper introduced a novel
workflow for the composition and deployment of platforms and services in multi-cloud
environments. The proposed workflow follows the NGPaaS concepts of build-to-order and Build-
Ship-Run, by utilising the RFB model and the RDCL 3D tool. Build-to-order implies the possibility to
define custom platforms and services agnostically to the underlying technologies, based on customer
demand. Build-Ship-Run implies the possibility to deploy this platform or service compositions on a
wide range of execution environments, through a centralised environment (RDCL 3D tool). By
following the NGPaaS workflow, platform and service deployment is greatly simplified and
facilitated, since most of the underlying technologies are abstracted through generic blueprints and
APIs. Finally, this paper successfully validated the proposed workflow by presenting a proof of
concept scenario (Telco PaaS) that includes the composition and deployment of both a platform and
a set of diverse services. The Telco PaaS use case is based on the CORD platform and represents a
VNFaaS scenario, in which a VSP offers VNF services to its end customers, together with many value-
added services (monitoring, healing, policy-based network management). Finally, to showcase the
flexibility of the NGPaaS workflow, a second use case is also presented herein.

Author Contributions: Conceptualisation, Paul Veitch and Bessem Sayadi; Investigation, Angelos Mimidis-
Kentis, Jose Soler, Paul Veitch, Adam Broadbent, Marco Mobilio, Steven Van Rossem and Bessem Sayadi;
Methodology, Angelos Mimidis-Kentis, Jose Soler, Paul Veitch and Adam Broadbent; Project administration,
Jose Soler and Bessem Sayadi; Resources, Jose Soler, Paul Veitch, Oliviero Riganelli, Wouter Tavernier and
Bessem Sayadi; Software, Angelos Mimidis-Kentis, Adam Broadbent, Marco Mobilio and Steven Van Rossem;
Supervision, Jose Soler, Paul Veitch, Oliviero Riganelli, Wouter Tavernier and Bessem Sayadi; Validation,
Angelos Mimidis-Kentis, Paul Veitch, Adam Broadbent, Marco Mobilio and Steven Van Rossem; Visualisation,
Angelos Mimidis-Kentis; Writing – original draft, Angelos Mimidis-Kentis, Paul Veitch and Steven Van Rossem;
Writing – review & editing, Angelos Mimidis-Kentis, Jose Soler, Paul Veitch, Adam Broadbent, Marco Mobilio,
Oliviero Riganelli, Steven Van Rossem, Wouter Tavernier and Bessem Sayadi.

Funding: This work has been performed in the framework of the NGPaaS project, funded by the European
Commission under the Horizon 2020 and 5G-PPP Phase2 programs, under Grant Agreement No. 761 557
(http://ngpaas.eu)

Figure 16. The 5G Public Safety Use Case.

7. Discussion and Conclusions

This paper highlights some of the inherent complexities and challenges associated with service
and platform deployment in cloud-based environments, as required for the successful adoption of 5G
technologies. This complexity can be mainly attributed to the broad spectrum of available infrastructure
and platform technologies, each of which brings their own interfaces and communication protocols.
As a possible solution to this problem, this paper introduced a novel workflow for the composition
and deployment of platforms and services in multi-cloud environments. The proposed workflow
follows the NGPaaS concepts of build-to-order and Build-Ship-Run, by utilising the RFB model and
the RDCL 3D tool. Build-to-order implies the possibility to define custom platforms and services
agnostically to the underlying technologies, based on customer demand. Build-Ship-Run implies the
possibility to deploy this platform or service compositions on a wide range of execution environments,

Future Internet 2019, 11, 119 18 of 20

through a centralised environment (RDCL 3D tool). By following the NGPaaS workflow, platform and
service deployment is greatly simplified and facilitated, since most of the underlying technologies are
abstracted through generic blueprints and APIs. Finally, this paper successfully validated the proposed
workflow by presenting a proof of concept scenario (Telco PaaS) that includes the composition and
deployment of both a platform and a set of diverse services. The Telco PaaS use case is based on
the CORD platform and represents a VNFaaS scenario, in which a VSP offers VNF services to its
end customers, together with many value-added services (monitoring, healing, policy-based network
management). Finally, to showcase the flexibility of the NGPaaS workflow, a second use case is also
presented herein.

Author Contributions: Conceptualisation, P.V. and B.S.; Investigation, A.M.-K., J.S., P.V., A.B., M.M., S.V.R. and
B.S.; Methodology, A.M.-K., J.S., P.V. and A.B.; Project administration, J.S. and B.S.; Resources, J.S., P.V., O.R.,
W.T. and B.S.; Software, A.M.-K., A.B., M.M. and S.V.R.; Supervision, J.S., P.V., O.R., W.T. and B.S.; Validation,
A.M.-K., P.V., A.B., M.M. and S.V.R.; Visualisation, A.M.-K.; Writing—original draft, A.M.-K., P.V. and S.V.R.;
Writing—review & editing, A.M.-K., J.S., P.V., A.B., M.M., O.R., S.V.R., W.T. and B.S.

Funding: This work has been performed in the framework of the NGPaaS project, funded by the European
Commission under the Horizon 2020 and 5G-PPP Phase2 programs, under Grant Agreement No. 761 557
(http://ngpaas.eu).

Conflicts of Interest: The founding sponsors had no role in the design of the study; in the collection, analyses, or
interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

References

1. Erfanian, J.; Smith, B. Network Functions Virtualisation—White Paper on NFV Priorities for 5G. Available
online: https://portal.etsi.org/NFV/NFV_White_Paper_5G.pdf (accessed on 19 May 2019).

2. Van Lingen, F.; Yannuzzi, M.; Jain, A.; Irons–Mclean, R.; Lluch, O.; Carrera, D.; Perez, J.L.; Gutierrez, A.;
Montero, D.; Marti, J.; et al. The Unavoidable Convergence of NFV, 5G, and Fog: A Model-Driven Approach
to Bridge Cloud and Edge. IEEE Commun. Mag. 2017, 55, 28–35. [CrossRef]

3. Van Rossem, S.; Sayadi, B.; Roullet, L.; Mimidis, A.; Paolino, M.; Veitch, P.; Berde, B.; Labrador, I.; Ramos, A.;
Tavernier, W.; et al. A Vision for the Next Generation Platform-as-a-Service. In Proceedings of the 2018 IEEE
5G World Forum (5GWF), Silicon Valley, CA, USA, 9–11 July 2018; pp. 14–19.

4. Mimidis Kentis, A.; Ollora Zaballa, E.; Soler, J.; Bessem, S.; Roullet, L.; Van Rossem, S.; Pinneterre, S.;
Paolino, M.; Raho, D.; Du, X.; et al. The Next Generation Platform as a Service Cloudifying Service
Deployments in Telco-Operators Infrastructure. In Proceedings of the 25th International Conference on
Telecommunications (ICT 2018), Saint Malo, France, 26–28 June 2018; pp. 399–404.

5. Salsano, S.; Lombardo, F.; Pisa, C.; Greto, P.; Blefari-Melazzi, N. RDCL 3D, a model agnostic web framework
for the design and composition of NFV services. In Proceedings of the 2017 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN), Berlin, Germany, 6–8 November 2017;
pp. 216–222.

6. Peterson, L. “CORD: Central Office Re-Architected as a Datacenter,” Open Networking Lab White Paper.
November 2015. Available online: http://opencord.org/wp-content/uploads/2016/03/CORD-Whitepaper.pdf
(accessed on 19 May 2019).

7. Quittek, J. “Network Functions Virtualisation (NFV); Management and Orchestration” Gs Nfv-Man 001
V1.1.1. 2014, Volume 1, pp. 1–184. Available online: https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_
099/001/01.01.01_60/gs_nfv-man001v010101p.pdf (accessed on 19 May 2019).

8. Open Source MANO. Available online: https://osm.etsi.org/ (accessed on 19 May 2019).
9. 5G Tango. Available online: https://www.5gtango.eu/ (accessed on 19 May 2019).
10. Nogales, B.; Vidal, I.; Lopez, D.R.; Rodriguez, J.; Garcia-Reinoso, J.; Azcorra, A. Design and Deployment of

an Open Management and Orchestration Platform for Multi-Site NFV Experimentation. IEEE Commun. Mag.
2019, 57, 20–27. [CrossRef]

11. Yilma, G.M.; Yousaf, F.Z.; Sciancalepore, V.; Costa-Perez, X. On the Challenges and KPIs for Benchmarking
Open-Source NFV MANO Systems: OSM vs. ONAP. Available online: https://arxiv.org/ftp/arxiv/papers/
1904/1904.10697.pdf (accessed on 19 May 2019).

http://ngpaas.eu
https://portal.etsi.org/NFV/NFV_White_Paper_5G.pdf
http://dx.doi.org/10.1109/MCOM.2017.1600907
http://opencord.org/wp-content/uploads/2016/03/CORD-Whitepaper.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://osm.etsi.org/
https://www.5gtango.eu/
http://dx.doi.org/10.1109/MCOM.2018.1800084
https://arxiv.org/ftp/arxiv/papers/1904/1904.10697.pdf
https://arxiv.org/ftp/arxiv/papers/1904/1904.10697.pdf

Future Internet 2019, 11, 119 19 of 20

12. Alvarez, F.; Breitgand, D.; Griffin, D.; Andriani, P.; Rizou, S.; Zioulis, N.; Moscatelli, F.; Serrano, J.;
Keltsch, M.; Trakadas, P.; et al. An Edge-to-Cloud Virtualized Multimedia Service Platform for 5G Networks.
IEEE Trans. Broadcast. 2019, 1–12. [CrossRef]

13. Tarafdar, N.; Lin, T.; Ly-Ma, D.; Rozhko, D.; Leon-Garcia, A.; Chow, P. Building the Infrastructure for
Deploying FPGAs in the Cloud. In Hardware Accelerators in Data Centers; Kachris, C., Falsafi, B., Soudris, D.,
Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 9–33.

14. Chiotakis, S.; Pinneterre, S.; Paolino, M. vFPGAmanager: A Hardware-Software Framework for Optimal
FPGA Resources Exploitation in Network Function Virtualization. In Proceedings of the 2019 European
Conference on Networks and Communications (EuCNC), Valencia, Spain, 18–21 June 2019. Available
online: http://www.virtualopensystems.com/en/research/scientific-contributions/vfpgamanager-eucnc2019/

(accessed on 19 May 2019).
15. Li, X.; Wang, X.; Liu, F.; Xu, H. DHL: Enabling Flexible Software Network Functions with FPGA Acceleration.

In Proceedings of the 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS),
Vienna, Austria, 2–6 July 2018; pp. 1–11.

16. Zhang, Q.; Liu, F.; Zeng, C. Adaptive Interference-Aware VNF Placement for Service-Customized 5G Network
Slices. 2019. Available online: https://pdfs.semanticscholar.org/5aea/e87f05bb4a5f08b9fae9a135863c4eaeea59.
pdf?_ga=2.233200922.503865865.1558267333-871421267.1558267333 (accessed on 19 May 2019).

17. Fei, X.; Liu, F.; Xu, H.; Jin, H. Adaptive VNF Scaling and Flow Routing with Proactive Demand Prediction.
In Proceedings of the IEEE INFOCOM 2018—IEEE Conference on Computer Communications, Honolulu,
HI, USA, 15–19 April 2018; pp. 486–494.

18. Miao, W.; Min, G.; Wu, Y.; Huang, H.; Zhao, Z.; Wang, H.; Luo, C. Stochastic Performance Analysis of
Network Function Virtualization in Future Internet. IEEE J. Select. Areas Commun. 2019, 37, 613–626.
[CrossRef]

19. Wang, T.; Xu, H.; Liu, F. Multi-Resource Load Balancing for Virtual Network Functions. In Proceedings of
the 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA,
5–8 June 2017; pp. 1322–1332.

20. Fei, X.; Liu, F.; Xu, H.; Jin, H. Towards Load-Balanced VNF Assignment in Geo-Distributed NFV Infrastructure.
In Proceedings of the 2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS),
Vilanova i la Geltrú, Spain, 14–16 June 2017; pp. 1–10.

21. Mfula, H.; Nurminen, J.K. Self-Healing Cloud Services in Private Multi-Clouds. In Proceedings of the
2018 International Conference on High Performance Computing & Simulation (HPCS), Orleans, France,
16–20 July 2018; pp. 165–170.

22. Zhijing, L.; Zhao, B.; Zheng, H.; Ge, Z.; Mahimkar, A.; Wang, J.; Emmons, J.; Ogden, L. Predictive Analysis in
Network Function Virtualization. In Proceedings of the Acm Sigcomm Internet Measurement Conference,
Imc. Association for Computing Machinery, Boston, MA, USA, 31 October–2 November 2018; pp. 161–167.

23. Acker, A.; Schmidt, F.; Gulenko, A.; Kao, O. Online Density Grid Pattern Analysis to Classify Anomalies in
Cloud and NFV Systems. In Proceedings of the 2018 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), Nicosia, Cyprus, 10–13 December 2018; pp. 290–295.

24. Röck, C.; Kolb, S. Nucleus—Unified Deployment and Management for Platform as a Service, University of
Bamberg. Tech. Rep. 2016, 49. Available online: https://www.uni-bamberg.de/pi/forschung/publikationen/16-
04-nucleus-unified-deployment-and-management-for-platform-as-a-service/ (accessed on 19 May 2019).

25. Van Rossem, S.; Tavernier, W.; Colle, D.; Pickavet, M.; Demeester, P. Introducing Development Features for
Virtualized Network Services. IEEE Commun. Mag. 2018, 56, 184–192. [CrossRef]

26. Veitch, P.; Broadbent, A.; Rossem, S.V.; Sayadi, B.; Natarianni, L.; Al Jammal, B.; Roullet, L.;
Mimidis, A.; Ollora, E.; Soler, J.; et al. Re-Factored Operational Support Systems for the Next Generation
Platform-as-a-Service (NGPaaS). In Proceedings of the 2018 IEEE 5G World Forum (5GWF), Silicon Valley,
CA, USA, 9–11 July 2018; pp. 1–5.

27. Berde, B.; Van Rossem, S.; Ramos, A.; Orru, M.; Shatnawi, A. Dev-for-Operations and Multi-Sided Platform
for Next Generation Platform as a Service. In Proceedings of the European Conference on Networks and
Communications (EuCNC), Ljubljana, Slovenia, 18–21 June 2018; pp. 1–5.

28. ETSI NFV ISG, Network Functions Virtualisation (NFV); Network Service Templates Specification. ETSI GS
NFV-IFA 014 V2.1.1 (2016–10). Available online: https://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/014/

02.01.01_60/gs_NFV-IFA014v020101p.pdf (accessed on 19 May 2019).

http://dx.doi.org/10.1109/TBC.2019.2901400
http://www.virtualopensystems.com/en/research/scientific-contributions/vfpgamanager-eucnc2019/
https://pdfs.semanticscholar.org/5aea/e87f05bb4a5f08b9fae9a135863c4eaeea59.pdf?_ga=2.233200922.503865865.1558267333-871421267.1558267333
https://pdfs.semanticscholar.org/5aea/e87f05bb4a5f08b9fae9a135863c4eaeea59.pdf?_ga=2.233200922.503865865.1558267333-871421267.1558267333
http://dx.doi.org/10.1109/JSAC.2019.2894304
https://www.uni-bamberg.de/pi/forschung/publikationen/16-04-nucleus-unified-deployment-and-management-for-platform-as-a-service/
https://www.uni-bamberg.de/pi/forschung/publikationen/16-04-nucleus-unified-deployment-and-management-for-platform-as-a-service/
http://dx.doi.org/10.1109/MCOM.2018.1600104
https://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/014/02.01.01_60/gs_NFV-IFA014v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/014/02.01.01_60/gs_NFV-IFA014v020101p.pdf

Future Internet 2019, 11, 119 20 of 20

29. Red Hat Ansible. Available online: https://www.ansible.com (accessed on 19 May 2019).
30. Bianchi, G.; Biton, E.; Blefari-Melazzi, N.; Borges, I.; Chiaraviglio, L.; de la Cruz Ramos, P.; Eardley, P.;

Fontes, F.; McGrath, M.J.; Natarianni, L.; et al. Superfluidity: A Flexible Functional Architecture for 5G
Networks: G. Bianchi et al. Trans. Emerging Tel. Tech. 2016, 27, 1178–1186. [CrossRef]

31. Cisco Cloud Service Router 100V Series. Available online: https://www.cisco.com/c/en/us/products/routers/
cloud-services-router-1000v-series/index.html (accessed on 19 May 2019).

32. Fortinet- FortiGate Virtual Appliance. Available online: https://www.fortinet.com/content/dam/fortinet/
assets/data-sheets/FortiGate_VM.pdf (accessed on 19 May 2019).

33. Elastic Stack. Available online: https://www.elastic.co/ (accessed on 19 May 2019).
34. Ferran, C.; Mimidis-Kentis, A.; Bonourn, N.; Soler, J. Policy Framework Prototype for ONOS. In Proceedings

of the 2019 IEEE Conference on Network Softwarization (NetSoft), Paris, France, 24–28 June 2019. Available
online: http://orbit.dtu.dk/files/170742254/PID5809349.pdf (accessed on 19 May 2019).

35. Kubernetes. Available online: https://kubernetes.io/ (accessed on 19 May 2019).
36. The Helm Package Manager for Kubernetes. Available online: https://helm.sh/ (accessed on 19 May 2019).
37. NGPaaS Deliverable 5.6: Final platform prototype for 5G PaaS. June 2019. Available online: http://ngpaas.

eu/projectoutcomes/#ngpaasdeliverables (accessed on 19 May 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.ansible.com
http://dx.doi.org/10.1002/ett.3082
https://www.cisco.com/c/en/us/products/routers/cloud-services-router-1000v-series/index.html
https://www.cisco.com/c/en/us/products/routers/cloud-services-router-1000v-series/index.html
https://www.fortinet.com/content/dam/fortinet/assets/data-sheets/FortiGate_VM.pdf
https://www.fortinet.com/content/dam/fortinet/assets/data-sheets/FortiGate_VM.pdf
https://www.elastic.co/
http://orbit.dtu.dk/files/170742254/PID5809349.pdf
https://kubernetes.io/
https://helm.sh/
http://ngpaas.eu/projectoutcomes/#ngpaasdeliverables
http://ngpaas.eu/projectoutcomes/#ngpaasdeliverables
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	The Next Generation PaaS: Architecture, Concepts, Processes, and Workflows
	The NGPaaS Architecture
	Reusable Functional Blocks
	RFB Description and Composition Languages Design, Deploy and Direct Tool
	Processes and Workflows

	Virtual Network Function as A Service, Overview
	The Telco PaaS Use Case: Virtual Network Function as A Service (VNFaaS)
	The VNFaaS Proof of Concept
	The Telco PaaS Platform: Central Office Re-Architected as A Datacentre (CORD)
	Supported Virtual Network Functions (VNFs) and Value Added Services (VAS)
	Core Services: Virtual Firewalls and Virtual Routers
	Value Added Services: Monitoring, Alerting, and Healing
	Value Added Services: Policy-Based Network Management

	Virtual Network Function as A Service: Component RFBisation
	RFBisation of the CORD Platform
	RFBisation of Services and Value-Added Services

	5G Public Safety Use-Case
	Discussion and Conclusions
	References

