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Abstract: Due to the growing interconnections of social networks, the problem of influence 
maximization has been extended from a single social network to multiple social networks. However, 
a critical challenge of influence maximization in multi-social networks is that some initial seed nodes 
may be unable to be active, which obviously leads to a low performance of influence spreading. 
Therefore, finding substitute nodes for mitigating the influence loss of uncooperative nodes is 
extremely helpful in influence maximization. In this paper, we propose three substitute mining 
algorithms for influence maximization in multi-social networks, namely for the Greedy-based 
substitute mining algorithm, pre-selected-based substitute mining algorithm, and similar-users-
based substitute mining algorithm. The simulation results demonstrate that the existence of the 
uncooperative seed nodes leads to the range reduction of information influence. Furthermore, the 
viability and performance of the proposed algorithms are presented, which show that three 
substitute node mining algorithms can find suitable substitute nodes for multi-social networks 
influence maximization, thus achieves better influence. 

Keywords: multi-social networks; influence maximization; substitute mining algorithm 
 

1. Introduction 

In recent years, various social networks [1] offering different services have appeared on the 
Internet, e.g., Facebook, Twitter, YouTube and Foursquare. For the purpose of enjoying different 
services, some users register accounts on different social networks simultaneously. Different from 
the traditional connections with other users, they have not only social links among users within one 
social network, but also crossing links connecting accounts between different social networks. Multi-
social networks are connected by these shared users [2]. Due to their obvious advantages in spreading 
information, as exemplified by the high speed, low cost and wide influence, social networks attract 
more and more attention of researchers, which results in many hot topics, involving social 
information spreading [3], public opinion [4], Internet marketing [5] and so on. The influence 
maximization in a social network has been extensively studied in the academic community [6–10], 
which is the problem of finding a small subset of nodes in a social network that could maximize the 
spread of influence [7]. However, the existing influence maximization research for the single social 
network cannot be directly adapted to the multi-social networks due to their heterogeneous 
architecture and complex connections among users. The users with multiple social network accounts 
can spread information from social network A to social network B. An example is given in Figure 1, 
a user who is registered on Twitter and Facebook has the ability to forward the information on Twitter 
to Facebook, which demonstrates the scope of information spreading no longer confined within the 
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single social network. This factor leads to the different characteristics of information spreading as 
before and needs to be considered in the influence of maximization research. 

 
Figure 1. User with multiple accounts forwards information across social networks. 

To maximize the influence spreading in multi-social networks, the researchers in References [11–
16] focus on finding k (𝑘 ∈ 𝑁∗ ) users to constitute the initial active seed node set S to spread 
information, the expected number of active nodes R(S) at the end of a diffusion process in multi-social 
networks can be maximized. Due to budgetary constraints, the size of S is usually fixed in existing 
research, i.e., k is fixed. However, when we get S through complex theoretical calculations, some 
initial seed nodes in the set S may be difficult to activate for some reasons. In the end, a broken S 
cannot get the maximum influence, resulting in the low influence spreading performance. For 
example, in social network advertising marketing, one user has high influence in social networks, but 
for some reasons, he is unwilling to post advertisements, which may lead to advertising marketing 
failure. Therefore, when some users in S cannot be activated, it is very necessary to find substitutes 
for these nodes to reduce the loss of influence. 

Some researchers have already done some work on this subject. Li et al. [17] proposed the idea 
of finding “successors”. When a seed node cannot be activated, the neighbor node is selected as a 
substitute. Ma et al. [18] named this problem as the Substitutes Discovery in Influence Maximization 
and proposed three solving algorithms based on the Greedy algorithms. However, these two works 
aim at solving the substitute mining problem in a single social network, which cannot adapt to the 
information spread in multi-social networks directly. In this paper, we discuss the information spread 
across social networks and focus on solving the problem of multi-social networks influence 
maximization. Specifically, the contributions of this paper are summarized as follows: 

(1) We analyze the characteristics of information spreading in multi-social networks and define the 
special use with multiple social network accounts as Bridge User, which plays an important role 
in forwarding information from one social network to another. 

(2) We discuss the problem of substitutes mining for multi-social networks influence maximization 
(SMMNIM), which aims to find substitutes and to reduce the loss of information spread caused 
by the uncooperative seed nodes. 

(3) Three algorithms are proposed to solve SMMNIM in this paper for different application 
scenarios. 

The rest of the paper is organized as follows. Section 2 introduces the special type of nodes 
named as Bridge Users, and the multi-social networks influence maximization problem. Section 3 
presents the substitutes mining for multi-social networks influence maximization. In Section 4, 
substitutes seed nodes mining algorithms are proposed. The viability and performance of the 
proposed algorithms are evaluated in Section 5. Finally, we conclude this paper in Section 6. 
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2. Influence Maximization in Multi-Social Networks 

2.1. Definition and Characteristics of Bridge User 

Suppose there are two social networks represented as 𝐺ଵ and 𝐺ଶ. As shown in Figure 2, in a 
previous social network, the scope of influence is limited in this social network. However, in today’s 
social networks，as we discussed earlier, there exists special social network users who register for 
accounts on multiple social networks can break this limit, we define this type of user as a Bridge User. 
The red node in Figures 2 and 3 represents a Bridge User, he/she can forward the information cross-
platform. The detailed process is shown in Figure 3, after receiving the information in 𝐺ଵ, the Bridge 
User forwards the information to 𝐺ଶ with a certain probability 𝑝→ீమ, which makes information flow 
from 𝐺ଵ to 𝐺ଶ. 

 
Figure 2. Information spread within a single social network. 

 
Figure 3. Bridge User forwards the information from 𝐺ଵ to 𝐺ଶ. 

Assuming we have multiple social networks 𝐺ଵ(𝑉ଵ, 𝐸ଵ),  𝐺ଶ(𝑉ଶ, 𝐸ଶ),  𝐺ଷ(𝑉ଷ, 𝐸ଷ), …,  𝐺௡(𝑉௡, 𝐸௡), 
which are made of m social network users 𝑈 =  {𝑢ଵ, 𝑢ଶ, 𝑢ଷ, … , 𝑢௠} and their relationships. We use 𝑢௜௝ 
to indicate that user 𝑢௝  participates in 𝐺௝  (owns an account of 𝐺௝ ), so we have 𝑉௜ = {𝑢௜ଵ, 𝑢௜ଶ, 𝑢௜ଷ, … , 𝑢௜|௏೔|}. BU denotes the set of all Bridge Users. 

Definition 1. Self-spread of Bridge User: In multiple social networks, if 𝑢௝ ∈ 𝐵𝑈 and participates in 𝐺௣ and 𝐺௤ at the same time, when 𝑢௣௝  is activated by the information, it has a certain probability of self-spread 𝑝→ீ೜௨ೕ  
to spread the information to 𝐺௤ and activate 𝑢௤௝ . 

Definition 2. Self-spread probability matrix of Bridge User: 𝑃௠×௡ indicates the self-spread probability matrix 
of Bridge User 𝑢௜, where 𝑃௜௝ is the probability of self-spread 𝑝→ீೕ௨೔ . The value of 𝑃௜௝ depends on the historical 
self-spread actions, calculated as follows: 𝑃௜௝ = 𝑁௜௝∑ 𝑁௜௞௡௞ୀ଴  (1)

where 𝑁௜௝  denotes the number of self-spread actions that 𝑢௜  spread the information to 𝐺௝ , and ∑ 𝑁௜௞௡௞ୀ଴  
represents the total number of self-spread actions. 

2.2. Multi-Social Networks Influence Maximization 

In the background of various social networks coexisting on the Internet, information can spread 
between multiple social networks 𝐺ଵ(𝑉ଵ, 𝐸ଵ), 𝐺ଶ(𝑉ଶ, 𝐸ଶ),  𝐺ଷ(𝑉ଷ, 𝐸ଷ), …, 𝐺௡(𝑉௡, 𝐸௡). Each node in 𝐺௜ 
has two states: activated or inactivated. The activated nodes are those who have affected by the 
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information and will spread the information to their neighbors in the next time period. The 
inactivated nodes are those who have not heard of the information or rejected to adopt it [19]. A node 
whose state is inactive can be activated by activated nodes, and a node that is in an activated state 
cannot be changed into an inactivated state, that is, the activation process is irreversible. 

The problem of Multi-Social Networks Influence Maximization is to find k (k is an integer and 
satisfies k >= 1) seed users from all the users 𝑈 =  {𝑢ଵ, 𝑢ଶ, 𝑢ଷ, … , 𝑢௠}  of 𝐺ଵ(𝑉ଵ, 𝐸ଵ),  𝐺ଶ(𝑉ଶ, 𝐸ଶ),  𝐺ଷ(𝑉ଷ, 𝐸ଷ), …, 𝐺௡(𝑉௡, 𝐸௡), to constitute the initial seed node set S, such that by 
activating these users in S, the number of users that are ultimately activated is the most. 𝑅௜(𝑆) 
indicates the number of users that are ultimately activated on 𝐺௜. Hence, the problem of multi-social 
networks influence maximization can be defined as 𝑆𝑒𝑒𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥ௌ⊆௎ ෍ 𝑅௜(𝑆) ௡௜ୀଵ  (2)

where 𝑆𝑒𝑒𝑑 is expected set of the initial nodes and |𝑆𝑒𝑒𝑑| = 𝑘, 𝑆𝑒𝑒𝑑 ⊆ 𝑈. 

2.3. Multi-Social Networks Aggregation Algorithm based on Bridge Users 

In order to solve the problem of multi-social networks influence maximization, this section 
proposes a multi-social networks aggregation algorithm based on a Bridge User, to aggregate multiple 
social network graphs into one graph, and then we can apply some widely explored algorithms (such 
as Greedy [6], CELF [20], CELF++ [21] and so on) to obtain the initial seed node set 𝑆. The algorithm 
is described as Algorithm 1. 

Algorithm 1. Multi-social networks aggregation algorithm based on Bridge Users. 
Input: 𝐺ଵ(𝑉ଵ, 𝐸ଵ),  𝐺ଶ(𝑉ଶ, 𝐸ଶ),  𝐺ଷ(𝑉ଷ, 𝐸ଷ), …, 𝐺௡(𝑉௡, 𝐸௡), 𝑈 =  {𝑢ଵ, 𝑢ଶ, 𝑢ଷ, … , 𝑢௠}, BU, 𝑃௠×௡; 
Output: Aggregation graph 𝐺∗(𝑉∗, 𝐸∗); 
1) for i = 1 to n       // Traversing n social network graphs 
2) for j = 1 to |𝑉௜|   // Traversing all nodes of 𝐺௜ 
3) if BUu j

i ∈  

4) if *
0
ju V∈  then 

5) Create edge 0( , )j j
iu u , 0( , )j j

iu u ; 

6) Add activated probability of edge 
0,

1j j
iu u
p = , 

0 ,j j
i

iju u
p P= ; 

7) Add edge 0( , )j j
iu u  and 0( , )j j

iu u  to *E ; 
8) else  

9) Create node 0
ju ; 

10) Create edge 0( , )j j
iu u , 0( , )j j

iu u ; 

11) Add activated probability of edge 
0,

1j j
iu u
p = , 

0 ,j j
i

iju u
p P= ; 

12) Add edge 0( , )j j
iu u  and 0( , )j j

iu u  to *E , add node 0
ju  to *V ; 

13) end if 
14) end if 
15) end for 
16) end for 
17) Output * * *( , )G V E ; 

3. Substitutes Mining for Multi-Social Networks Influence Maximization 

Given multiple social networks 𝐺ଵ(𝑉ଵ, 𝐸ଵ),  𝐺ଶ(𝑉ଶ, 𝐸ଶ),  𝐺ଷ(𝑉ଷ, 𝐸ଷ), …, 𝐺௡(𝑉௡, 𝐸௡), which are made 
of m social network users 𝑈 =  {𝑢ଵ, 𝑢ଶ, 𝑢ଷ, … , 𝑢௠} and the relationship between these users. Using 
multi-social networks influence maximization algorithms, we can find the initial user set represented 
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as 𝑆 = 𝑆ଵ ∪ 𝑆ଶ. Assume that the user in the subset 𝑆ଶ (|𝑆ଶ| = 𝑡) cannot be activated at the initial 
moment, it needs to find t substitute nodes in the set 𝑈 − 𝑆  to form a substitute user set 𝑆ଶᇱ , 
constituting a new initial seed user set 𝑆ᇱ = 𝑆ଵ ∪ 𝑆ଶᇱ, so that 𝑆ᇱ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛|ௌᇲ|ୀ௞ (𝑅(𝑆) − 𝑅(𝑆ᇱ)) (3)

e.g., the difference between the new initial set S’ and the original set S is smallest, ensuring that the 
reduction of influence is close to the minimum. 

We name this as the problem of substitutes mining for multi-social networks influence 
maximization (SMMNIM), in the following part, we will propose algorithms to solve this problem. 

4. Substitutes Mining Algorithms for SMMNIM 

In order to mine the substitutes for influence maximization in multi-social networks, three 
substitutes mining algorithms for SMMNIM are proposed in this section. 

4.1. Greedy-Based Substitutes Mining Algorithm for SMMNIM (G_S) 

The literature [13] has proved that substitute nodes mining for influence maximization in a 
single social network is an NP-hard problem. SMMNIM can be regarded as finding t seed users in 
the set 𝑈/𝑆 that can maximize information influence, so it is also an NP-hard problem. The NP-hard 
problem can be approximated to the optimal based on the greedy algorithm. Therefore, we first 
design a Greedy-based substitutes mining algorithm for SMMNIM (G_S), which is shown in 
Algorithm 2. 

Algorithm 2. Greedy-based Substitutes Mining Algorithm for SMMNIM (G_S). 

Input: ),( *** EVG , seed node set 𝑆, the subset of seed nodes that can be activated 𝑆ଵ, number of 
seeds that cannot be activated t; 
Output: New initial seed seeds set Sᇱ; 
1) 𝑆ᇱ = 𝑆ଵ; 
2) 𝑅(S): The number of active nodes obtained by 𝑆; 
3) for 𝑖 = 1 to 𝑡 
4) for 𝑣 in 𝑉∗/(S ∪ Sᇱ) 
5) select  𝑣 = 𝑎𝑟𝑔 𝑚𝑎𝑥(𝑅(𝑆ᇱ + 𝑣) − 𝑅(𝑆ᇱ)) 
6) end for 
7) 𝑆ᇱ = 𝑆ᇱ ∪ 𝑣 
8) end for 
9) Output Sᇱ; 

4.2. Pre-Selected-Based Substitutes Mining Algorithm for SMMNIM(P_S) 

Using G_S, the most suitable set of substitutes can be found. However, G_S needs to simulate 
and calculate the influence of all users, thus requires a large number of calculations, which leads to 
low algorithm efficiency. In this section, we propose an algorithm based on the idea of “prepare in 
advance”. When selecting initial seed nodes, additional nodes will be selected, we call these nodes as 
“pre-selected nodes”. When some nodes cannot be activated, pre-selected nodes will be used as 
substitute nodes. Assuming that k initial seed nodes need to be selected, we select 𝑘 + 𝑡ᇱ initial seed 
nodes form a preselected set 𝑆௣௥௘. When the number of non-cooperative nodes is t (𝑡 < 𝑡ᇱ), the nodes 
from 𝑘 + 1  to 𝑘 + 𝑡  are selected as substitutes. If there are still uncooperative nodes in the 
substitutes, we will continue to select nodes from the pre-selected set 𝑆௣௥௘. The amount of calculation 
will be greatly reduced. This algorithm we named as pre-selected-based substitutes mining algorithm 
for SMMNIM (P_S), which is shown in Algorithm 3. 
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Algorithm 3. Pre-selected-based Substitutes Mining Algorithm for SMMNIM (P_S). 
Input: * * *( , )G V E , pre-selected seed node set  𝑆௣௥௘, the number of additional selected nodes 𝑡ᇱ; 
Output: New initial seed seeds set 𝑆ᇱ; 
1) 𝑆௣௥௘ = ∅, 𝑆ᇱ = ∅; 
2) 𝑅(𝑆): The number of active nodes obtained by 𝑆; 
3) for i = 1 to 𝑘 + 𝑡ᇱ 
4) for 𝑣 in 𝑉∗/(𝑆௣௥௘) 
5) select  𝑣 = 𝑎𝑟𝑔 𝑚𝑖𝑛(𝑅൫𝑆௣௥௘ + 𝑣൯ − 𝑅(𝑆௣௥௘)) 
6) end for 
7) 𝑆௣௥௘ =  𝑆௣௥௘ ∪ 𝑣 
8) end for 
9) for v in 𝑆௣௥௘ 
10) if v is uncooperative node 
11) 𝑆௣௥௘ =  𝑆௣௥௘ − 𝑣 
12) end for 
13) for i = 1 to k 
14) for v in 𝑆௣௥௘ 
15) 𝑆ᇱ = 𝑆ᇱ ∪ 𝑣 
16) end for 
17) end for 
18) Output 𝑆ᇱ; 

4.3. Similar-Users-Based Substitutes Mining Algorithm for SMMNIM (S_S) 

In this section, we propose another solution to find substitutes based on the idea of “finding the 
most similar user of uncooperative user”. We focus on seeking the most similar users of the 
uncooperative nodes as the substitutes and propose a similar-users-based substitutes mining 
algorithm for SMMNIM (S_S), which is shown in Algorithm 4. We integrate structure similarity and 
neighbor attribute similarity to evaluate the similarity between two users. 

Given an aggregation graph ),( *** EVG  of multi-social networks, (𝑢, 𝑣) ∈ 𝐸∗  indicates the 
edge from node u to node v. The structure of the node u is determined by the in-edges and out-edges 
of the node. 𝑂_𝐸(𝑢) indicates the out-edges and be defined as  𝑂_𝐸(𝑢) = {𝑣 ∈ 𝑉∗| (𝑢, 𝑣) ∈ 𝐸∗}. (4)𝐼_𝐸(𝑢) indicates the in-edges and be defined as  𝐼_𝐸(𝑢) = {𝑤 ∈ 𝑉∗| (𝑢, 𝑣) ∈ 𝐸∗}. (5)

The structure of the node u is defined as  

Ψ(𝑢) = (𝑂_𝐸(𝑢)，𝐼_𝐸(𝑢)). (6)

The structural similarity of node u and node v is defined as 𝑆𝑆(𝑢, 𝑣) = ଵଶ ൬ |ை_ா(௨)∩ை_ா(௩)|ඥ|ை_ா(௨)|∗|ை_ா(௩)| + |ூ_ா(௨)∩ூ_ா(௩)|ඥ|ூ_ா(௨)|∗|ூ_ா(௩)|൰. (7)

The self-spread of a Bridge User makes it more likely to have a wider scope of influence spread 
than ordinary users. When choosing the most similar user of the uncooperative user, the other factor 
we need to consider is the similarity of neighbor attributes (Bridge Users or ordinary users). 

In the neighbor node set of node u, the number of Bridge Users is denoted as 𝐵_𝑈(𝑢), and the 
number of ordinary users is denoted as 𝑁_𝑈(𝑢). The neighbor node attributes of node u are defined 
as vectors 𝔸(𝑢) = (𝐵_𝑈(𝑢), 𝑁_𝑈(𝑢)). (8)
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The Euclidean distance of the neighboring attributes of u and v is 𝐸𝐷_𝔸(𝑢, 𝑣) = ඥ(𝔸(𝑢) − 𝔸(𝑣))(𝔸(𝑢) − 𝔸(𝑣))். (9)

Then we define the neighbor attributes similarity between node u and v is 𝐴𝑆(𝑢, 𝑣) = 𝐸𝐷_𝔸(𝑢, 𝑣) − 𝐸𝐷_𝔸௠௜௡𝐸𝐷_𝔸௠௔௫ − 𝐸𝐷_𝔸௠௜௡  (10)

Finally, the similarity between node u and v is based on the similarity calculated by the structure 
similarity and the neighbor attributes similarity, 𝑆𝑖𝑚(𝑢, 𝑣) = 𝑆𝑆(𝑢, 𝑣) + 𝐴𝑆(𝑢, 𝑣). (11)

 
Algorithm 4. Similar-users-based Substitutes Mining Algorithm for SMMNIM (S_S). 

Input: ),( *** EVG , seed node set 𝑆, the subset of seed nodes that can be activated  𝑆ଵ, the subset 
of seed nodes that cannot be activated  𝑆ଶ; 
Output: New initial seed seeds set 𝑆ᇱ; 
1) 𝑆ᇱ = 𝑆ଵ; 
2) 𝑅(S): The number of active nodes obtained by 𝑆; 
3) for i = 1 to |𝑆ଶ| 
4) for 𝑢 in 𝑆ଶ 
5) for v in 𝑉∗/𝑆 
6) select  𝑣 = 𝑎𝑟𝑔 𝑚𝑎𝑥(𝑆𝑖𝑚(𝑢, 𝑣)) 
7) 𝑆ᇱ = 𝑆ᇱ ∪ 𝑣 
8) end for 
9) end for 
10) end for 
11) Output 𝑆ᇱ; 

5. Simulation 

5.1. Data Description 

The experiments are based on the following three social network datasets: 
NetHEPT: This dataset is derived from “High Energy Physics” and is a web-based data about 

authors of articles. Each node represents an author, and the number of edges between a pair of nodes 
is equal to the number of papers the two authors collaborated [7]. 

Epinions: This dataset comes from the social network “Epinions”. In the data set, if a user trusts 
another user, there is an edge between the users. 

Slashdot: This dataset is derived from the “Slashdot” website, a consulting technology website 
and its users can post comments on the website. In this data set, if the user is a friend or an opponent, 
it is considered that there is a relationship between the users and there is an edge. 

The detailed information of nodes and edges is shown in Table 1. 

Table 1. Three social network datasets used in the simulation. 

Dataset NetHEPT Epinions Slashdot 
Number of nodes 15,233 75,879 77,360 
Number of edges 62,796 508,837 905,468 
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5.2. Analysis of Multi-Social Networks Influence Maximization 

In the simulation, CELF++ is used to solve the problem of influence maximization and the 
propagation model we selected is the LT model. For the edge (u, v) existing in the graph G, the 
probability 𝑝௨௩  the node u to activate its neighbor node v is calculated by the reciprocal of the 
number of node v’s in-degrees, that is 𝑝௨௩ = 1 |𝑖𝑛(𝑣)|⁄ , 𝑣 ∈ 𝑜𝑢𝑡(𝑢). Each time the influence of the 
seed set was calculated, the propagation process was simulated by 10,000 Monte Carlo methods. 

To compare with the information spread in multi-social networks, we first show the spread of 
influence in a single social network, as shown in Figure 4. From the experimental results we can see 
that, as the number of seed nodes increases, the influence increases. 

  

(a) NetHEPT (b) Epinions 

 
(c) Slashdot 

Figure 4. The spread of influence in a single social network. (a) The spread of influence in NetHEPT; 
(b) The spread of influence in Epinions; (c) The spread of influence in Slashdot. 

Next, the experiments verify the information spread in multiple social networks. However, we 
cannot get the social network data sets with the annotated Bridge Users. In the experiments, we choose 
the node with the same ID from the three social networks and assume these nodes (with the same ID) 
belong to one user, this user is regarded as a Bridge User. In the following simulation, the BU is 
obtained by this method. Then the above three social networks 𝐺ଵ(𝑉ଵ, 𝐸ଵ), 𝐺ଶ(𝑉ଶ, 𝐸ଶ), 𝐺ଷ(𝑉ଷ, 𝐸ଷ) can 
be aggregated into one network 𝐺(𝑉, 𝐸) by algorithm 1. When aggregation, the number of selected 
Bridge User is set as 0, 1000, 2000, 3000, 4000, and 5000 respectively. The information spread with a 
different number of Bridge Users in multi-social networks is shown in Figure 5. 

0
100
200
300
400
500
600
700
800
900

1 5 10 15 20 25 30 35 40 45 50

Th
e 

sp
re

ad
 o

f i
nf

lu
en

ce

Number of seed nodes

0

2,000

4,000

6,000

8,000

10,000

1 5 10 15 20 25 30 35 40 45 50

Th
e 

sp
re

ad
 o

d 
in

fl
ue

nc
e

Number of seed nodes

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

1 5 10 15 20 25 30 35 40 45 50

Th
e 

sp
re

ad
 o

f i
nf

lu
en

ce

Number of seed nodes



Future Internet 2019, 11, 112 9 of 13 

 

 
Figure 5. The information spread with a different number of Bridge Users in multi-social networks. 

As the result shown in Figure 5, we can find that, as the number of seed nodes increases, the 
spread of influence becomes larger. As discussed before, we have analyzed that Bridge Users can 
spread information from social network 𝐺ଵ to 𝐺ଶ. When comparing the influence spreading of a 
different number of Bridge Users, we can see that the more Bridge Users, the wider influence spreading, 
which indicates the self-spread of Bridge User expands the scope of information spreading. These 
results confirm that the problem of influence maximization is different from previous, multi-social 
networks can be connected by Bridge Users. 

5.3. Comparison Results of Substitutes Mining Algorithms 

The uncooperative seed nodes will lead to the failure of influence maximization, it is necessary 
to select appropriate substitute nodes to replace the uncooperative seed nodes. In this section, assume 
that the cooperation rate of the seed nodes is 80%, this means that if we expect to select 50 nodes as 
the initial seed nodes, there may be 10 nodes will be uncooperative seed nodes. The purpose of the 
three algorithms designed in this paper is to find 10 substitutes to replace the uncooperative seed 
nodes. To evaluates the performance of each algorithm, this paper compares the algorithm in three 
aspects: the influence spread range of the new seed set, the loss rate of the influence spreading, and 
the memory/time consumption of the algorithm running. Each algorithm is executed multiple times 
to avoid errors (in this experiment, the number of times is five). In the figure of experimental results, 
init-0 represents the initial set of seed nodes, G_S represents solving algorithms for SMMNIM based 
on Greedy, P_S represents pre-selected-based substitutes mining algorithm for SMMNIM, and S_S 
represents similar-users-based substitutes mining algorithm for SMMNIM. 

Figure 6 shows the influence spreading of the new seed set obtained by the three algorithms 
G_S, P_S and S_S. Compare with the influence spreading of original initial seed set (Init_0), we find 
that the three new seed set get lower influence spreading. Although we have proposed algorithms to 
find substitutes, it still unable to make up for the losses caused by the uncooperative nodes. It 
indicates that the uncooperative nodes lead to the reduction of influence maximization in multiple 
social networks. In other aspects, the new seed set obtained by G_S algorithm can achieve the closest 
influence spreading to the original seed set can produce. This is because the G_S algorithm is 
equivalent to finding the optimal seed set in the rest nodes. Therefore, the new seed set solved by 
G_S can obtain a wider range of influence than the other two algorithms. Compared with the P_S 
algorithm, the new seed set obtained by S_S algorithm has a wider range of influence. This is because 
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the S_S algorithm looks for the most similar node of the uncooperative node as the substitute node, 
the influence that substitute nodes can produce is similar to the original uncooperative node. P_S 
algorithm just pre-select some nodes for replacing the uncooperative node. Therefore, S_S has a better 
performance than the P_S algorithm. 

 
Figure 6. Influence spreading of the new seed set obtained by G_S, P_S and S_S. 

Figure 7 illustrates the loss rate of influence spreading of the new seed set by three algorithms. 
While the G_S algorithm solves the better alternative nodes, the loss of influence is smaller. The S_S 
algorithm takes second place. 

 
Figure 7. Loss rate of influence spreading of the new seed set obtained by G_S, P_S and S_S. 

In terms of algorithm memory/time cost (Figure 8), P_S algorithm costs less memory than G_S 
algorithm, and the time cost is smaller than G_S algorithm. The main reason is that P_S algorithm 
will pre-select some nodes in advance as “standby” nodes. When some nodes do not cooperate, they 
can select substitute nodes from the “standby” nodes without recalculations. The G_S algorithm 
needs a long time to recalculate the new seed set, it’s about two times that of P_S algorithm, and the 
cost of memory is also larger than P_S. In addition, the S_S algorithm spends a number amount of 
calculations on user similarity, so its memory/time cost is the largest. 
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Figure 8. Memory/time cost of G_S, P_S and S_S. 

Therefore, all three algorithms can find the substitute nodes and reduce the influence loss caused 
by uncooperative nodes, we can choose one of them according to different requirements. The 
substitute nodes found by G_S algorithm can get closer influence to the original seed node set, but it 
cost more time and memory. That is, G_S is suitable for the scenes that are not sensitive to time or 
memory but require a wider range of influence; P_S algorithm can get the substitute nodes 
immediately, so it is more suitable for time-sensitive or memory-sensitive scenes; Due to the large 
number of calculations on user similarity, the S_S algorithm can be selected when the user similarity 
is known in advance. 

6. Conclusions 

In this paper, we first studied the problem of multi-social networks influence maximization. By 
defining the user with multiple social network accounts as a Bridge User, we discussed how a Bridge 
User affects the information spreading in multiple social networks. Then we considered a new and 
significant problem by analyzing that there may be some seed nodes cannot be activated in the 
process of influence maximization. Hence, it is necessary to find substitute nodes to reduce the losses 
caused by these uncooperative seed nodes. This brings up the problem of Substitutes Mining for 
Multi-Social Networks Influence Maximization (SMMNIM). In this paper, three substitute nodes 
mining algorithms were proposed (G_S, P_S and S_S). The experimental results showed that: (1) In 
multi-social networks, Bridge Users can make information spread across social networks and expand 
the range of information influence; (2) the uncooperative nodes will reduce the range of information 
influence; (3) three substitute node mining algorithms can find suitable substitute nodes and 
construct the new seed set, which makes the information influence as close as possible to the original 
seed node set; (4) according to different application scenarios, the three algorithms can be selected 
for mining the substitute seed nodes. 

In the future research, we will further consider the attributes of nodes and information, such as 
the node’s interests, the subject of the information, etc., take these factors into the process of multi-
social networks influence maximization, and propose more accurate and efficient substitute node 
mining algorithm. 
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