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Abstract: Due to the growing interconnections of social networks, the problem of influence
maximization has been extended from a single social network to multiple social networks. However, a
critical challenge of influence maximization in multi-social networks is that some initial seed nodes may
be unable to be active, which obviously leads to a low performance of influence spreading. Therefore,
finding substitute nodes for mitigating the influence loss of uncooperative nodes is extremely helpful
in influence maximization. In this paper, we propose three substitute mining algorithms for influence
maximization in multi-social networks, namely for the Greedy-based substitute mining algorithm,
pre-selected-based substitute mining algorithm, and similar-users-based substitute mining algorithm.
The simulation results demonstrate that the existence of the uncooperative seed nodes leads to the
range reduction of information influence. Furthermore, the viability and performance of the proposed
algorithms are presented, which show that three substitute node mining algorithms can find suitable
substitute nodes for multi-social networks influence maximization, thus achieves better influence.

Keywords: multi-social networks; influence maximization; substitute mining algorithm

1. Introduction

In recent years, various social networks [1] offering different services have appeared on the
Internet, e.g., Facebook, Twitter, YouTube and Foursquare. For the purpose of enjoying different
services, some users register accounts on different social networks simultaneously. Different from the
traditional connections with other users, they have not only social links among users within one social
network, but also crossing links connecting accounts between different social networks. Multi-social
networks are connected by these shared users [2]. Due to their obvious advantages in spreading
information, as exemplified by the high speed, low cost and wide influence, social networks attract
more and more attention of researchers, which results in many hot topics, involving social information
spreading [3], public opinion [4], Internet marketing [5] and so on. The influence maximization in a
social network has been extensively studied in the academic community [6–10], which is the problem
of finding a small subset of nodes in a social network that could maximize the spread of influence [7].
However, the existing influence maximization research for the single social network cannot be directly
adapted to the multi-social networks due to their heterogeneous architecture and complex connections
among users. The users with multiple social network accounts can spread information from social
network A to social network B. An example is given in Figure 1, a user who is registered on Twitter
and Facebook has the ability to forward the information on Twitter to Facebook, which demonstrates
the scope of information spreading no longer confined within the single social network. This factor
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leads to the different characteristics of information spreading as before and needs to be considered in
the influence of maximization research.
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Figure 1. User with multiple accounts forwards information across social networks.

To maximize the influence spreading in multi-social networks, the researchers in References [11–16]
focus on finding k (k ∈ N∗) users to constitute the initial active seed node set S to spread information,
the expected number of active nodes R(S) at the end of a diffusion process in multi-social networks
can be maximized. Due to budgetary constraints, the size of S is usually fixed in existing research,
i.e., k is fixed. However, when we get S through complex theoretical calculations, some initial seed
nodes in the set S may be difficult to activate for some reasons. In the end, a broken S cannot get the
maximum influence, resulting in the low influence spreading performance. For example, in social
network advertising marketing, one user has high influence in social networks, but for some reasons,
he is unwilling to post advertisements, which may lead to advertising marketing failure. Therefore,
when some users in S cannot be activated, it is very necessary to find substitutes for these nodes to
reduce the loss of influence.

Some researchers have already done some work on this subject. Li et al. [17] proposed the idea
of finding “successors”. When a seed node cannot be activated, the neighbor node is selected as a
substitute. Ma et al. [18] named this problem as the Substitutes Discovery in Influence Maximization
and proposed three solving algorithms based on the Greedy algorithms. However, these two works
aim at solving the substitute mining problem in a single social network, which cannot adapt to
the information spread in multi-social networks directly. In this paper, we discuss the information
spread across social networks and focus on solving the problem of multi-social networks influence
maximization. Specifically, the contributions of this paper are summarized as follows:

(1) We analyze the characteristics of information spreading in multi-social networks and define the
special use with multiple social network accounts as Bridge User, which plays an important role
in forwarding information from one social network to another.

(2) We discuss the problem of substitutes mining for multi-social networks influence maximization
(SMMNIM), which aims to find substitutes and to reduce the loss of information spread caused
by the uncooperative seed nodes.

(3) Three algorithms are proposed to solve SMMNIM in this paper for different application scenarios.

The rest of the paper is organized as follows. Section 2 introduces the special type of nodes named
as Bridge Users, and the multi-social networks influence maximization problem. Section 3 presents the
substitutes mining for multi-social networks influence maximization. In Section 4, substitutes seed
nodes mining algorithms are proposed. The viability and performance of the proposed algorithms are
evaluated in Section 5. Finally, we conclude this paper in Section 6.
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2. Influence Maximization in Multi-Social Networks

2.1. Definition and Characteristics of Bridge User

Suppose there are two social networks represented as G1 and G2. As shown in Figure 2, in a
previous social network, the scope of influence is limited in this social network. However, in today’s
social networks, as we discussed earlier, there exists special social network users who register for
accounts on multiple social networks can break this limit, we define this type of user as a Bridge
User. The red node in Figures 2 and 3 represents a Bridge User, he/she can forward the information
cross-platform. The detailed process is shown in Figure 3, after receiving the information in G1, the
Bridge User forwards the information to G2 with a certain probability p→G2 , which makes information
flow from G1 to G2.
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Assuming we have multiple social networks G1(V1, E1), G2(V2, E2), G3(V3, E3), . . . , Gn(Vn, En),
which are made of m social network users U =

{
u1, u2, u3, . . . , um

}
and their relationships. We use u j

i to

indicate that user u j participates in G j (owns an account of G j), so we have Vi = {u1
i , u2

i , u3
i , . . . , u|Vi |

i }.
BU denotes the set of all Bridge Users.

Definition 1. Self-spread of Bridge User: In multiple social networks, if u j
∈ BU and participates in Gp and

Gq at the same time, when u j
p is activated by the information, it has a certain probability of self-spread pu j

→Gq
to

spread the information to Gq and activate u j
q.

Definition 2. Self-spread probability matrix of Bridge User: Pm×n indicates the self-spread probability matrix
of Bridge User ui, where Pi j is the probability of self-spread pui

→G j
. The value of Pi j depends on the historical

self-spread actions, calculated as follows:

Pi j =
Ni j∑n

k=0 Nik
(1)

where Ni j denotes the number of self-spread actions that ui spread the information to G j, and
∑n

k=0 Nik represents
the total number of self-spread actions.
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2.2. Multi-Social Networks Influence Maximization

In the background of various social networks coexisting on the Internet, information can spread
between multiple social networks G1(V1, E1), G2(V2, E2), G3(V3, E3), . . . , Gn(Vn, En). Each node in
Gi has two states: activated or inactivated. The activated nodes are those who have affected by the
information and will spread the information to their neighbors in the next time period. The inactivated
nodes are those who have not heard of the information or rejected to adopt it [19]. A node whose
state is inactive can be activated by activated nodes, and a node that is in an activated state cannot be
changed into an inactivated state, that is, the activation process is irreversible.

The problem of Multi-Social Networks Influence Maximization is to find k (k is an integer
and satisfies k >= 1) seed users from all the users U =

{
u1, u2, u3, . . . , um

}
of G1(V1, E1), G2(V2, E2),

G3(V3, E3), . . . , Gn(Vn, En), to constitute the initial seed node set S, such that by activating these users
in S, the number of users that are ultimately activated is the most. Ri(S) indicates the number of
users that are ultimately activated on Gi. Hence, the problem of multi-social networks influence
maximization can be defined as

Seed = argmax
S⊆U

∑n

i=1
Ri(S) (2)

where Seed is expected set of the initial nodes and |Seed| = k, Seed ⊆ U.

2.3. Multi-Social Networks Aggregation Algorithm based on Bridge Users

In order to solve the problem of multi-social networks influence maximization, this section
proposes a multi-social networks aggregation algorithm based on a Bridge User, to aggregate multiple
social network graphs into one graph, and then we can apply some widely explored algorithms (such
as Greedy [6], CELF [20], CELF++ [21] and so on) to obtain the initial seed node set S. The algorithm is
described as Algorithm 1.

Algorithm 1. Multi-social networks aggregation algorithm based on Bridge Users.

Input: G1(V1, E1), G2(V2, E2), G3(V3, E3), . . . , Gn(Vn, En), U =
{
u1, u2, u3, . . . , um

}
, BU, Pm×n;

Output: Aggregation graph G∗(V∗, E∗);
(1) for i = 1 to n // Traversing n social network graphs
(2) for j = 1 to |Vi| // Traversing all nodes of Gi

(3) if u j
i ∈ BU

(4) if u j
0 ∈ V∗ then

(5) Create edge (u j
i , u j

0), (u
j
0, u j

i );
(6) Add activated probability of edge pu j

i ,u
j
0
= 1, pu j

0,u j
i
= Pi j;

(7) Add edge (u j
i , u j

0) and (u j
0, u j

i ) to E∗;
(8) else
(9) Create node u j

0;

(10) Create edge (u j
i , u j

0), (u
j
0, u j

i );
(11) Add activated probability of edge pu j

i ,u
j
0
= 1, pu j

0,u j
i
= Pi j;

(12) Add edge (u j
i , u j

0) and (u j
0, u j

i ) to E∗, add node u j
0 to V∗;

(13) end if
(14) end if
(15) end for
(16) end for
(17) Output G∗(V∗, E∗);

3. Substitutes Mining for Multi-Social Networks Influence Maximization

Given multiple social networks G1(V1, E1), G2(V2, E2), G3(V3, E3), . . . , Gn(Vn, En), which are
made of m social network users U =

{
u1, u2, u3, . . . , um

}
and the relationship between these users. Using
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multi-social networks influence maximization algorithms, we can find the initial user set represented as
S = S1 ∪ S2. Assume that the user in the subset S2 (|S2| = t) cannot be activated at the initial moment,
it needs to find t substitute nodes in the set U − S to form a substitute user set S2

′, constituting a new
initial seed user set S′ = S1 ∪ S2

′, so that

S′∗ = argmin
|S′ |=k

(R(S) −R(S′)) (3)

e.g., the difference between the new initial set S’ and the original set S is smallest, ensuring that the
reduction of influence is close to the minimum.

We name this as the problem of substitutes mining for multi-social networks influence
maximization (SMMNIM), in the following part, we will propose algorithms to solve this problem.

4. Substitutes Mining Algorithms for SMMNIM

In order to mine the substitutes for influence maximization in multi-social networks, three
substitutes mining algorithms for SMMNIM are proposed in this section.

4.1. Greedy-Based Substitutes Mining Algorithm for SMMNIM (G_S)

The literature [13] has proved that substitute nodes mining for influence maximization in a single
social network is an NP-hard problem. SMMNIM can be regarded as finding t seed users in the set
U/S that can maximize information influence, so it is also an NP-hard problem. The NP-hard problem
can be approximated to the optimal based on the greedy algorithm. Therefore, we first design a
Greedy-based substitutes mining algorithm for SMMNIM (G_S), which is shown in Algorithm 2.

Algorithm 2. Greedy-based Substitutes Mining Algorithm for SMMNIM (G_S).

Input: G∗(V∗, E∗), seed node set S, the subset of seed nodes that can be activated S1, number of seeds that
cannot be activated t;
Output: New initial seed seeds set S′;
(1) S′ = S1;
(2) R(S): The number of active nodes obtained by S;
(3) for i = 1 to t
(4) for v in V∗/(S∪ S′)
(5) select v = argmax(R(S′ + v) −R(S′))
(6) end for
(7) S′ = S′ ∪ v
(8) end for
(9) Output S′;

4.2. Pre-Selected-Based Substitutes Mining Algorithm for SMMNIM(P_S)

Using G_S, the most suitable set of substitutes can be found. However, G_S needs to simulate
and calculate the influence of all users, thus requires a large number of calculations, which leads to
low algorithm efficiency. In this section, we propose an algorithm based on the idea of “prepare in
advance”. When selecting initial seed nodes, additional nodes will be selected, we call these nodes
as “pre-selected nodes”. When some nodes cannot be activated, pre-selected nodes will be used as
substitute nodes. Assuming that k initial seed nodes need to be selected, we select k + t′ initial seed
nodes form a preselected set Spre. When the number of non-cooperative nodes is t (t < t′), the nodes
from k + 1 to k + t are selected as substitutes. If there are still uncooperative nodes in the substitutes,
we will continue to select nodes from the pre-selected set Spre. The amount of calculation will be greatly
reduced. This algorithm we named as pre-selected-based substitutes mining algorithm for SMMNIM
(P_S), which is shown in Algorithm 3.
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Algorithm 3. Pre-selected-based Substitutes Mining Algorithm for SMMNIM (P_S).

Input: G∗(V∗, E∗), pre-selected seed node set Spre, the number of additional selected nodes t′;
Output: New initial seed seeds set S′;
(1) Spre = ∅, S′ = ∅;
(2) R(S): The number of active nodes obtained by S;
(3) for i = 1 to k + t′

(4) for v in V∗/
(
Spre

)
(5) select v = argmin

(
R
(
Spre + v

)
−R

(
Spre

))
(6) end for
(7) Spre = Spre ∪ v
(8) end for
(9) for v in Spre

(10) if v is uncooperative node
(11) Spre = Spre − v
(12) end for
(13) for i = 1 to k
(14) for v in Spre

(15) S′ = S′ ∪ v
(16) end for
(17) end for
(18) Output S′;

4.3. Similar-Users-Based Substitutes Mining Algorithm for SMMNIM (S_S)

In this section, we propose another solution to find substitutes based on the idea of “finding
the most similar user of uncooperative user”. We focus on seeking the most similar users of the
uncooperative nodes as the substitutes and propose a similar-users-based substitutes mining algorithm
for SMMNIM (S_S), which is shown in Algorithm 4. We integrate structure similarity and neighbor
attribute similarity to evaluate the similarity between two users.

Given an aggregation graph G∗(V∗, E∗) of multi-social networks, (u, v) ∈ E∗ indicates the edge
from node u to node v. The structure of the node u is determined by the in-edges and out-edges of
the node.

O_E(u) indicates the out-edges and be defined as

O_E(u) =
{
v ∈ V∗

∣∣∣ (u, v) ∈ E∗
}
. (4)

I_E(u) indicates the in-edges and be defined as

I_E(u) =
{
w ∈ V∗

∣∣∣ (u, v) ∈ E∗
}
. (5)

The structure of the node u is defined as

Ψ(u) = (O_E(u), I_E(u)). (6)

The structural similarity of node u and node v is defined as

SS(u, v) =
1
2


∣∣∣O_E(u)∩ O_E(v)

∣∣∣√∣∣∣O_E(u)
∣∣∣ ∗ ∣∣∣O_E(v)

∣∣∣ +
∣∣∣I_E(u)∩ I_E(v)

∣∣∣√∣∣∣I_E(u)
∣∣∣ ∗ ∣∣∣I_E(v)

∣∣∣
. (7)

The self-spread of a Bridge User makes it more likely to have a wider scope of influence spread
than ordinary users. When choosing the most similar user of the uncooperative user, the other factor
we need to consider is the similarity of neighbor attributes (Bridge Users or ordinary users).
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In the neighbor node set of node u, the number of Bridge Users is denoted as B_U(u), and the
number of ordinary users is denoted as N_U(u). The neighbor node attributes of node u are defined
as vectors

A(u) = (B_U(u), N_U(u)). (8)

The Euclidean distance of the neighboring attributes of u and v is

ED_A(u, v) =
√
(A(u) −A(v))(A(u) −A(v))T. (9)

Then we define the neighbor attributes similarity between node u and v is

AS(u, v) =
ED_A(u, v) − ED_Amin

ED_Amax − ED_Amin
(10)

Finally, the similarity between node u and v is based on the similarity calculated by the structure
similarity and the neighbor attributes similarity,

Sim(u, v) = SS(u, v) + AS(u, v). (11)

Algorithm 4. Similar-users-based Substitutes Mining Algorithm for SMMNIM (S_S).

Input: G∗(V∗, E∗), seed node set S, the subset of seed nodes that can be activated S1, the subset of seed
nodes that cannot be activated S2;
Output: New initial seed seeds set S′;
(1) S′ = S1;
(2) R(S): The number of active nodes obtained by S;
(3) for i = 1 to |S2|

(4) for u in S2

(5) for v in V∗/S
(6) select v = argmax(Sim(u, v))
(7) S′ = S′ ∪ v
(8) end for
(9) end for
(10) end for
(11) Output S′;

5. Simulation

5.1. Data Description

The experiments are based on the following three social network datasets:
NetHEPT: This dataset is derived from “High Energy Physics” and is a web-based data about

authors of articles. Each node represents an author, and the number of edges between a pair of nodes
is equal to the number of papers the two authors collaborated [7].

Epinions: This dataset comes from the social network “Epinions”. In the data set, if a user trusts
another user, there is an edge between the users.

Slashdot: This dataset is derived from the “Slashdot” website, a consulting technology website
and its users can post comments on the website. In this data set, if the user is a friend or an opponent,
it is considered that there is a relationship between the users and there is an edge.

The detailed information of nodes and edges is shown in Table 1.
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Table 1. Three social network datasets used in the simulation.

Dataset NetHEPT Epinions Slashdot

Number of nodes 15,233 75,879 77,360
Number of edges 62,796 508,837 905,468

5.2. Analysis of Multi-Social Networks Influence Maximization

In the simulation, CELF++ is used to solve the problem of influence maximization and the
propagation model we selected is the LT model. For the edge (u, v) existing in the graph G, the
probability puv the node u to activate its neighbor node v is calculated by the reciprocal of the number
of node v’s in-degrees, that is puv = 1/

∣∣∣in(v)∣∣∣, v ∈ out(u). Each time the influence of the seed set was
calculated, the propagation process was simulated by 10,000 Monte Carlo methods.

To compare with the information spread in multi-social networks, we first show the spread of
influence in a single social network, as shown in Figure 4. From the experimental results we can see
that, as the number of seed nodes increases, the influence increases.   
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Next, the experiments verify the information spread in multiple social networks. However, we
cannot get the social network data sets with the annotated Bridge Users. In the experiments, we choose
the node with the same ID from the three social networks and assume these nodes (with the same
ID) belong to one user, this user is regarded as a Bridge User. In the following simulation, the BU is
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obtained by this method. Then the above three social networks G1(V1, E1), G2(V2, E2), G3(V3, E3) can
be aggregated into one network G(V, E) by algorithm 1. When aggregation, the number of selected
Bridge User is set as 0, 1000, 2000, 3000, 4000, and 5000 respectively. The information spread with a
different number of Bridge Users in multi-social networks is shown in Figure 5.Future Internet 2019, 11, x FOR PEER REVIEW 9 of 13 
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Figure 5. The information spread with a different number of Bridge Users in multi-social networks.

As the result shown in Figure 5, we can find that, as the number of seed nodes increases, the
spread of influence becomes larger. As discussed before, we have analyzed that Bridge Users can spread
information from social network G1 to G2. When comparing the influence spreading of a different
number of Bridge Users, we can see that the more Bridge Users, the wider influence spreading, which
indicates the self-spread of Bridge User expands the scope of information spreading. These results
confirm that the problem of influence maximization is different from previous, multi-social networks
can be connected by Bridge Users.

5.3. Comparison Results of Substitutes Mining Algorithms

The uncooperative seed nodes will lead to the failure of influence maximization, it is necessary to
select appropriate substitute nodes to replace the uncooperative seed nodes. In this section, assume
that the cooperation rate of the seed nodes is 80%, this means that if we expect to select 50 nodes as
the initial seed nodes, there may be 10 nodes will be uncooperative seed nodes. The purpose of the
three algorithms designed in this paper is to find 10 substitutes to replace the uncooperative seed
nodes. To evaluates the performance of each algorithm, this paper compares the algorithm in three
aspects: the influence spread range of the new seed set, the loss rate of the influence spreading, and the
memory/time consumption of the algorithm running. Each algorithm is executed multiple times to
avoid errors (in this experiment, the number of times is five). In the figure of experimental results,
init-0 represents the initial set of seed nodes, G_S represents solving algorithms for SMMNIM based
on Greedy, P_S represents pre-selected-based substitutes mining algorithm for SMMNIM, and S_S
represents similar-users-based substitutes mining algorithm for SMMNIM.

Figure 6 shows the influence spreading of the new seed set obtained by the three algorithms G_S,
P_S and S_S. Compare with the influence spreading of original initial seed set (Init_0), we find that
the three new seed set get lower influence spreading. Although we have proposed algorithms to find
substitutes, it still unable to make up for the losses caused by the uncooperative nodes. It indicates that
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the uncooperative nodes lead to the reduction of influence maximization in multiple social networks. In
other aspects, the new seed set obtained by G_S algorithm can achieve the closest influence spreading
to the original seed set can produce. This is because the G_S algorithm is equivalent to finding the
optimal seed set in the rest nodes. Therefore, the new seed set solved by G_S can obtain a wider range of
influence than the other two algorithms. Compared with the P_S algorithm, the new seed set obtained
by S_S algorithm has a wider range of influence. This is because the S_S algorithm looks for the most
similar node of the uncooperative node as the substitute node, the influence that substitute nodes can
produce is similar to the original uncooperative node. P_S algorithm just pre-select some nodes for
replacing the uncooperative node. Therefore, S_S has a better performance than the P_S algorithm.
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Figure 7 illustrates the loss rate of influence spreading of the new seed set by three algorithms.
While the G_S algorithm solves the better alternative nodes, the loss of influence is smaller. The S_S
algorithm takes second place.
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Figure 7. Loss rate of influence spreading of the new seed set obtained by G_S, P_S and S_S.

In terms of algorithm memory/time cost (Figure 8), P_S algorithm costs less memory than G_S
algorithm, and the time cost is smaller than G_S algorithm. The main reason is that P_S algorithm will
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pre-select some nodes in advance as “standby” nodes. When some nodes do not cooperate, they can
select substitute nodes from the “standby” nodes without recalculations. The G_S algorithm needs a
long time to recalculate the new seed set, it’s about two times that of P_S algorithm, and the cost of
memory is also larger than P_S. In addition, the S_S algorithm spends a number amount of calculations
on user similarity, so its memory/time cost is the largest.Future Internet 2019, 11, x FOR PEER REVIEW 11 of 13 
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Therefore, all three algorithms can find the substitute nodes and reduce the influence loss caused
by uncooperative nodes, we can choose one of them according to different requirements. The substitute
nodes found by G_S algorithm can get closer influence to the original seed node set, but it cost more
time and memory. That is, G_S is suitable for the scenes that are not sensitive to time or memory but
require a wider range of influence; P_S algorithm can get the substitute nodes immediately, so it is
more suitable for time-sensitive or memory-sensitive scenes; Due to the large number of calculations
on user similarity, the S_S algorithm can be selected when the user similarity is known in advance.

6. Conclusions

In this paper, we first studied the problem of multi-social networks influence maximization.
By defining the user with multiple social network accounts as a Bridge User, we discussed how a
Bridge User affects the information spreading in multiple social networks. Then we considered a
new and significant problem by analyzing that there may be some seed nodes cannot be activated in
the process of influence maximization. Hence, it is necessary to find substitute nodes to reduce the
losses caused by these uncooperative seed nodes. This brings up the problem of Substitutes Mining
for Multi-Social Networks Influence Maximization (SMMNIM). In this paper, three substitute nodes
mining algorithms were proposed (G_S, P_S and S_S). The experimental results showed that: (1) In
multi-social networks, Bridge Users can make information spread across social networks and expand
the range of information influence; (2) the uncooperative nodes will reduce the range of information
influence; (3) three substitute node mining algorithms can find suitable substitute nodes and construct
the new seed set, which makes the information influence as close as possible to the original seed node
set; (4) according to different application scenarios, the three algorithms can be selected for mining the
substitute seed nodes.
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In the future research, we will further consider the attributes of nodes and information, such
as the node’s interests, the subject of the information, etc., take these factors into the process of
multi-social networks influence maximization, and propose more accurate and efficient substitute
node mining algorithm.
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