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Abstract: Designing, implementing, and maintaining network policies that protect from internal and
external threats is a highly non-trivial task. Often, troubleshooting networks consisting of diverse
entities realizing complex policies is even harder. Software-defined networking (SDN) enables
networks to adapt to changing scenarios, which significantly lessens human effort required for
constant manual modifications of device configurations. Troubleshooting benefits SDN’s method
of accessing forwarding devices as well, since monitoring is made much easier via unified control
channels. However, by making policy changes easier, the job of troubleshooting operators is made
harder too: For humans, finding, analyzing, and fixing network issues becomes almost intractable.
In this paper, we present a failure localization framework and its proof-of-concept prototype that
helps in automating the investigation of network issues. Like a controller for troubleshooting tools,
our framework integrates the formal specification (expected behavior) and network monitoring
(actual behavior) and automatically gives hints about the location and type of network issues by
comparing the two types of information. By using NetKAT (Kleene algebra with tests) for formal
specification and Felix and SDN traceroute for network monitoring, we show that the integration of
these tools in a single framework can significantly ease the network troubleshooting process.

Keywords: computer networks; software-defined networking; network monitoring; network
troubleshooting

1. Introduction

Network troubleshooting is a time-consuming task that is most often an iterative process where
the same, or quite similar steps need to be executed [1]. After detecting the issue—sometimes even this
is hard to accomplish—we should locate the problem by looking for problematic points in the network.
In the best-case scenario, we can locate only one point for the failure and then dig deeper to find out
the root cause of the problem. Upon finding the root cause, we should devise a plan to resolve it and
check back on the network to find out if it permanently fixed the problem and did not cause any more
errors [1]. Doing this process manually is a tedious job; thus, it is best to use automated methods.

In traditional networks, failure localization is hindered by the heterogeneous nature of equipment
used in the network: Data forwarding equipment and middle boxes (that do network address
translation (NAT), intrustion prevention system (IPS), intrusion detection system (IDS), firewall, etc.
functionalities) can be accessed via their proprietary interfaces. As network middle boxes are replaced
with control applications, and switch control interfaces are standardized, the picture gets a bit
different in software-defined networking (SDN)-enabled networks, of which OpenFlow [2] is the most
widespread implementation. We can still have hardware failures (e.g., port or link errors) that cause
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packets to be lost, but configuration errors now arise most probably as results of software-related
issues [3,4]. In data forwarding equipment, we find firmware errors and control software issues.
In the latter cases, we would find missing or incorrect forwarding entries that cause the network to
forward packets to unwanted directions. We can only detect these kinds of errors when we have
a baseline of the error-free operation. Such a baseline operation can be captured on a live network
when it is presumed to be running in a correct state. Another way is to use a formal specification of the
network. In both cases, we can test the current network forwarding and compare it with the correct
state. The actual forwarding behavior of the network can be observed by passively logging forwarding
properties, but actively injecting traffic—the properties of which we can specify—into the network can
yield better results [5]. When active tests do not cause significant increase in network load, they can
reveal issues much more quickly and in more detail.

Based on these observations, our aim is to develop such a framework that leverages the benefits
of using an SDN-enabled network, all the while actively testing the network for issues and comparing
current behavior to our baseline, as depicted by Figure 1. We chose our baseline as being a formal
specification of the network. Such specifications in cases of both network topology and high level
policies should be readily available for proper network management in any case. Since active testing
is superior to passive monitoring, we chose to incorporate that concept as well. In order to achieve
our goal, we outline a framework that is able to satisfy the following criteria: (i) read formal network
specifications; (ii) generate test cases based on them; (iii) actively monitor network traffic in accordance
with given test cases; and (iv) evaluate test results and localize faults. In this environment, there are
different jobs for our framework to handle. The first is to instrument the tools that provide monitoring
functions. In order to achieve this, we need to wrap the selected tools in such a way that the framework
would be able to access them: Handle their life cycle events, send them inputs, and query them.
Automatic test generation and selection is another task where a list of paths should be created that
covers the network. In accordance with test cases, the framework should control monitoring tools
to collect traffic information flowing through the selected path. The evaluation and localization
phase should then find out whether traffic on the monitored path is in compliance with the network
specification. If not, it should identify the smallest subset of network components that can cause
the issue. In this sense, we can think of the framework like a controller in SDN-enabled networks.
SDN controllers instrument network-forwarding equipment according to live events or predefined
rules, and they are extensible in two ways. They enable the implementation of separate modules
that are specialized to perform certain tasks as well as support defining the overarching forwarding
capabilities by relying on these building-block modules. Our framework does a similar job with
network monitoring and troubleshooting tools. It gives an interface for connecting tools in an extensible
way and instruments them to realize network failure detection and localization.

Network specification

Framework

Test generation

Monitoring

Evaluation
& fault

localization

Physical network

Compare Implement

Monitor

Figure 1. Our framework’s relationship with the outside world: Network specification and
physical network.
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The basic concept of our framework is the following. First, it interprets the network specification
and creates test cases from it by finding out what type of traffic between which endpoints passes
through a certain path in the network. Then it selects a path from the generated list and starts
monitoring it by actively injecting packets to emulate the selected traffic type. As it gathers data on
the tested path, it compares that with its knowledge of the network and marks those points that are
suspicious of failing. It continues iterating on the test list by selecting a new path from it.

For the above reasons, in the proof-of-concept implementation of our framework, we selected
such a formal language for the network specification that supports reasoning about network properties.
We chose our monitoring tools in such a combination where they can perform active tests, e.g., generate
traffic that targets the selected path in the network, and both measure packet forwarding at the end
points and capture the route that packets take. We prepared the framework’s evaluation and fault
localization step to be able to compare test results with the formal specification, so we applied tools
that can interpret test results in conjunction with formal network description. Our proof-of-concept
implementation thus became an integrated application in which we incorporate available reasoning
and monitoring tools. As Figure 2 shows, the framework takes a network specification compiled from
high level descriptions and supplies it to our execution and evaluation framework that can run tests,
monitor network behavior, and analyze results on its own.

High level network policy

Network topology specificationSpecification: NetKAT

Test results

Monitoring
tool 2:
SDN

traceroute

Monitoring
tool 1:

Felix MS

Traffic
generator:

nping

Test
generator/

selector

Compare
with

specifications:
Felix

Framework

Operator

Physical network

Figure 2. High-level concept of our framework.

As for the network specification, we chose to build our solution around the NetKAT (Kleene
algebra with tests) language [6]. It is a formal language designed within the Frenetic project [7]
specifically for the purpose of describing networks—it can encode both topology and policy
information—and to reason about network properties. Other works dealing with network behavior
modeling concentrate too much on controller implementation and can thus describe only low level
behavior. While some are able to verify properties of correct behavior [8], they lack the ability
of reasoning about different forwarding properties. Other methods concentrate more on creating
efficient forwarding tables [9], while yet other methods are too complex for the task at hand [10].
Merlin, a regular expression-based language [11] similar to NetKAT, was also developed to extend
Frenetic. However, it puts more emphasis on solving the problem of determining a placement strategy
for network devices based on required bandwidth. These tools might still be adaptable for our
use-case but with much more work, since NetKAT has the additional benefit that tools developed
together with the language make it possible to create low-level policies—that can be used by our
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framework—from high-level ones. This enables our framework to adapt to any network NatKAT is
able to describe. We give a short summary about the Frenetic project and the language in Section 2.1.

We opted to use a simple method for generating test cases that applies the Felix tool [12] and is
talked about in Section 3 in more detail. We note that there are specific tools for the purpose of
finding test paths in networks adhering to the SDN concept to achieve the best test coverage [13–16].
These could also be integrated with our framework to enhance test path generation capabilities,
but this was not a goal for the current iteration of our work. We chose to use two tools that are able
to inspect network behavior in ways that complement each other while putting less strain on the
network and adding only non-invasive modifications to standard behavior: Felix’s measurement
service [12] and SDN Traceroute [17]. The former is able to analyze packet counts at hosts but is only
able to passively monitor the network; thus, we incorporated a traffic generator as well. The latter
tool, SDN traceroute, can actively trace paths taken by custom-built packets through the network.
We summarize the capabilities of these two tools in Sections 2.2 and 2.3, respectively. As we later show,
combining these separate tools using a single framework has synergies—e.g., additional information
can be uncovered regarding network issues—that would not be available when using them disjointly.
We note that other tools, e.g., sTrace [18], could be used for monitoring also.

Data gathered using the above tests are collected into a storage component from where they can
be read and analyzed. Comparing test results with expected behavior can reveal nonconformities in
the physical network as well as narrowing down the location of the error to a subset of links and ports
present in the network. For the sake of comparing measured data to specification, we instrumented the
Felix tool [12] that can devise test end points for paths in the network. Paths in this case are defined
with Felix’s own query language that is slightly different than the standard NetKAT language. We give
a summary about this tool also in Section 2.2. This component of our framework is also responsible for
interpreting the collected data. Since information about issues is collected from different parts of the
network, the framework is able to correlate them and prioritize them based on their occurrences.

As stated above, our contributions are thus threefold. First, using the controller of troubleshooting
tools concept, we introduce a framework that is capable of instrumenting existing tools to perform
active and passive network monitoring in an automated manner. Second, we show a method for
comparing the result these tests give to a network specification, thus validating adherence to it,
and when the physical network differs from its specification, we show possible failure locations.
Finally, we demonstrate the use of our framework on three use-cases and discuss performance-related
aspects. In accordance with these, the rest of this paper is organized as follows. Section 2 gives
a summary of the used concepts and tools. In Section 3, we show the details of the operation of
our framework and evaluate our proof-of-concept implementation on different failures discussed
in Section 4. In Section 5, we discuss our results and possible future works. Section 6 gives a short
summary about novel troubleshooting tools and how they compare to our implementation. Finally,
we list implementation details in Section 7.

2. Background

Since we are implementing a complex scenario and also want to demonstrate the integration
of different tools, it is essential to first discuss the main building blocks in short. This section first
shows the details of the NetKAT language and how it is used to describe network behavior and later
presents Felix, the engine for our evaluation phase. The two used monitoring tools that measure
packet-forwarding properties are also shortly described at the end of the section.

2.1. Formal Description of Networks

Having an easily configurable controller is key in operating software-defined networks
successfully. In order to achieve this goal, the Frenetic project developed their controller platform
around a new formal language, NetKAT. It was specified in a way to make network description simple
and allow reasoning about the properties of the described network as well [6]. The language differs
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from previous approaches for describing networks in that it can incorporate information on both
network topology and forwarding behavior. This is supported on both a very high level as well as
lower levels. The Frenetic project developed tools that are able to parse high level topology and policy
descriptions and—through a series of steps—compile them into low-level instructions, at the end
transforming them directly to OpenFlow flow table entries. In the following, we first introduce the
language in more detail, then we shortly present how the compilation from high-level description to
low-level instructions works.

The NetKAT Language

The language’s concept builds on the assumption that computer networks—under certain
conditions—can be modeled with finite state machines and thus can be described by a language
using regular expressions. Language rules are based on the Kleene algebra and use KAT (Kleene
Algebra with Tests) expressions as building blocks [6]. In NetKAT’s view, as detailed in Table 1, packets
are considered as records consisting of header fields on which we can execute different operations.
These header fields are the usual packet header fields complemented with two additional ones: Switch
and port. With predicate operations, we can write primitive actions (like dropping a packet or negating
a header field), while policy operations let us modify packets as well as provide an interface for more
advanced composition of predicates. For example, the + operator describes branches in the forwarding
and the · operator describes consecutive network nodes or processing events. The = testing operator is
also defined, which is used for filtering packets matching specified header fields or switch identifiers.
The ← assignment operator is used for assigning new values to fields. Using this interpretation,
the following expressions describe the topology containing a single link shown in Figure 3:

(sw = 1 · pt = 2 · sw← 2 · pt← 1) + (sw = 2 · pt = 1 · sw← 1 · pt← 2).

Here we have two expressions that describe forwarding on the link. The first one specifies the
Switch 1 to Switch 2 direction, while the second gives the reverse direction. If we imagine the network
as an entity that performs transformations on packets, we can easily understand the idea behind the
notation. First, with sw = 1 · pt = 2, we select packets that arrive to port 2 of Switch 1. Then we
describe the transformation that a link applies to these packets: It modifies the sw (switch) filed to 2
and pt (port) to 1.

Table 1. NetKAT syntax [6].

Fields f ::= f1| . . . | fk
Packets pk ::= { f1 = v1, . . . , fk = vk}
Predicates a, b ::= 1, identity

0, drop
f = n, test
a + b, disjunction
a · b, conjunction
¬a, negation

Policies p, q ::= a, filter
f ← n, modification
p + q, union
p · q, sequential composition
p∗, Kleene star
dup, duplication

Switch 1

2

Switch 2

1

Figure 3. A simple network with a single link.
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For a bit more complex network, let us take a look at the one shown in Figure 4. Based on the
above example, the topology can be given with the following expression:

tnet = (sw = 1 · pt = 2 · sw← 3 · pt← 1) + (sw = 1 · pt = 3 · sw← 4 · pt← 3)+

(sw = 2 · pt = 1 · sw← 3 · pt← 3) + (sw = 2 · pt = 2 · sw← 5 · pt← 1)+

(sw = 2 · pt = 3 · sw← 4 · pt← 2) + (sw = 3 · pt = 1 · sw← 1 · pt← 2)+

(sw = 3 · pt = 2 · sw← 4 · pt← 1) + (sw = 3 · pt = 3 · sw← 2 · pt← 1)+

(sw = 4 · pt = 1 · sw← 3 · pt← 2) + (sw = 4 · pt = 2 · sw← 2 · pt← 3)+

(sw = 4 · pt = 3 · sw← 1 · pt← 3) + (sw = 5 · pt = 1 · sw← 2 · pt← 2).

Host 1

Switch 1

1 2

3

Switch 3

1

23

Switch 4

1
2
3

Switch 2

1

2

34

Switch 5

1
2

Host 2

Host 3

Figure 4. Sample network for demonstrating NetKAT description.

The equation does no extraordinary feat, it simply lists each link in the network the same way
as in the example before. Network hosts can be defined as well by listing their connection points to
switches. If we do so, t, the complete network topology, can be given by taking the conjunction of the
expressions defining the hosts and the tnet network:

hosts = (sw = 1 · pt = 1) + (sw = 5 · pt = 2) + (sw = 2 · pt = 4)

t = hosts · tnet · hosts.

Thus, we start traffic from a host, then traffic traverses the network, and at the end, it reaches
another host. Here, hosts are identified by the position they occupy in the list, e.g., host 1 is connected
to switch 1 port 1. We can incorporate layer 2 and layer 3 addresses as well, in order to complement
the expression. In this case, we have to distinguish between the directions that specify incoming and
outgoing traffic. Thus, the list of hosts would comprise the disjunction of the two subexpressions,
while t describes cases where traffic originates from inputs and terminates at outputs:

inputs = (sw = 1 · pt = 1 · ip4src = ”10.0.0.1” · ethsrc = ”00:00:00:00:00:01”)+

(sw = 5 · pt = 2 · ip4src = ”10.0.0.2” · ethsrc = ”00:00:00:00:00:02”)+

(sw = 2 · pt = 4 · ip4src = ”10.0.0.3” · ethsrc = ”00:00:00:00:00:03”)
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outputs = (sw = 1 · pt = 1 · ip4dst = ”10.0.0.1” · ethdst = ”00:00:00:00:00:01”)+

(sw = 5 · pt = 2 · ip4dst = ”10.0.0.2” · ethdst = ”00:00:00:00:00:02”)+

(sw = 2 · pt = 4 · ip4dst = ”10.0.0.3” · ethdst = ”00:00:00:00:00:03”)

t = inputs · tnet · outputs.

A simple forwarding policy for the network can be defined with a short NetKAT expression
giving us a low-level network policy. In the below equation, the first two parenthesized expressions
define the routes packets that should be taken towards host 1 and host 2, respectively. In our sample
case, every switch should forward packets destined for host 1 on port 1 and they should send out
packets targeting host 2 on port 2. In the case of host 3—defined by the rest of the expression—we can
use a different method where we define forwarding ports for every switch individually, e.g., switch 1
should send packets for host 3 on port 1 (see the third parenthesized expression):

p = (dst = 1 · pt← 1) + (dst = 2 · pt← 2) + (dst = 3 · sw = 1 · pt← 3)+

(dst = 3 · sw = 2 · pt← 4) + (dst = 3 · sw = 3 · pt← 3) +

(dst = 3 · sw = 4 · pt← 2) + (dst = 3 · sw = 5 · pt← 1).

We can complement these rules on a high level, for example, with a rule that restricts operation
only for UDP traffic. Thus, rule pUDP modifies rule p, which deals with traffic in general, in a way
that it is executed only when the type of the traffic is UDP. Using this, network operation can now be
written as taking the sequential composition of a series made from the policy and the network topology
with the predicate for inputs being at the beginning and outputs at the end. Or, by simplifying it with
the Kleene star operator, which repeats the preceding expression zero or more times:

pUDP = (typ = udp) · p

network = inputs · pUDP · t · pUDP · t · . . . · pUDP · t · outputs = inputs · (pUDP · t)∗ · outputs.

At this point, we can use NatKAT’s ability to reason about network properties. Such properties
can be whether hosts are able to reach each other or if they are separated in certain ways.
Waypointing—e.g., untrusted traffic traversing an intrusion prevention system—can also be tested
as well as traffic slicing. In that latter case, the network could be split into slices having their own
subpolicies that can be combined into a single network-wide policy. Let us see an example now
for verifying that UDP traffic from host 1 to host 2 can traverse the network. Solving the following
inclusion would mean that our assumption (UDP traffic can pass through the network) is included in
the network behavior (axioms for the deduction are detailed in [6]):

((typ = udp) · sw = 1 · pt = 1 · sw = 5 · pt = 2) ≤ (pUDP · t)∗.

From the above examples, we can see that describing network topologies is quite an easy feat
even on a low level. The process can be done programmatically, and we leverage this feature in the
implementation of our framework as well. Policies, in cases of complex networks, can be harder to
build, though. Every network should have a high-level policy that describes the grand scheme of
network operation, but deriving low-level instructions from this is a tough job. Fortunately, Frenetic is
so ambitious that it is able to compile such high-level forwarding descriptions into low-level policies
and eventually turn them into OpenFlow flow table entries. We highlight the main considerations of
the steps taken by the process in the following.

The Compilation Process

The process applies a three-stage workflow [19] to transform high-level network specifications
into low-level instructions, as shown in Figure 5. In the first stage, a v virtual program specifies
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the high-level forwarding behavior of the network on a vt virtual topology. The virtual topology
can be a simplification of the real network, e.g., a big switch that is directly connected to every host
in the network. This separation of virtual and physical network descriptions has the benefit that
changes in the physical network will have no effect on the specification of high-level forwarding
behavior. The vc virtual compiler then takes v and vt, together with an m mapping between the real
and virtual networks and distills them into a g global program. This defines routes between virtual
ports using physical paths. A global program can combine expressions specifying processing jobs in
switches and defining network topology. It can also contain additional state information that cannot
be added on a lower level. After this, the gc global compiler produces a p local program from g
that lists the low-level policy rules of the network in the form discussed above. In the last stage of
the compilation process, the lc local compilation step takes the p network policy and the t physical
topology together with network inputs and outputs and combines them using the formula discussed
above: inputs · (p · t)∗ · outputs. In the end, the compilation creates OpenFlow forwarding tables for
each switch with the help of forwarding decision diagrams.

vt

Virtual topology

vcv

Virtual program

g

Global program

m

Mapping

gc p

Local program

lc

t

Real topology

dst=10.0.0.1

dst=10.0.0.2

false port:=2

Forwarding Decision Diagram
port:=1

Pattern Action

dst=10.0.0.1 Fwd 1
dst=10.0.0.2 Fwd 2

* Drop

OpenFlow forwarding tables

Figure 5. Frenetic compilation process.

Since a broad range of networks can be described by the NetKAT language, we believe it is
optimal to be used as a method for formally specifying networks for our framework. Using the
language axioms, we can deduce forwarding behavior based on specifications written in NetKAT.
Our framework thus needs to discover path information from the specification, and while it would
be possible to use a proprietary engine for this purpose, we decided to use the one that has been
developed within the scope of the Frenetic project. The tool is called Felix, and it is able to generate
test cases for paths in a network and monitor forwarding behavior at the hosts. We give more details
in the following section about this tool.

2.2. Host Monitoring with Felix

In conjunction with the above aspects of the Frenetic controller, a network monitoring tool was also
developed [12]. The main idea behind the tool is to put the least strain possible on network equipment
during monitoring. It is split into different components. The first one is the Felix compiler, which is
a decision service that is able to determine the type of traffic in which hosts should be monitored
when checking a path in the network. Parallel to this, a measurement service runs on each host of the
monitored network and logs incoming and outgoing packets. Lastly, a controller is responsible for
connecting the previous two. In the following, we give a summary about the first two, since in our
work, the controller was replaced by our framework.
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Felix Compiler

Felix is able to parse network descriptions and, based on a path definition, compute the parameters
of the traffic passing through the path at hand. Thus, in order to find out these parameters, we need
to supply Felix with network inputs and outputs, policy and topology NetKAT descriptions, as well
as a path definition. The first four can be obtained as discussed above, while the last one should
be supplied manually. The path definition—or query in Felix terminology—can define links in the
network, and its syntax is given by Table 2. A filter expression defines the input and output behavior
like end points of a link. Other operators can be used for combining such links into a path.

Table 2. Felix query syntax [12].

q, q′ ::= (a, b) Filter
q + q′ Union
q · q′ Sequencing
q∗ Iteration
true Pass
f alse Drop

Let us take an example of how Felix works on the network shown in Figure 4. Assume that we
would like to check the path switch 3→ switch 4→ switch 2. We have already defined the network
topology in the previous section; thus, we only need to create an expression that specifies the selected
path. Our first guess could be listing the links in the path as pathnaive does below. However, this way,
we specify a path that starts at exactly switch 3. Unfortunately, this point cannot be the start of any
traffic in the network we specified, since traffic can originate only from network inputs, and switch 3 is
not one of those. Thus, we have to add a wildcard expression that matches any link preceding the first
one, as given by query path:

pathnaive = (sw = 3, sw = 4) · (sw = 4, sw = 2)

path = (true, true)∗ · (sw = 3, sw = 4) · (sw = 4, sw = 2) · (true, true)∗.

As a response, we receive only one host pair. The reason for this amount is that only the traffic
between these two uses the given path. In the result, we find an alpha host that specifies the properties
of the starting point and a beta host that gives the destination of the traffic. In the below expression,
alpha means that packets sent to host 2 should be monitored on the host connected to port 1 of switch 1.
Similarly, beta specifies the receiving side:

alpha = [dst← 2 · pt← 1 · sw← 1]

beta = [dst← 2 · pt← 2 · sw← 5].

Likewise, if we were to test the link between switches 2 and 5, we would write a slightly different
path query. This case would now supply us with more host pairs:

path = (true, true)∗ · (sw = 2, sw = 5) · (true, true)∗

alphas = ([dst← 2 · port← 4 · switch← 2], [dst← 2 · port← 1 · switch← 1])

betas = ([dst← 2 · port← 2 · switch← 5], [dst← 2 · port← 2 · switch← 5]).

As we defined the path with a certain direction, we still receive host pairs generating and receiving
traffic only in that direction. In order to test both directions, we could reverse the order of links and



Future Internet 2019, 11, 107 10 of 27

combine it with the previous one using the union operator. This way, as expected, results give us host
pairs for both directions:

path = (true, true)∗ · ((sw = 2, sw = 5) + (sw = 5, sw = 2)) · (true, true)∗

alphas = ([dst← 2 · pt← 4 · sw← 2], [dst← 3 · pt← 2 · sw← 5],

[dst← 1 · pt← 2 · sw← 5], [dst← 2 · pt← 1 · sw← 1])

betas = ([dst← 2 · pt← 2 · sw← 5], [dst← 3 · pt← 1 · sw← 1],

[dst← 1 · pt← 1 · sw← 1], [dst← 2 · pt← 2 · sw← 5]).

Felix Measurement Service

On its own, the compiler is not able to detect packet forwarding behavior in the network.
Thus, an additional tool joins Felix in monitoring packet forwarding. The measurement service
creates iptables entries for selected flows on hosts given by Felix (in the form or alpha–beta pairs) and
uses them to count the number of packets matching flow properties. It allows packet filtering based on
source and destination address, and protocol, as the compiler can determine these parameters.

In this layout, the combination of the two components (compiler and measurement service) cannot
determine whether the traffic goes through the same path as the specification dictates. It assumes that
if the complete sent traffic arrives to the destination, then the given path correctly performs the packet
forwarding. This inadequacy supports our cause to integrate the tool with a different one that can
supplement it. We give a brief description of our chosen tool, for this purpose, in the following section.

2.3. Trace Logging with SDN Traceroute

Since SDN uses different concepts than traditional networks, we can have a better success in
tracing paths a packet takes when using a more adapt tool than the standard traceroute for route
discovery. SDN traceroute [17] is a controller application that can install non-invasive rules into
each connected network switch. These filter-marked packets, and thus the controller, can analyze
gathered data and recreate the path the packets took. At first, SDN traceroute maps the network and
discovers connections among switches. Using this information, it assigns a color to every switch so
that neighboring switches get different colors. A field in the packet header—that is large enough and
otherwise unused—is used for storing the color tag. After this, OpenFlow rules, with the highest
priority, are installed to every switch that match every color in the network except for the color assigned
to the switch at hand. At this point, the algorithm illustrated in Figure 6 kicks in. The figure shows our
previous sample network with a possible coloring. Assuming we want to trace the path from host 1 to
host 3, we have to specify the switch that connects to the first host. Based on our packet specifications
and the given switch, the controller creates a packet tagged with the color of this switch and sends it to
the switch, in this case, switch 1 (see step 1©). Since the switch has no high priority rules that match the
tag, it uses its forwarding rules to send out the packet in accordance with the network policy (step 2©).
Here the packet color matches one of the rules set by SDN traceroute, and thus, the switch sends the
packet to the network controller ( 3©), which registers the switch as the next element in the packet’s
route. Following this, SDN traceroute replaces the color in the packet to match that of the second
switch and sends it back to the switch ( 4©). After this, the cycle starts anew, e.g., step 4© corresponds
to step 1© and step 5© to step 2©. By the time the packet traverses the network, the controller has
registered the complete path the packet had taken and reports it to the user.
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Controller

Tag: 001

Switch 1

1 2

3

match priority action

010 32767 CONT
011 32767 CONT

Host 1

Tag: 010

Switch 3

1

3

match priority action

001 32767 CONT
011 32767 CONT

2

Tag: 011

Switch 4

1
2
3

match priority action

001 32767 CONT
010 32767 CONT

Tag: 001

Switch 2

1
34

match priority action

010 32767 CONT
011 32767 CONT

2

Tag: 010

Switch 5

1
2

match priority action

010 32767 CONT

Host 2

Host 3

1

2 forward
3

4

5 forward

packet-out:
(in-port: 11,
tag: 001,
action: TABLE)

packet-in:
(in-port: 31,
tag: 001)

packet-out:
(in-port: 31,
tag: 010,
action: TABLE)

Figure 6. Example for tracing packet routes with software-defined networking (SDN) traceroute.

The above operation clearly shows that although SDN traceroute can log the trace of a packet,
it lacks automatic configuration options in a sense that the starting switch and packet parameters
should be supplied manually. It can also be seen that the tool is unable to give any information about
links connecting hosts and switches. We argue that the combination of the SDN traceroute and Felix
tools can be a strong option for localizing failures in networks, especially when aided with a logic that
can collect information about network paths from Felix and then use it to assemble test cases, execute
the tools based on them, and evaluate results in an automatic manner. Thus, the next section gives
the details of our framework that integrate the above tools and realize automatic failure detection by
applying them.

3. Results

As suggested by the above description of the two major tools that we use, they can complement
each other. Where one of them has shortcomings, the other proves to be an adequate tool. In order to
integrate them, we identified the following missing features. Felix should be supplied with queries
and offers no facilities to make network testing an automatic process. It also lacks the option to test
whether packets truly traversed the path given by the network specification. SDN traceroute can fill
in this latter inadequacy but lacks automatic connection setup with switches, automatic execution,
and automatic discovery of the first switch, as well as not being able to say anything about links
between switches and hosts. It is also unable to validate whether the discovered route matches the one
given by the network policy.

In order to remedy these problems, we implemented a framework using the concept of a controller
for troubleshooting tools. Thus, the framework is able to call external tools via a unified interface and
handle the data flow among them. Direct control of the tools is realized by wrapper components,
and these wrappers are instructed by the framework as shown by Figure 7. The framework handles life
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cycle management of the components via the unified control interface and is able to start, call, and stop
components. The framework offers an asynchronous notification system that gets notified whenever
a component generates output. The framework scheduler than schedules the calls of all those
components that are subscribed to be notified for the event. Specifying the input and output data
formats is the responsibility of each component. In the case of our integration of Felix and SDN
traceroute, we opted to use NetKAT expressions in the processing chain; thus, the wrapper component
for SDN traceroute handles conversion from NetKAT to SDN traceroute’s own input format. With this
implementation, the framework is able to involve yet other tools, logging and displaying features
as well.

Framework

Wrapper 1

Tool 1

Wrapper 2

Tool 2
. . .

Start,

Call,

Stop

Results

Start,

Call,

Stop

Results

Figure 7. Framework interaction with integrated tools.

Additionally to providing a call mechanism towards the framework, the wrappers can extend the
functionality of the tools they handle. In its unwrapped form, the Felix compiler tool has a command
line interface that can only be called interactively, which is unfit for automation purposes. In the
tool’s case, our wrapping method made it possible for the framework to inject the required network
and path specifications to the tool and receive its responses in a structured form. The measurement
service tool did not provide any options for automatically setting up monitoring software on the hosts.
Our wrapping solution solved this problem as well as provided higher level options to query the
monitoring software instances. Dealing with SDN traceroute proved to be a similar case where the
tool’s wrapper took control of starting the tool in a separated Docker environment and configuring
it. By making the NetKAT network specification available to the wrapper, we were able to solve
two insufficiencies of the original tool. First, the wrapper was made capable of connecting available
network switches with SDN traceroute. Second, it alleviated the problems of manually specifying the
switch where a certain route test should originate from.

Figure 8 shows the basic steps that the framework follows in order to localize failures in a network.
In the initialization phase, it performs basic tests on the network specification and stores the results in a
component, named the Path matrix, which plays a key role during the execution. Based on the data
gathered from the network specification, the framework starts testing the physical network with packet
measurements where connectivity between hosts is checked. At the evaluation phase, the framework
analyzes the results and stores them in the Path matrix. At the same time, a route discovery is performed
to check which exact path the traffic takes; the results are stored again at the Path matrix after evaluating
them. As results, the framework displays possible points of failure to a human operator as a last step. In
the following, we detail the above phases.
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Initialization Path matrix Results

Packet
measurements

Route
discovery

Evaluation
Operator

Figure 8. Concept of failure localization steps.

Initialization

In this phase, the framework calls Felix to determine for every link in the network which paths
they belong to. It defines paths as sets of links between two given hosts. In order to gain knowledge
about the network, first the predefined network topology and policy are read. Remember, creating
a network topology in NetKAT is easy, and network policy can also be determined based on a high-level
specification using the Frenetic compilation steps, as per Section 2.1. When the network specification
is available, the framework generates Felix query expressions based on it for every link in the network.
This set of queries is then supplied to Felix together with the specification. In return, Felix gives the
framework a list of host pairs among which traffic can pass through the given links. We store this
information with the Path matrix component. For the queries, we use the following form (as discussed
in Section 2.2):

(true, true)∗·
(sw = switch-A, pt = port-C, sw = switch-B, pt = port-D)·

(true, true)∗.

The phase is also used for performing the initialization of the measurement service and the SDN
traceroute tools via their respective wrapper components. Initialization of the measurement service
involves starting the appropriate software components on each host and configuring them to filter
specific packets. As discussed above, these tasks are completed automatically on the remote hosts,
as well as initiating the SDN traceroute tool.

Path Matrix

As a major part of framework functionality, we implemented the data storing features in
a component called the path matrix. Its role is to store link-related data and provide the apparatus for
different queries. Two kinds of information can be stored within the component:

• Route information: For every host pair, the component stores the links that are involved in relaying
packets between the two end points. The framework uses data acquired in the initialization step
to compile such information;

• Test information: For every link, the component stores the test results gained while testing the
network during the packet measurement and route discovery steps. Test results define if testing
a host pair was successful or not.

Figure 9 shows a sample of the data stored by the Path matrix component when testing the
network of Figure 4. In this sample case, the results show that testing the path from host 1 to host 2
proved to be unsuccessful, while the reverse direction works as expected. If we analyze the results,
we can see that packets from host 1 reach host 2, but they skip switch 4. The simplest explanation for this
behavior would be that packet forwarding in the physical network does not match the specification
and the network forwards packets via the link between switches 3 and 2 instead of routing them
via switch 4.
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We made host connection information acquirable from the component. In this case, it lists each
possible host pair in the network and, based on stored data, relays information about whether the
end points are connected or not. These data are used later by the framework for generating test cases.
While the Path matrix component assigns information to links, results can be accessed on a port basis,
as each link is identified by its two end points. We designed a method to access this information as
well, in the case of possible failures: The component relays a list of ports that are suspicious as being
faulty. Data accessed this way are used when summarizing results for the operator.

Host 1 Host 2 Host 3

Host 1 —

Host 2 → Sw 5 pt 2 X
Sw 5 pt 1 → Sw 2 pt 2 X
Sw 2 pt 1 → Sw 3 pt 3 X
Sw 3 pt 1 → Sw 1 pt 2 X
Sw 1 pt 1 → Host 1 X

· · ·

Host 2

Host 1 → Sw 1 pt 1 X
Sw 1 pt 2 → Sw 3 pt 1 X
Sw 3 pt 2 → Sw 4 pt 1 7

Sw 4 pt 2 → Sw 2 pt 3 7

Sw 2 pt 2 → Sw 5 pt 1 X
Sw 5 pt 2 → Host 2 X

— · · ·

Host 3 · · · · · · —

Figure 9. Information stored by the Path matrix component when testing the network shown in
Figure 4. Columns identify the sources of the traffic, while rows identify the destinations. Switches are
abbreviated to Sw and ports to pt.

Packet Measurements and Evaluation

In this phase, the framework first queries the Path matrix component for a list of host pairs.
It selects those pairs that should be able to reach each other based on the network specification.
The framework then iterates this list by taking one host pair at a time. First it executes a baseline
measurement using the measurement service on both members of the host pair, then it injects traffic at
the first member of the host pair.

For injecting the traffic, we used a wrapped version of a third party tool, called nping, which is
able to send packets from a host to another using different protocols. The wrapper makes the tool
able to be executed on remote hosts also. In our proof-of-concept implementation, we assumed that
packets traverse the same path independently of their protocol, and thus, we used internet control
message protocol (ICMP) packets. Note that NetKAT can describe different forwarding paths for
packets with different protocols, and Felix is also able to make decisions based on this. Our framework
could have taken advantage of this feature also, but it would have increased the complexity of our
failure detection; thus, we opted not to use it.

When traffic injection completes, the framework repeats the packet count measurement and
compares it with its baseline. When it identifies that the increase in packet counts corresponds to the
number of the injected packets, it assumes that the path between the two end points works correctly.
Thus, it updates each link’s state in the Path matrix between these two end points to correct. Otherwise,
it sets the states of all these links to incorrect.

Route Discovery and Evaluation

Since the tools in the previous phase cannot detect the path taken by the injected packets,
the framework has to run another tool that can determine it. It uses SDN traceroute for the job.
It determines the first switch in the link with the help of the NetKAT specification and configures
SDN traceroute to send its monitoring packet there. It then follows up on the output—the discovered
path—of SDN traceroute and compares that with the path that the network specification indicates.



Future Internet 2019, 11, 107 15 of 27

In order to do so, the framework queries Felix again, with the exact route supplied by SDN traceroute.
The output of SDN traceroute identifies the switches that pop up during the trace, so the framework
formulates Felix link expressions based on that. The framework uses Felix’s answers in a somewhat
“reversed” way where it inspects if the currently tested host pair is among those returned by Felix. If so,
it is safe to assume that traffic passed through the same route given by the specification. In this case,
the framework sets the state of the links in this path (except for the links connecting the hosts with
switches) to correct. Otherwise, the path diverges somewhere form the specification. To determine this,
the framework creates a series of Felix queries that take longer and longer parts of the SDN traceroute
path and validate whether that is part of the route. It uses the following Felix query expression to
achieve this:

<segment given by SDN traceroute> · (true, true)∗.

The framework uses the same approach as before to test the point at which the operation of the
physical network does not match the specification. At the first segment of the route where the output
of SDN traceroute and Felix disagree, it locates the first link that is not part of the route. At this point,
the framework sets every link’s state to correct except for the one preceding the diverging link, which it
marks as incorrect. It does not change the state of the rest of the links on the path, since tests do not
reveal any information about them at this point.

The framework can also identify cases when the monitoring packet did not reach the target host.
In these cases, it uses the above query expression and the complete trace that SDN traceroute returned.
If Felix can identify the currently tested host pair based on the query expression, then the framework
can safely assume that the path returned by SDN traceroute is only a section of the complete path
between the two end points.

Results

As the execution progresses by processing new host pairs, the Path matrix component is updated
with new information at each iteration. The current state of possible port or link failures is relayed
to a human operator in real time by the framework. Failing links are identified on the graphical
representation of the network with dashed lines, as Figure 10 shows. This display method acts as
a sort of heat map where the thickness of a line grows in proportion with the rate of failing test cases
compared with passing test cases. In order to better understand the nature of the failure, a summary
of failing and passing test cases with respect to network links is also displayed in a table format.
Using this, the operator can determine whether issues affect only certain flows at a given switch port
or every one of them.
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Figure 10. Failing links (marked with dashed lines) on a sample network as the framework displays it
at the end of failure localization.
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4. Use-Cases

We assembled three basic cases, in each of which we examined one failure type in the tree topology
shown in Figure 11. These cases showcase the detection process during which our framework locates
links that act differently than they supposed to, based on the network specification. Since SDN is
applied extensively in data centers, we opted to showcase detected failure types on such a topology
that is still simple enough to understand and represents the properties of a data center network.
We note that the framework can be used on more complex cases and topologies, and we selected these
cases based on simplicity to demonstrate operation and the underlying aim: To detect that a certain
type of traffic deviates from its path defined by the specification. The three cases are the following:

• Use-case 1: The use-case emulates a situation where the network layout does not match
the specification. Concretely, we investigated the effects of a possible host misconfiguration.
We connected two hosts—h4 and h5—to the network with their medium access control (MAC)
and IP addresses swapped;

• Use-case 2: Here we introduced a configuration error into one of the pieces of forwarding
equipment to emulate a problem with the control application. We added a forwarding rule
to switch sw1 that drops the packets destined to h1;

• Use-case 3: In this case, we investigated the problems caused by a link failure. We turned the link
between h3 and sw4 to down.

In the following sections, we demonstrate the results gained from running our framework on the
above use-cases.

4.1. Use-Case 1: Locating Layout Difference

In our first test case, we simulated a simple change in the physical network compared to the one
described by the specification, in order to emulate an undocumented or unwanted layout change in
the network. We swapped the addresses of hosts h4 and h5 in the specification, as shown in Figure 12.
If we compare the figure with Figure 11 that shows the physical network in this case, we can see that
hosts h4 and h5 are still connected to switches sw4 and sw5, respectively. Since we introduced no other
error in the network, we expect packet forwarding not to be disturbed. This also means that using
only host monitoring to detect problems (i.e., applying only the Felix tool) would not reveal any issues
and only the combination of path tracing and network specification can find out the problem.
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Figure 11. Tested network.
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Although here we demonstrate the problem on a simple case of wrong host configuration, similar
results can arise from diverse causes. In a bottom–up direction, one such cause can be the failure
of properly registering changes of the physical network on the level of specification. Examples here
can be the permanent replacement of network equipment, changes in low level policies or hardware
components for fixing temporary failures. Similar issues can manifest in a top–down direction as well
when considering the introduction of new policy rules that have unexpected side effects.

During the network test, this is exactly what happens: Packet measurements cannot detect any
problems on the hosts affected by the change of addresses. A video demonstration about the use-case is
available at: https://youtu.be/-h1XgMU0Y-k. Packets can traverse the network between the two hosts
using the same forwarding rules, even when the host addresses are swapped. Route tracing is able
to discover the change, though. As Figure 12 shows, links sw4–sw2, sw2–sw1, sw1–sw5, and sw5–sw6
are identified as problematic ones. Our framework correctly identifies the wrong paths packets take
to hosts h5 and h4 but does not mark the hosts as root causes in this case. Host to switch links do
not show up as failed since neither of the used tools (the measurement service and SDN traceroute)
are able to tell anything about these links. The use-case clearly shows that our method of integrating
different tools in a unified framework that runs them automatically is beneficial for failure detection.
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Figure 12. Failing links as identified by the framework in the layout difference use-case.

4.2. Use-Case 2: Locating Configuration Error

With this use-case, we emulated the possible effect of an issue with the controller application.
In cases where the application is acting up, a possible failure can be that the switch acts as a black hole
and does not forward (certain) packets. Another issue could be that the switch relays the packet via the
wrong port, but this error type would cause a loop of packet forwarding that would bring down our
emulation in a quite short time. These kinds of failures are inspired by issues caused by network policy
or controller code changes. The first can happen whenever the network is extended with new services
or when arming it against new vulnerabilities. Since network controllers are modular, many modules
from different vendors can serve the same functionality. Changing such modules (e.g., based on
a financial reason) would effectively change the code the controller is running and, in a worst-case
scenario, can result in unforeseen side effects. Another example why controller code can be changed
is to make it more effective. By opening up the network control, SDN makes the development of
controllers and control modules much faster, which is beneficial for the overall process, but quickly
changing code makes network behavior harder to track.

In this use-case, as Figure 13 shows, the path segment reaching from sw1 to h1 is correctly
identified as being the one having problems. The link between h1 and sw3 is marked as the most
problematic one. This comes from the fact that h6–h8 cannot establish a connection with h1. This is
also the cause why the links connecting these hosts with their switches are marked as being faulty.

https://youtu.be/-h1XgMU0Y-k.
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Locating h1 as having a problem can help in identifying the root cause of the problem but at
the other end of the path, at sw1. Analyzing which tests failed and which passed for the marked
links can help in better understanding the root cause of the failure without applying further tests.
This use-case demonstrates a network issue of which symptoms both used monitoring tools can detect
but eventually their combined results take us closer to figuring out the root cause of the problem.
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Figure 13. The framework successfully identified switch sw1 as the first point where issues occur in the
configuration error use-case. Marking host h1 as the most problematic one (see thick dashed line) helps
in later analysis at switch sw1.

4.3. Use-Case 3: Locating Link Failure

While the SDN concept introduces issues mainly arising from software development problems,
it still retains errors induced by hardware failures. This use-case serves as a simple demonstration of
a hardware failure in the network.

The results of turning the link between host h3 and switch sw4 to down are shown in Figure 14.
The link connecting the host with its switch is correctly identified as being the most problematic one.
Other identified links come from the same reason as mentioned in Section 4.1. This use-case shows
an example for a situation where the SDN traceroute tool would not be able to detect any problem on
its own. Using only Felix, we might be able to see that something is amiss with packet forwarding
between host h3 and all its peers, but we would not be able to tell where on the path the error occurs.
Again, the combination of different tools takes us closer to locating the issue.
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Figure 14. Our framework’s display of detected links that are affected by issues in the link failure
use-case. The thick line between h3 and sw4 indicates that the connection is the most likely to
have problems.
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4.4. Performance

Resource usage and execution time of the framework comprise the following factors:

1. Path matrix related operations: Evaluation of test results as well as writing and reading data
to/from the structure;

2. Used third-party tools: Packet generation, Felix together with its measurement service and
SDN traceroute;

3. Execution environment: Resources required for running the toolchain.

In the following, we give an analytical summary about the Path matrix component, then we
discuss the needs of performing tests. For the formalization, we use the notations summarized
in Table 3.

Table 3. Summary of notations for performance analysis.

e the number of links in the network

d
the length of the longest forwarding path in the network if it acts according to specifications.

This is the diameter (i.e., the longest among all shortest paths)
when the network follows shortest path forwarding

dPHY
the length of the longest forwarding path in the physical network,

i.e., dPHY = d if it follows specifications

n the number of hosts in the network

h ≤ n2 the number of tested host pairs in the network

τ the execution time of an operation

T the number of steps an operation takes

|t| the number of the terms describing the network topology

|p| the number of the terms describing the network policy

|in| and |in| the number of the terms describing network inputs and output respectively

PM Path matrix

4.4.1. Performance of the Path Matrix Component

The Path matrix holds a mapping of links and host pairs. The framework discovers this mapping
by executing queries in Felix. Thus, the number of steps required for adding information about a new
link to the Path matrix is the following:

TPM
l = TFelix

query + TPM
insert︸ ︷︷ ︸
O(1)

list push

= O(TFelix
query).

According to [12], Felix execution depends on the number of compiled terms. These come from
the five supplied descriptions: network in- and outputs, topology and policy, as well as a query.
This latter always specifies LONG-PATH type queries. In a general case, where more than one link is
specified by the query, the number of terms is given by the following formula where l signifies the
number of links in the query:

|terms| = |in|+ (|p|+ |t|) + l(|p|+ |t|+ 2) + (|p|+ |t|) + |p|+ |out| ≤ (2 + l)(|p|+ |t|) + 2(n + l).

For the initialization phase, where the framework uses only a single link, the above can be
simplified to:

|terms| = 3(|p|+ |t|) + 2(n + 1) = O(|p|+ |t|+ n).
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To complete the initialization phase, the framework needs to query every link then transform the
resulting list. The step count of this operation is given by the following formula:

TPM
FS ≤ e · TPM

l + e · h = e · (TPM
l + h).

This operation can take a significant amount of time but can be done offline before starting
network testing. Since primary and backup paths can also be defined using the same NetKAT network
specification, when a failure occurs, there is no need to redo the Path matrix initialization step.

As testing the live network progresses with checking a host pair, the framework uncovers the
state of the each link (dPHY at most) on the path between the two hosts. Consequently, the framework
updates the Path matrix with these states. The following formula gives the number of steps required by
this operation. As operations in both terms work on lists, the number of steps required by the update
operation is dependent on dPHY, the length of the longest forwarding path in the physical network:

TPM
update ≤ TPM

find host pair︸ ︷︷ ︸
O(1)

search in a
hash table

+
dPHY

∑
n=1

Tset test result︸ ︷︷ ︸
O(1)

change state
from correct
to incorrect

or vice-versa

= O(dPHY).

Reading test cases executes in O(h) steps, while reading test summaries needs O(e) steps.
Verifying if a single link is part of the path takes TPM

lm = O(d) steps, as this search covers paths
given by the network specification.

Path matrix read and write operations can be shortened when the construct is implemented as
two hash tables. However, this has an adverse effect on the storage size, for which the following
formula gives an upper bound: log e · h + h · d · log e = h · log e · (1 + d).

Many operations mentioned above depend on h, the number of tested host pairs, as the main
contributing factor. Other works (e.g., [13–16]) that target test packet generation methods showed that
analyzing packet forwarding behavior on the level of forwarding rules can help in reducing the space
of required test packets. Since our framework uses the network’s NetKAT specification, forwarding
rules are readily available, and conversely, these methods can be used to reduce host pairs to test
as well.

4.4.2. Performance of a Single Test

The time required to perform the test of a single host pair can be given by the following equation:

τtest = τ
packet
generation + τ

packet
detection + τ

packet detection
evaluation + τroute discovery + τ

route discovery
evaluation + τPM

update.

τ
packet
generation, the time required for sending out test packets, depends on host capabilities and the

network path to reach the host. Control and test packets are small in size; thus, the main factor here
comes from the number of hops the control packet takes to reach the host. The time required for
detecting these packets at the destination (τpacket

detection) should be determined by the network specification,
and it also depends on the path the packets take. In a worst-case scenario, the control message and test
packets travel on the longest forwarding path in the physical network, dPHY. We can give an upper
bound for these two components based on the round trip time along the longest forwarding path:

τ
packet
generation + τ

packet
detection = O(RTT(dPHY)).
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τ
packet detection
evaluation , evaluation of the incoming test packets is an insignificant amount of time, since

only measurement data and the number of sent packets are compared at this step. τroute discovery is the
execution time of SDN traceroute. According to [17], average latency of the tool is 1.23 ms per hop.
In a worst-case scenario, it is (dPHY − 2) · 1.23 ms on average since SDN traceroute is not able to test
links between hosts and switches. To check if the reported path satisfies the network specification,
the framework has two options. When the path consists of a single link only, the Path matrix has
enough information to decide if the reported link is part of the correct path or not. In this case:

τ
route discovery
evaluation = O(TPM

lm ).

If a longer link sequence is used, the order of the reported links need to be checked as well,
which is done by executing Felix queries. Felix tests take at least one query (when the path proves to
be correct) and (dPHY − 2) tests at most (when the last link on the path proves to be incorrect only).
Since Felix queries do not contain host to switch links, we can estimate this part of the equation with
the following formula:

τ
route discovery
evaluation ≤ (dPHY − 2) · τFelix

query.

As seen in the previous section, Felix execution is dependent on the number of compiled terms,
and [12] reports that execution time increases linearly: At 100 terms, it is around 20 ms and reaches 1 s
at 10,000 terms, consequently:

τFelix
query = 0.1 · |terms| ≤ 0.1(2 + dPHY)(|p|+ |t|) + 0.2(n + dPHY).

As TPM
update = O(dPHY), the execution time will depend on dPHY as well, thus: τPM

update = O(dPHY).
Since the update operation modifies a list of size dPHY at maximum, we can assume a short execution
time; as such, operations take less than 1 ms even on a mid-range laptop when dealing with lists
having tens of thousands items. Based on these, the complete formula shows that the main factor to
consider is the execution time Felix queries:

τtest = O(RTT(dPHY)) +O(1) +O(dPHY) +O(dPHY · |terms|) +O(dPHY) = O(dPHY · |terms|).

In the case of our sample network, shown in Figure 11, where |terms| = 668 and d = dPHY = 6,
different runs of testing a path result in the following execution time estimations:

τworst case
test ≤ 4 · 1.23 + 4 · 0.1 · 668 +O(RTT(dPHY)) +O(TPM

write) = 272, 12 ms +O(RTT(dPHY)) + 1 ms

τ
correct path
test ≤ 4 · 1.23 + 0.1 · 668 +O(RTT(dPHY)) +O(TPM

write) = 71, 72 ms +O(RTT(dPHY)) + 1 ms

τlink
test ≤ 1.23 · 6 +O(TPM

lm ) +O(RTT(dPHY)) +O(TPM
write) = 4.92 ms +O(RTT(dPHY)) + 2 ms.

As these numbers show, in order to achieve a shorter response time when locating long paths in the
network, it would be beneficial to use the Path matrix instead of Felix. In the current implementation,
the Path matrix does not have the apparatus to recognize if a link is part of an operational or a backup
path, which Felix can do. With modifications on the Path matrix component, this could be achieved;
thus, the framework could skip recalculation of paths in the network. Such modifications would,
however, have an adverse effect on every operation of the component: Initial setup, update with test
results, and failure queries as well. Analysis of such options is to be covered by future work.

Since performing tests requires modifications on forwarding rules and actively contributing to
network traffic, these can have an adverse effect on network performance. SDN traceroute works
with adding high-priority flow entries to every switch in the network. However, the number of such
entries is less than the maximum degree of the network’s graph which, in a usual case, adds only
a small amount of new entries to flow tables. The number of test packets to send can be reduced
by either applying the methods discussed in [13–16] or taking into consideration the non-test traffic
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between hosts. The framework can instruct Felix’s measurement service to detect packets generated
in either way. SDN traceroute sends out only a single test packet per tested path, which again has
a small contribution to network strain. Test packet generation can be made more effective by merging
host-based and SDN traceroute specific test packet generation. However, this involves the modification
of SDN traceroute, which is outside of the scope of the current work.

5. Discussion

Troubleshooting and failure localization is an actively studied area in SDN. In this paper,
we showcased a framework that builds on existing network monitoring tools and a strong formalism
that can specify network behavior by leveraging topology and policy information. Our framework
is able to automatically test network paths and localize failures affecting them, though it has some
limitations. It can create a full coverage of network paths to be tested, but the applied selection
method does not take into account already available test information. By modifying the selection
algorithm, we can focus on failures much quicker. With the current proof-of-concept implementation,
only those paths are tested that are deemed to be able to relay traffic based on the specification.
With slight modification of the test paths generation and selection methods, the framework might be
able to test paths that are not supposed to carry traffic. This would make failure localization much
stronger. The current implementation is based on the assumption that if we do not get monitoring
information from a target host, then the path is considered to be faulty even if this information is
lost on the reverse path. Another assumption that we made was that packets use the same path
independently of the used protocol, which might not be true for all networks. This again can be
overcome by a slight modification in our test generation methods. As our sample use-cases show,
our framework can find switch- or host-related issues in the network and seriously reduce the number
of network nodes that can cause the issue. Since by nature, our framework is extensible, other tools
can be incorporated that can further filter out switches from our suspicious list. This extensibility
can also help in adapting the tool to different networks. The current implementation supports only
OpenFlow-centric SDN-enabled networks, but other SDN implementations or traditional networks
can be covered as well. More specifically, only SDN traceroute needs to be replaced in such cases,
since on the highest level, NetKAT (thus, Felix and its measurement service) can handle different
network types.

6. Related Work

DYSWIS

The DYSWIS (Do You See What I See) tool [20] handles troubleshooting-related issues in VoIP
service provided in traditional networks. It can perform active and passive tests at multiple points in
the network in order to automatically locate errors. The tool uses two types of special network nodes.
The detection nodes detect errors applying passive traffic monitoring and active testing. The diagnostic
nodes find out the root causes by examining historical data of similar errors. The first type of nodes can
apply standard or custom-made testing tools like ping or traceroute or more complex ones. The latter
nodes are able to draw conclusions based on the observed symptoms and instruct other nodes to
perform specific tests.

The special network nodes work in a distributed manner, and when one of them detects an issue,
it combines data from earlier cases and current observations made by other nodes. An estimation of the
root cause is then given by an inference process using a rule-based system where the rules describe the
dependencies among the network components. The combined view of the whole network can help the
tool to narrow down the location of the issue at hand. Executing more steps of testing and comparing
the results with historical data narrows down the failure mode and location even more. Eventually,
an operator is notified who is responsible for interpreting the end results and applying fixes.



Future Internet 2019, 11, 107 23 of 27

Our framework also applies external tools to test the network, but our main focus was on SDN.
In our case, parts of the monitoring tool run in a distributed manner on hosts, while the core part
runs at a centralized location. We did not compare current network operation to historical data but to
a formal specification of the network.

Differential Provenance

The problem of network failure detection and root cause analysis is tackled in a different way
in the case of DiffProb [21]. The tool is able to detect SDN and Map Reduce related issues. The first
case includes the detection of erroneous flow entries, inconsistencies affecting multiple controllers,
unexpected timeout of rules, and multiple erroneous flow entries, while the latter lists configuration
change and code change problems.

The tool uses the concept of differential provenance. A provenance graph is a DAG (Directed
Acyclic Graph) that shows the relationship among network events. Nodes of the graph are the events,
and two nodes are connected by a graph edge when the event signified by one of the nodes is a direct
consequence of the other. With such a graph and appropriately selected methods, steps (network
events) resulting in errors can be retraced to the root cause. The authors argue that their method of
retracing errors to their origin works with any error type.

To achieve their goal, they used two provenance graphs, one that is captured when the network
is in a faulty state and the other that is comparable (similar enough) to the first graph but was
recorded as a baseline when the network was in a correct state or in a similar network having the same
characteristics as the one under investigation. A reference event is chosen that keeps the network in
a correct state and is similar enough to the event under scrutiny. With the reference event, a reference
graph is built. When finding events that are similar enough, most of the nodes in the two graphs will
be common, and this makes the root cause localization much simpler. The difference between two
graphs is still big enough that they cannot be directly compared. Since nodes describe only similar
cases, when we move further away in the graph, these small differences add up, and they might cause
serious differences at the end until the point that the difference might be so big that comparing the two
graphs would be totally pointless.

In order to tackle this problem, a proprietary algorithm is used that first selects two “seed” nodes:
One that caused the error signal, and the other that is the reference event. The algorithm conceptually
turns back the network state of the provenance graph containing the network failure until it reaches
an adequate point. Then, it replaces a “bad” node with a “good” node. At this point, a new provenance
graph is “grown” from the replaced node by advancing the network state. By repeating this process,
the base provenance graph containing the failure becomes more and more similar to the correct graph
until they become exactly the same. After this, the algorithm gives the steps that cause the differences
between the two graphs (ideally, there is only one). These steps give the best estimation about the root
cause of the failure.

With this tool network, events are passively collected; thus, it has no means to direct which parts
of the network get tested, while the baseline of correct operation is again set by historical data.

Trumpet

The Trumpet tool [22] targets data center use-cases where fine grained time resolution of event
history is beneficial. With this approach, the possibility of detecting temporary congestion or unbalance
among the servers can be increased. The tool still provides statistics aggregated on a longer timescale
for operators to analyze network performance.

The tool applies active monitoring and, based on that, it can automatically intervene with the
network behavior in order to solve the problem. It runs on the end devices of the network and leverages
their significant compute capacity and easy programmability. Trumpet can monitor network-level
events defined by users. With its proprietary predicate-based language, network events such as one
data flow causing others to congest, aggregated traffic arriving to a host reaching a given limit or
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packet loss occurring in bursts can be checked. These network-level events definitions are sent to
an event manager that runs on a central controller. This in turn installs the definitions to the end
devices. On these devices, a trigger event is generated in the packet monitor software instance when
the defined conditions are met. A signal is then sent to the manager entity that can aggregate all such
signals from every host. Based on the aggregated network view, the manager is able to check the
existence of the requested network level event.

Trumpet uses active probing but has a different goal than ours. It focuses on collecting monitoring
data in the shortest timespan based on network events. The tool needs to be configured to monitor
certain events, while our framework is able to generate network-wide tests on its own.

SDNProbe

A recent tool discussed in [16] proposes the most similar solution to ours. It discovers connections
in an SDN by accessing network controller information and, based on this, creates random paths in the
network to be tested. Then, a minimum set of test packets is generated by the controller to traverse
these paths. The packets are collected at the target end of the path, and analysis of correct behavior
is performed also at the controller side. If a path is identified as being faulty, it is split into separate
sections, which are then retested. This process is repeated until only a single node is located as the
cause of the issue.

Test packet generation is based on solving the minimum legal path cover problem, which creates
the minimum set of paths that cover legal paths in the network. The approach has the clear advantage
over ours that it tests fewer paths in the network while still checking each legal path. The result of this
is shorter execution time and less strain on the network. Our method of generating test paths could
be modified in a similar manner while still retaining host checking capabilities that SDNProbe lacks.
This would involve changing the method of initializing and querying the Path matrix component to
handle groups of hosts that can be tested using a shared path. By using network topology and policy
information together, NetKAT is certainly able to handle queries about shared paths or segments.
To a certain extent, Felix can supply this information using more complex queries and post-processing.
Such modifications would, however, make the initialization process much slower. By providing deeper
integration with the NetKAT language and creating a custom-built reasoning engine, we could alleviate
this issue. This latter approach, on the other hand, is orthogonal to our aims of building a modular
troubleshooting controller on existing components. With the extension of current implementation,
we would also be able to test such host pairs that should not be allowed to have access to each other
(in cases of network slicing). This would not be feasible with SDNProbe, however, since it concentrates
solely on legal network paths.

Epoxide

Epoxide is an execution framework that is able to reuse different existing troubleshooting tools
and connect them in a formalized manner [23–25]. In order to realize this, it provides a framework
for executing any external command line tool and offers an interface for wrapping them. The tool
is capable of executing diverse troubleshooting scenarios, but it lacks the ability to detect failures in
a complex SDN scenario.

As we can see from the above cases, most state-of-the-art tools are still used for giving advice to
operators on different levels and help them to locate root-causes. Automatic intervention in network
state is still limited; on their own, they do not provide means for incorporating such abilities.
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7. Materials and Methods

In order to test our method of localizing failures in a network, we created a tool that is able to
transform networks described with the GML (Graph Modeling Language) [26] format into NetKAT
expressions by applying the shortest path routing between hosts as a network policy. The tool also
assigns IP and MAC addresses to hosts and names each network node. This way, we were able to test
our method on different topologies supplied by the The Internet Topology Zoo [27].

In order to emulate the network, we developed a Python script that instructs Mininet [28] to set it
up based on the given NetKAT expressions that are written into files by our GML (Graph Modeling
Language) transforming tool. The script reads host and switch data from the topology descriptions,
while the policy file is parsed and translated into OpenFlow rules, then these are installed on their
respective switches. We opted to have our measurement point—where our framework runs—on a node
in the root namespace of the host where Mininet is executed. This node is always connected to the
same switch as host h1 is, via a dedicated switch, as Figure 15 shows. When the hosts are started by
Mininet, the SSH daemon is initiated on each of them in order for our framework to be able to access
them remotely.

To handle the connection with our measurement point, we installed additional rules on each
switch. Traffic destined to the measurement point was forwarded by similar rules as when forwarding
to host h1 except at h1’s switch. There, the traffic was forwarded to switch s0.

sw0

Measurement point

sw1

Host 1

. . .

Root namespace

Network under test

Figure 15. Connection of the measurement point to the network under test.
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Abbreviations

The following abbreviations are used in this manuscript:

SDN Software Defined Networking
NAT Network Address Translation
IDS Intrusion Detection System
IPS Intrusion Prevention System
ICMP Internet Control Message Protocol
MAC Medium Access Control
IP Internet Protocol
DYSWIS Do You See What I See
DAG Directed Acyclic Graph
KAT Kleene Algebra with Tests
GML Graph Modeling Language
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