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Abstract: Performance evaluation tools for wireless cellular systems are very important for the
establishment and testing of future internet applications. As the complexity of wireless networks
keeps growing, wireless connectivity becomes the most critical requirement in a variety of applications
(considered also complex and unfavorable from propagation point of view environments and
paradigms). Nowadays, with the upcoming 5G cellular networks the development of realistic and
more accurate channel model frameworks has become more important since new frequency bands are
used and new architectures are employed. Large scale fading known also as shadowing, refers to the
variations of the received signal mainly caused by obstructions that significantly affect the available
signal power at a receiver’s position. Although the variability of shadowing is considered mostly
spatial for a given propagation environment, moving obstructions may significantly impact the
received signal’s strength, especially in dense environments, inducing thus a temporal variability even
for the fixed users. In this paper, we present the case of lognormal shadowing, a novel engineering
model based on stochastic differential equations that models not only the spatial correlation structure
of shadowing but also its temporal dynamics. Based on the proposed spatio-temporal shadowing
field we present a computationally efficient model for the dynamics of shadowing experienced by
stationary or mobile users. We also present new analytical results for the average outage duration
and hand-offs based on multi-dimensional level crossings. Numerical results are also presented for
the validation of the model and some important conclusions are drawn.

Keywords: wireless channel; lognormal shadowing; stochastic differential equation; dynamics; 5G
cellular networks

1. Introduction

Wireless communication systems have offered outstanding achievements and opportunities for
applications and services in information and communication technologies. In the upcoming 5G era, the
future cellular networks should be envisioned to support efficient and flexible resource management
and provide customized services to meet the service-specific high performance requirements in a
variety of use cases. New higher frequency bands are also allocated for employment in future cellular
networks and in order to support the new challenging demands of the users that generally need more
bandwidth. The propagation channel plays one of the most crucial roles in order to provide reliable
communications, high availability systems and also determine efficiently the system dimensioning
(number of antennas, relays, base stations, gateways etc.). The future cellular architectures are becoming
more complex and the performance of different types of links in multiuser, multi-cells, small cells,
and relaying scenarios that are changing topology very frequently should be evaluated. Moreover,
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the upcoming 5G communication systems are planned to accommodate various diverse services
and satisfying their stringent performance requirements in terms of connectivity, mobility, reliability,
latency, peak data rate, and coverage will impose unprecedented challenges to 5G network design and
performance optimization. This will be achieved with the 5G terminology of networks slicing. To this
end, the link adaptation considering the spatial-temporal time varying propagation channel in the
various cells that provide different services will remain one of the most important problems for the
optimum design of the future satellite systems, including also their synergetic architectures. Regarding
the current status of the propagation research, there are numerous measurement campaigns in various
environments and different frequencies and also many theoretical approaches for statistical channel
models [1–6]. Nevertheless in experimental campaigns have not studied the temporal variation of
the large scale fading that is due to the movement of the local environment scatterers, especially for
millimeter wave frequencies.

Wireless channel models consist of an indispensable tool for the efficient design and testing of
modern wireless communication systems. The emerging need for higher data payloads demands more
sophisticated exploitation of the channel’s capabilities, which in turn imposes further requirements for
the development and application of more advanced channel models. In this paper we focus on large
scale fading or shadowing.

This kind of fading, that is mainly caused by obstructions, has been commonly accepted to be
modeled as a lognormal random variable for outdoor [7] and indoor environments [8]. Whereas
shadowing is a purely spatial phenomenon for a specific configuration of the propagation environment,
temporal variability is induced mainly by the user’s mobility but also by moving obstructions.
The impact of shadowing caused by moving obstructions, even for fixed locations, may have an
important role in the system’s performance, especially in densely populated environments. In this
context, shadowing can be considered as a spatio-temporal process, i.e., a random field evolving in
time. Moreover, the impact of shadowing correlation is considered nowadays as a key parameter
to account for in order to obtain more realistic channel model frameworks. Taking into account the
correlation structure of the shadowing field impels shadowing modeling one step further towards
reality, as shadowing correlation significantly affects handover behavior, interference power and the
performance of diversity schemes [9].

Various existing models in the literature exploit the spatial correlation structure of the shadowing
field, without taking into account the temporal variability [10–13], while others that include the temporal
evolution consider it solely a result of user’s mobility, by transforming the spatial correlation to temporal,
without really addressing the temporal evolution of the field, mainly caused by obstruction movement
in the vicinity of the receiver [14–16]. This is especially important in indoor environments [17], when
line of sight (LOS) is disturbed, as several studies indicate, see [18,19] and the references therein.
Similar results, although less intense, are expected for distributed indoor-outdoor and/or densely
populated urban networks [18]. However in these models, shadowing correlation and cross-correlation
for different locations and base stations are not taken into account.

Whereas autocorrelation of shadowing refers to the case of one base transmitter, cross-correlation
refers to the correlated shadowing of signals from different base stations. This statistical behavior
of differently originated signals is of great importance for the design of cellular wireless networks,
interference studies, handover algorithms, cooperative diversity schemes, etc. The correlation
phenomenon is present in outdoor [20], as well as in indoor environments [21–23]. Moreover even links
without a common node, if closely located, exhibit shadowing correlation [23,24]. In [25] a stochastic
differential equation (SDE) is introduced for shadowing dynamic modeling, able to capture the random
attenuation variations with respect to time, but without considering shadowing cross-correlations from
different base stations, either.

Moreover some publications from the application of correlated shadowing phenomena in relaying
architectures and cooperative networks are [26–31] and on stochastic differential equations are [32,33].
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Up to now, in the literature there are not analytical dynamic statistical channel models for the
large scale fading that could be used for the evaluation of complex wireless network architectures.
Therefore there is a strong motivation to develop a theoretical model with parameters that can be
adopted to experimental measurements.

In this paper, a novel dynamic shadowing model (channel model framework) is proposed,
able to deal with the temporal evolution of the propagation environment and also incorporate the
spatial correlation structure, by considering any type of correlation exhibited by different radio links,
including auto-correlation and cross-correlation. The model assumes the lognormal distribution for
shadowing fading, incorporating all important statistical parameters, as validated from experimental
studies. While being consistent with existing shadowing literature and published results, it captures
every important aspect of shadowing modeling in a single framework. It is based on a system of
stochastic differential equations (SDEs), and its solid mathematical framework permits the calculation
of important statistical parameters, while keeping complexity and computational cost to accepted levels.
The model can be used for the effective design and simulation of fixed and mobile wireless systems.

In this paper there novel analytical results are also presented concerning average outage durations
(AOD), level crossing rates (LCR) and hand-offs, based on the proposed probabilistic structure of
shadowing and the method of multi-dimensional level crossings.

The strengths of the proposed approach are the employment and the usage of many theoretical
models in order to develop a consolidated space–time dynamic model for large scale fading.
The components of the model are well accepted and have been proved theoretically. The weakness of
the approach is that it needs experimental verification. To the authors’ best knowledge there are not
specific measurements in the literature to validate the proposed modeling. For future experimental
campaigns, it is important to design a specific experiment in order to quantify to and study the temporal
variability of the large scale fading.

The remainder of the paper is structured as follows: Section 2 introduces the model and addresses
several aspects of its application with many mathematical details. In Section 3, numerical results of the
proposed model are presented and some significant conclusions are drawn.

2. Dynamic Lognormal Shadowing Framework

2.1. Random Field of Shadowing

Shadowing refers to the random variations of the received signal power around a mean value that
is noticed when a user is located at a given distance from a base station. This variation is mainly caused
because of different objects located in the radio-path and not taken into account by path gain models
that are used for the calculation of the mean power based only on distance. Thus, these fluctuations
are taken into account in a statistical manner and the received signal to noise ratio SNRR for a specific
location is expressed in logarithmic scale as:

SNRR = SNRT − PL(d) + X(dB) (1)

where SNRT is the transmitted signal to noise ratio and PL(d) is the mean propagation loss, as calculated
by an appropriate path loss model dependent only on the distance d between the base station and
the receiver. The term X in (1) is the shadowing component, a random variable (r.v.) location specific,
commonly accepted to be zero mean Gaussian [7].

Denoting by γR the received signal to noise ratio in linear scale, then from (1) it is evident that it is
a lognormal r.v. with a probability density function (pdf) given by:

p(γ) =
ξ

γ
√

2πσ
e−

(10 logγ−µ)
2σ2 (2)



Future Internet 2019, 11, 106 4 of 18

where ξ = 10/ ln 10 is a normalization constant and µ (dB) and σ (dB) are the mean and the standard
deviation of 10 logγR respectively. The standard deviation σ of 10 logγR is actually that of X, whereas
the mean µ expressed in terms of the median γm of γR and the transmission characteristics is given by:

µ = ln(γm) = lnγT −
1
ξ

PL (3)

where γT is the transmitted signal to noise in linear scale.
In (1) and what follows we assume that any multipath losses have been filtered out and we focus

next on the shadowing r. v. X. This is modeled for a given base station placement as a random field
X(x) with correlated values in different locations, what is known as serial correlation or autocorrelation
of shadowing. Though being traditionally modeled as a time-invariant spatial process, it is actually a
spatio-temporal process S(x, t). The temporal evolution is caused by variabilities in the propagation
environment caused by moving obstructions. As wireless networking becomes a critical requirement
even in complex and unfavorable environments, a novel dynamic shadowing model is presented here
able to deal with the temporal evolution of shadowing. In this section we present the proposed model
mostly informally through the covariance structure in order to explain the motivation and to show
the similarity to well accepted models in the literature. The covariance function permits not only the
second order description of the shadowing random field, but its complete characterization, as it is a
Gaussian random field.

A commonly accepted autocorrelation model for shadowing is a simple exponential characterized
by the shadowing correlation distance rc [34].

ρ(x1, x2) = e−
|x2−x1 |

rc (4)

The variance of shadowing is referred to as location variability σ and depends on frequency and
the propagation environment (urban, suburban, indoors, etc.). It is usually assumed common for
all locations belonging to the same general category of environment. Thus the spatial covariance of
shadowing is described as:

C(x1, x2) = e−
|x2−x1 |

rc σ2 (5)

It is a common practice when the user is moving this spatial variability to be translated to a
temporal variability scaled according to mobile’s speed. This is a standard scenario for measuring the
spatial variability, however careful data averaging is used to exclude the effects of multipath fading.
In this case (5) is transformed to:

C(t1, t2) = e−
|v‖t2−t1 |

rc σ2 = e−a|t2−t1 |σ2 (6)

where a = − |v|rc
, introducing thus the temporal autocorrelation as:

ρ(t1, t2) = e−a|t2−t1 | (7)

However, movement is a relative phenomenon and the influence of moving obstacles to shadowing
for fixed users can also be taken into account in a similar manner. We may thus attribute movement to
obstacles and consider a fixed user. We introduce for a fixed point X the temporal autocorrelation of (7),
which assuming a location specific variance σ(x) and dynamic parameter a(x) results in the following
temporal autocovariance:

Cx(t1, t2) = e−a(x)|t2−t1 |σ(x)2 (8)

In order to express the temporal variability along with the spatial for two fixed locations x1, x2 in
two different time instants t1, t2 we notice that the choice of the exponential temporal autocorrelation
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for each location implies that the shadowing process is Gaussian and Markov. Thus, without loss of
generality, assuming t1 < t2, we can express the shadowing r.v. S(x2, t2) in terms of S(x2, t1) as:

S(x2, t2) = e−a(x2)|t2−t1 |S(x2, t1) + σ(x2)
√

1− e−2a(x2)|t2−t1 |N (9)

where N is a standard normal r.v. independent of the shadowing parameters. By using (9) we find that
the covariance function of the shadowing random field S(x, t) is expressed as

C(x1, t1, x2, t2) = e−a(x2)|t2−t1 |ρ(x1, t1, x2, t1)σ(x1)σ(x2) (10)

where stationarity is assumed. The correlation coefficient can be chosen as:

ρ(x1, t1, x2, t1) = e−
|x2−x1 |

rc (11)

and in this case (10) describes the temporal evolution of auto-correlation of shadowing for a fixed user.
A similar reasoning has been used in [35] for the case of cross-correlation of shadowing affecting a
mobile user. With the selection of an appropriate correlation coefficient, the covariance function (10)
can be easily modified to include cross-correlation of shadowing and any correlation exhibited by
adjacent links.

We assume m base stations and the vector shadowing random field S(x, t) = [S1(x, t), . . . , Sm(x, t)],
where Si(x, t), i = 1, . . . , m is the shadowing process affecting a station located at x receiving
the signal from base station i, i = 1, . . . , m. The vector random field is completely described by
the cross-covariances:

Ci j(x1, t1, x2, t2) = ρi j(x1, t1, x2, t2)σi(x1)σ j(x2) (12)

where ρi j(x1, t1, x2, t2) is the correlation coefficient between the shadowing processes at points x1, x2

for the time instants t1, t2 respectively and for the signals from base stations i, j. It may be chosen
in a general setting to express autocorrelation, cross-correlation of shadowing, as well as correlation
between adjacent links without a common node. The model proposed here assumes the exponential
temporal correlation model:

ρi j(x1, t1, x2, t2) = e−a(x2)|t2−t1 |ρi j(x1, t1, x2, t1) (13)

Stationarity is also assumed by considering ρi j(x1, t1, x2, t1) independent of time. Except for these
prerequisites any consistent correlation model may be used. A reasonable choice reflecting the
commonly accepted correlation dependencies is given in [36] by:

ρi j(x1, t1, x2, t1) = e−
|x2−x1 |

rc g(θi
x1
− θ

j
x2
)h(di

x1
− d j

x2
) (14)

where θ j
xi

is the direction of point xi from base station j relative to some reference direction and d j
xi

is
the distance of point xi from base station j. The functions g, h are chosen in a way to satisfy positive
definiteness according to [36]. A detailed account for issues concerning the feasibility of selected
correlation models can be found in [9]. In [24] another model based on an underlying spatial loss field
is proposed in terms of a line integral across links, permitting the shadowing correlation calculation,
even for links without a common node. In any case of a feasible spatial correlation model chosen,
the proposed model induces an exponential temporal correlation as in (13). As shadowing is considered
a Gaussian random field [36] an appropriate selection of a feasible correlation model gives a positive
definite covariance matrix for any selection of space and/or time points.

Before proceeding in the next section to the formulation of the proposed dynamic model it should
be noted that the location variabilities appearing in (5)–(12) depict the fact that shadowing is being
dealt with in a statistical manner as path gain models do not take into account the exact propagation
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environment. This kind of modeling is described as non-site specific. This is one of the main advantages
of the proposed dynamic channel model framework. The location variability represents the statistical
spread of shadowing over the space–time points used for averaging. In case that detailed studies
for a specific environment have been carried out by use of other techniques, like ray tracing, then
it is only the influence of moving obstacles that has to be studied in a statistical manner and only
temporal averaging is used. We refer to these cases as site-specific. Then σ describes the variability
that these moving objects can cause to the received power for each specific location and the value of σ
is expected to be lower, than in the case that coarse path gain models are used and space averaging
is used. Even in cases where detailed measurements have not been carried out, but some specific
propagation conditions may be recognized, then this can impact the value of the location variability
through the introduction of an appropriate bias, like in [37,38].

Now based on the temporal exponential model and the implicit Markov assumption the model
proposed here can be formulated in the next section in terms of a system of stochastic differential
equations (SDEs). Such a formulation permits a phenomenological description of the shadowing field
with an additional solid mathematical background providing analytic calculations and straight-forward
simulation methods.

2.2. Dynamic Model

We consider the received SNR from m base stations, at k locations of interest. We denote by
γi(t), i = 1, . . . , n = mk (The notations γ(t) or γt is used interchangeably for the time dependence),
the received SNR in linear scale, i.e., every index corresponds to a specific location for a specific base
station. According to (1) expressed in terms of SNR (dB) the SNR in linear scale γi can be modeled
as a lognormal r. v. for each time instant. Its long-term statistical parameters are σi and ln

(
γmi

)
.

We are introducing the following multi-dimensional stochastic model. We assume that the resulting
shadowing vector process X(t) = [X1(t), . . . , Xn(t)] after applying the nonlinear transformation:

Xi(t) = ξ ln
(
γi(t)/γmi

)
, 1 ≤ i ≤ n (15)

to each component process γi(t), is a solution to a linear n-dimensional SDE of Ornstein–Uhlenbeck
type [39]:

dXt = A·Xtdt + B·dWt, X0 = x0 (16)

where A is the diagonal matrix A = [ai j]1≤i, j≤n with elements:

ai j = −ai·δi j (17)

δi j is the Kronecker delta function and ai, 1 ≤ i ≤ n are the dynamic parameters of shadowing,
in principle different for each link and X(0) = x0 is the initial condition of the stochastic differential
equation. The solution to the n-dimensional SDE (16) is straightforward and is given [39]:

Xt = et·A
·X0 + et·A

·

t∫
0

e−s·A
·B·dWs (18)

where

et·A =
∞∑

n=0

tn

n!
An (19)

Now due to the fact that the matrix A is diagonal (see (17)) it can be easily verified that[
et·A

]
i j
= e−ai·tδi j (20)
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The solution stochastic process Xt as given in (18) is a Gaussian process if X0 follows an n-variate
normal distribution, including the degenerate case. The mean vector of Xt, MX(t) is given by:

MX(t) = et·A
·MX(0) (21)

The covariance matrix CX(t) of the vector process Xt for each time instant t is given [39]:

CX(t) = et·A

CX(0) +

t∫
0

e−s·ABBTe−s·AT
ds

et·AT
(22)

which is the solution to the following linear differential equation

•

CX(t) = ACX(t) + CX(t)AT + BBT (23)

The matrix A has by definition all of its eigenvalues real and negative (equal to −ai), so the
convergence of the following integral is assured.

CX =

∞∫
0

es·ABBTes·AT
ds (24)

It is easy to verify that if CX(0) = CX then CX(t) = CX is a solution to (23). This means that a
stationary solution of (16) exists and in this case for (23) we are leading to the following algebraic
matrix equation:

ACX + CXAT = −BBT (25)

This equation forms the physical basis of the model. The stationary covariance matrix CX of Xt is
equal to the covariance matrix of the shadowing process S(t). Thus, existing models for the shadowing
process S(t) permit the derivation of the covariance matrix CX of Xt. Then, equation (25) can be used
for the determination of the transformation matrix B, that is required for the dynamic modeling of the
process Xt in (16), given the matrix A and the stationary covariance matrix CX.

If we denote:
G = BBT (26)

then from (25) we can determine that G is given by

[G]i j =
(
ai + a j

)
[CX]i j (27)

The matrix CX as a covariance matrix is real and symmetric and from (27) the same is true
also for G. The decomposition of G as the product BBT is straightforward and can be realized via
Cholesky decomposition.

By use of the solution process (18) a straight-forward calculation based on the properties of the
stochastic integral leads to the cross-covariance for two time instants t1 < t2

CX(t1, t2) = CXe(t2−t1)·AT
(28)

in direct relation to (13).
The model as formulated corresponds to the case of a fixed wireless system and captures the

temporal variability of shadowing due to obstacle movement. Of great interest though is the case of
mobile wireless systems. We consider the case of m base stations and l mobile users moving along the
trajectories r j(t) = (x j(t), y j(t)), j = 1 . . . l. By discretizing each trajectory in kl points, separated by a
distance corresponding to the distance scale of the shadowing process, we result in n = m

∑
l

kl links.
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The model may be used now for these successive locations providing the temporal evolution of the
shadowing experienced by the mobile users. The stationary covariance matrix contains the covariances
of any pair of locations for the corresponding signals of any pair of base stations. By adding more
locations we may include the trajectories of other mobiles too. However, such an implementation
provides more than we need, as the process models the temporal evolution for each point of the
trajectories, i.e., for every time instant we get n = m

∑
l

kl shadowing values and we actually need ml.

By using (12)–(14) and the fact that x2 = x1 + v(t2 − t1), where v is the velocity vector of the
mobile, we see that for a distance covered, such that the shadowing process may be considered locally
stationary, the covariance of the shadowing experienced by a mobile user is described as:

Ci j(t1, t2) = e−a′(x)|t2−t1 |g(∆θ)h(∆d)σi(x)σ j(x) (29)

where a′(x) = a(x) + |v|/rc. This approximation may be considered valid as long as the movements
are not of large scale and a stationary covariance matrix can approximate the shadowing correlations
and cross-correlations, irrespective of the users mobility [37]. In this case the correlations and
cross-correlations have to be calculated for a representative separation angle and distance while the
dynamic parameters account also for user’s mobility.

Here we have to note, that the proposed model is based on the multi-dimensional SDE in
equation (16) with the appropriate diffusion and drift coefficients. The SDE is not directly related
to motion, but provides the necessary spatial and temporal variability through the corresponding
covariance matrices and the rest parameters. The covariance matrix that has been assumed has been
selected as well accepted and proved in the related literature concerning the spatial variability of
shadowing. The concept of the mean speed of variability has been presented to induce the temporal
variability. Consequently, it is not an equation of motion, and even not a Brownian motion. It is a SDE of
Ornstein–Uhlenbeck type that describes the spatio-temporal statistical behavior of the modeled process.

2.3. Transition Probabilities

The process Xt as a solution to (18) is a Gaussian Markov process. The transition probability
densities p(x, t

∣∣∣y, s) are defined by:

P[x < X(t) ≤ x + dx
∣∣∣X(s) = y] = p(x, t

∣∣∣y, s)dx (30)

These can be derived by using the SDE solution and the properties of the stochastic integral or by
solving the corresponding Fokker Planck Equation (FPE):

∂tp(x, t|y, s) =
∑

i

∂xi [βixip(x, t
∣∣∣y, s)] +

1
2

∑
i, j

∂xi∂x j

[
Gi jp(x, t

∣∣∣y, s)
]
. (31)

Using the assumption of stationarity we have:

p(x, t
∣∣∣y, s) = p(x, t− s

∣∣∣y, 0) (32)

The expression of p(x, t
∣∣∣y, s) is given by:

p(x, t|y, s) = 1√
(2π)n∆

exp(K)

K = − 1
2 (x− e(t−s)B

·y)C−1
X (t)(x− e(t−s)B

·y)
T (33)

where ∆ is the determinant of the covariance matrix CX(t) and C−1
X (t) is the inverse matrix assuming

that it exists.
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2.4. Fade Durations and Level Crossings

Of great importance to several aspects of wireless communications is the average outage or
fade duration (AOD). AOD is a second order statistical property, which significantly affects packet
length, channel coding schemes, length interleaver, etc. The dynamic model proposed here permits the
calculation of AOD in a multidimensional setting by considering correlated shadowing and without
the adoption of asymptotic results of level crossings as in [40].

The shadowing process of (18) is a vector stochastic process of Ornstein–Uhlenbeck type, i.e.,
a Gaussian and Markov process. It is a well-known fact already from the one dimensional case that
the power carried by the high frequencies of such a process is so large that the AOD is zero and the
average level crossing rate (LCR) is non-finite [41]. However the inductances and capacitances always
present in the circuits used in radio engineering act to smooth the process [42], so analysis of fade
durations may be done through appropriate filtering of the process (18). Similar approaches can be
found in [21] for a general Markov process, and in [16,24,43] for the shadowing process.

The filtering approach finds a very strong reasoning based on the time scale of the physical process
of shadowing. As shadowing refers to the local mean of the received signal power, this is calculated by
measuring and averaging the power received over a spatial distance of 20–30 wavelengths in order to
filter out the multipath fading [44]. The shadowing then experiences slow variations over distances of
tens of wavelengths due to the presence of obstructions depending on their relative size. Translating to
time scale by considering the effect of movement this gives rise to a coarser time scale of shadowing
and an upper frequency limit of the shadowing process. However the limits are not strict, especially in
dense environments like in indoor propagation channels, where the large and small scale phenomena
tend to get mixed. Thus, averaging for finding the local mean by filtering out the multipath effect has
the drawback that the resultant shadowing process is unable to reflect shadowing variations inside the
averaging window [45]. We nevertheless assume through the whole study that the multipath effect
has been eliminated, an assumption common in the shadowing literature. We also do not confine
ourselves to a specific filtering method as in [16,24], where moving averages (temporal or local) have
been considered. Instead, we consider any appropriate linear filtering. However, filtering has a major
impact on second order statistics and the selection of the filter characteristics must correspond to the
specific analysis scenario.

Now as filtering is a linear operation and the shadowing process is a Gaussian process, the same
is true for the smoothed process, thus permitting the use of well-known facts for LCR and AOD of
Gaussian processes. By use of the generalized Rice method for vector stochastic processes [46], we can
calculate the out-crossing rate v+ of a limit surface ∂S bounding a domain D in the space of values of
the filtered process Zt as

v+ =

∫
∂S


∞∫

0

.
zn fZ

.
Zn
(z,

.
zn)d

.
zn

dz (34)

where
.
zn = nT(z)·

.
z is the normal velocity of vector process Zt at the limit surface ∂S and fz

.
Zn
(z,

.
zn)

is the joint probability density function (PDF). As Zt is a Gaussian vector process, its derivatives are
independent of the process simplifying the expressions for the joint PDF.

For any practical application of interest in wireless communications as in diversity schemes,
multi-hop networks etc., a domain can be identified inside of which the values of the vector process
permit the network operation, whereas out-crossings of this domain correspond to transitions to
outage periods. For example for the case of selection combining (SC) in a dual diversity scheme the
shaded area in Figure 1 corresponds to outage, whereas inside the domain D operation is assured.
The values Xth1, Xth2 correspond to threshold values below which the receiver cannot decode reliably.
In Figure 2 the corresponding outage and operation domains are shown for the case of a regenerative
dual-hop link.
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The AOD is expressed in terms of the out-crossing rate as:

d =
P(Zt ∈ Dc)

v+
(35)

where Dc is the complement of D.
The study of LCR through an appropriately filtered process also gives insight to another aspect of

the proposed model in relation to other approaches of the shadowing modeling by human shadowing.
In [18,19] the shadowing effect is modeled by a finite-state Markov chain, where transition probabilities
are derived. The shadowing event length is modeled as exponentially distributed and the appearance
of obstacles as Poisson distributed. The model presented here may be considered also consistent
with this approach, as it is well known that the level crossing of a high level of a Gaussian process is
approximated by the Poisson distribution. The calculation of multi-dimensional LCR can be found in
Appendix A.

Another application of the multi-dimensional LCR proposed here is the calculation of the average
times per meter traveled that a moving mobile must switch base stations in order to always be served
by the base station with the least path loss. As stated in [10] this is in fact, the basis for any good
hand-off algorithm and can serve as a benchmark for comparison and evaluation of practical algorithms.
The essential difference here with [16] is the novel application of multidimensional level crossings
and the flexibility of dealing with any kind of filtering of the initial Markov process, instead only
considering moving averages.
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3. Numerical Results and Discussion

In this section we apply the proposed dynamic shadowing model to two practical and modern
scenario scenarios of wireless systems. The first one refers to a dual-hop wireless system and the
second one to a mobile station receiving signals from two base stations. There are also many practical
scenarios that can be applied, such as interference, hand over, cooperative diversity, multiple antennas
transmission and reception.

The system under consideration is supposed to operate according the specified requirements,
when the received SNRR is greater than a threshold value SNRTH, SNRR ≥ SNRTH, or in linear scale
γR ≥ γTH. The threshold value depends on the type of modulation and the type of the supported
application. This requirement may be translated in terms of the transformed process X of (15), as:

X ≥ SNRTH − (SNRT − PL). (36)

If we define the fade margin FM as:

FM = SNRT − PL (37)

and we assume for simplicity that SNRTH = 0 dB, by simply adding the threshold value to the
propagation losses, then the requirement for operation is transformed to

X ≥ −FM. (38)

In order not to refer to specific equipment characteristics we present the results in relation to
the fade margin. When the receiver is moving, assuming local stationarity over the characteristic
area for shadowing, we present the results as a function of distance covered for a specific trajectory,
assuming an initial fade margin value and referring to the specific large scale fading model used for
the subsequent variation of the fade margin as the mobile moves.

As stated also previously, to the authors’ best knowledge there are no specific measurements in the
literature to validate the proposed approach. The future experimental campaigns should be designed
in order to capture the dynamic temporal variability of the large scale fading e.g., in a crowded local
environment for various sites and for different frequency bands.

3.1. Dual-Hop

The first application refers to a regenerative dual-hop relay link, part of a wireless mesh network
(WMN). The nodes are denoted A, B and C located at a distance d apart. The system is located in a
densely populated indoor environment, as a mall or an airport. The average speed of moving objects is
considered to be that of pedestrians, as 1.5 m/s, whereas the shadowing decorrelation distance has
been chosen 3 m, a value typical for indoor environments. The links are considered balanced, i.e., with
the same fade margin.

In Figure 3 we plot the theoretical alongside the simulated by use of the model outage probability
for the case of the decode and forward dual-hop relay. The accuracy with which the model generates
the stationary statistical characteristics of second order is remarkable. The efficiency of the model
concerning the second order dynamical statistical characteristics is shown in Figure 4 where the
theoretically calculated in Section 2.4 average outage duration is plotted along with the generated
one for different values of fade margin. The simulated values are in a very good agreement with the
theoretical ones. Slight differences are noted for high values of fade margin, which are due to the slow
convergence of the simulated AOD for such high values of fade margin. Figure 4 serves also as a
validation for the theoretical derivation of the AOD as in Section 2.4.

In Figure 5, in order to show the impact of the shadowing correlation coefficient we plot the
theoretical AOD for three different values of the correlation coefficient. From Figure 5 we see that the
impact of the shadowing correlation coefficient is very small concerning the average outage duration.
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Figure 5. Average outage duration for a regenerative dual-hop link vs. fade margin for three different
values of shadowing correlation coefficient.
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3.2. Cellular Network

The second numerical application of the model refers to an outdoor cellular network in an urban
environment. The scenario consists of a mobile station MS moving along the trajectory from point
A to point B passing through the mid-point of two base stations BS1 and BS2. The distance between
the base stations is 4 km. The base stations are supposed to transmit with the same characteristics.
The propagation loss model used for the subsequent variation of the received power is COST231-HATA.
The location variability has been chosen as 6 dB and the shadowing decorrelation distance 10 m.
The frequency of operation considered is 3.5 GHz and the mobile is supposed to be moving with the
typical speed for vehicular in urban areas of 14 m/s.

In Figure 6 we plot the theoretical and the simulated outage probability for dual diversity reception
from the signals of the two base stations versus distance covered. The dynamic model generates the
dual diversity outage probability with great accuracy. Maximum values are noticed as expected in
the mean distance between the two base stations. In the same conclusion we arrive for the case of the
AOD shown in Figure 7. Here we note again the fact that the simulated AOD does not converge for
high values of fade margin near the two base stations. Finally in Figure 8 we plot the hand-off rate.
This is defined as a kind of LCR when the strongest signal becomes weaker. The receiver selects in
each time instant the strongest signal from the two base stations. As expected the bigger hand-off rate
is noticed in the mean distance between the two base stations.

Future Internet 2019, 11, x FOR PEER REVIEW 13 of 18 

 

 

Figure 5. Average outage duration for a regenerative dual-hop link vs. fade margin for three different 
values of shadowing correlation coefficient. 

3.2. Cellular Network 

The second numerical application of the model refers to an outdoor cellular network in an urban 
environment. The scenario consists of a mobile station MS moving along the trajectory from point A 
to point B passing through the mid-point of two base stations BS1 and BS2. The distance between the 
base stations is 4 km. The base stations are supposed to transmit with the same characteristics. The 
propagation loss model used for the subsequent variation of the received power is COST231-HATA. 
The location variability has been chosen as 6 dB and the shadowing decorrelation distance 10 m. The 
frequency of operation considered is 3.5 GHz and the mobile is supposed to be moving with the 
typical speed for vehicular in urban areas of 14 m/s. 

In Figure 6 we plot the theoretical and the simulated outage probability for dual diversity 
reception from the signals of the two base stations versus distance covered. The dynamic model 
generates the dual diversity outage probability with great accuracy. Maximum values are noticed as 
expected in the mean distance between the two base stations. In the same conclusion we arrive for 
the case of the AOD shown in Figure 7. Here we note again the fact that the simulated AOD does not 
converge for high values of fade margin near the two base stations. Finally in Figure 8 we plot the 
hand-off rate. This is defined as a kind of LCR when the strongest signal becomes weaker. The 
receiver selects in each time instant the strongest signal from the two base stations. As expected the 
bigger hand-off rate is noticed in the mean distance between the two base stations.  

 
Figure 6. Theoretical and simulated outage duration for a dual diversity scheme vs. distance 

covered. 

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

Fade Margin (dB)

M
ea

n 
Fa

de
 D

ur
at

io
n 

(s
ec

)

Dualhop Mean Fade duration

 

 
r=0.2
r=0.6
r=0.8

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Distance Covered (m)

D
iv

er
si

ty
 O

ut
ag

e 
Pr

ob
ab

ili
ty

Diversity Outage Probability vs distance

 

 
theoretical
simulation

Figure 6. Theoretical and simulated outage duration for a dual diversity scheme vs. distance covered.
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4. Conclusions

In this paper, there has been presented a novel dynamic model, able to take into account the
fluctuations of shadowing in a statistical basis. The main assumption of the modeling as validated
from experimental results is the joint lognormality of the related shadowing values. The new dynamic
channel model framework may be used for the effective and realistic design of new wireless systems
by providing simulated time series for testing, as well as in the implementation of fade mitigation
techniques. The model can effectively be used in the accurate design and analysis of modern
wireless systems including 5G cellular wireless systems, MIMO systems, diversity (transmit, reception,
cooperative) schemes, ad-hoc networks, multi-hop wireless, collaborative cognitive radios, body area
networks, and in every other aspect of wireless networking, where correlated shadowing has a major
impact on system’s performance. The proposed model can also be incorporated in transitions state
models LOS/NLOS (blockage or not) state transition modeled as a Markov chain. Moreover, with a
view not referring to specific equipment characteristics, the numerical results have been presented in
relation to the fade margin.
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Appendix A

In this Appendix we present for the case of a vector normal process the results of the LCR of a
curve ∂D bounding a domain D. In accordance to the shadowing process we assume that the process
represents the logarithm of the received signal in N links. The domain D corresponds to the domain of
reliable communication for the two cases of an N-tuple diversity scheme with SC and a regenerative
N-hop relay link as shown in Figures 1 and 2 for the two-dimensional case. The LCR is calculated for
out crossings of the domain D, i.e., incrossings of domain DC, when the system shifts to outage.

The N-tuple diversity system is in outage when all N signals fall below the required SNR threshold.
This is equivalent to Xi ≤ −FMi for the corresponding shadowing value and fade margin. According
to [46] the outcrossing rate of a domain D with boundary ∂D is given by the relation

µ+ =

∫
∂D

E
[
(nTXt

′)
+
∣∣∣∣Xt = b

]
p(b)dl(b) (A1)



Future Internet 2019, 11, 106 15 of 18

Because the process is assumed normal its derivatives are independent of the process itself, so
(A1) becomes

µ+ =

∫
∂D

E
[
(nTXt

′)
+]

p(b)dl(b) (A2)

We now consider the random function g(ω) = nTXt
′ = f (

.
X1(ω), . . . ,

.
XN(ω)) and the event in the

basic probability space A =
{
ω ∈ Ω : g(ω) ∈ [0,+∞)

}
. Then

E
[
(nTXt

′)
+]

= E(g(ω)1A(ω)) =
∫
A

g(ω)dP(ω)

=
∫
A

f (
.

X1(ω), . . . ,
.

XN(ω))dP(ω) =
∫

f−1([0,+∞))

f (
.
x1, . . . ,

.
xN)dP .

x1...
.
xN

=
∫

f−1([0,+∞))

f (
.
x1, . . . ,

.
xN)p(

.
x1, . . . ,

.
xN)d

.
x1 . . . d

.
xN

(A3)

In the case of the N-tuple diversity scheme with SC the hypersurface ∂D consists of N hyperplanes.
Thus the total LCR is equal to the sum of the LCR for each of the N hyperplanes. For hyperplane 1
corresponding to link 1 the normal vector is n1 = (−1, 0, . . . , 0), so f (

.
x1, . . . ,

.
xN) = −

.
x1 and

µ+1 =

0∫
−∞

(−
.
x1)p(

.
x1)d

.
x1

−FM2∫
−∞

−FM3∫
−∞

· · ·

−FMN∫
−∞

p(−FM1, x2, . . . , xN)dx2 · · · dxN

︸                                                           ︷︷                                                           ︸
N−1

(A4)

Similarly for the k-th hyperplane corresponding to link k

µ+k =
0∫
−∞

(−
.
xk)p(

.
xk)d

.
xk·Ik

Ik =

−FM1∫
−∞

· · ·

−FMk−1∫
−∞

−FMk+1∫
−∞

· · ·

−FMN∫
−∞

p(x1, . . . , xk−1,−FMk, xk+1, . . . , xN)dx1 · · · dxk−1dxk+1 · · · dxN

︸                                                                                                                  ︷︷                                                                                                                  ︸
N−1

(A5)

Finally the outcrossing rate is given by

µ+ =
∑

k

µ+k (A6)

Equation (A5) can be further simplified by noting that

0∫
−∞

(−
.
xk)p(

.
xk)d

.
xk =

σ .
xk
√

2π
(A7)

for the case of a zero mean normal r.v. Furthermore by using the conditional probability densities the
integral Ik can be calculated as

Ik = pxk(−FMk)Q(−FM1, . . . ,−FMk−1,−FMk+1, . . . ,−FMN) (A8)

where Q(x1, . . . , xk−1, xk+1, . . . , xN) is the cumulative distribution function of the N − 1-variate
conditional pdf, which can be calculated by use of numerical integration techniques or standard
software packages.
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The outage rate for the case of an N-hop regenerative relay link is quite similar, with the difference
limited to the different domain of reliable operation. In a similar way we arrive to (A5) with the integral
Ik calculated as

Ik =

+∞∫
−FM1

· · ·

+∞∫
−FMk−1

+∞∫
−FMk+1

· · ·

+∞∫
−FMN

p(x1, . . . , xk−1,−FMk, xk+1, . . . , xN)dx1 · · · dxk−1dxk+1 · · · dxN

︸                                                                                                                  ︷︷                                                                                                                  ︸
N−1

(A9)
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