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Abstract: A built-in sensor in a smart device, such as the accelerometer and the gyroscope,
will produce an obvious nonlinear output when it receives voice signal. In this paper, based on
the chaotic theory, the nonlinearity of smartphone built-in accelerometer is revealed by phase
space reconstructing after we calculate several nonlinearity characteristics, such as best delay time,
embedding dimension, and the attractor of accelerometer system, under the condition of voice
commands inputting. The results of theoretical calculation and experiments show that this specific
nonlinearity could lay a foundation for further signal extraction and analysis.
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1. Introduction

Nowadays, the high-performance chips largely enhance the real-time computation of the modern
smart device. Moreover, a smart device also enables rich interactive experiences while extending the
functions by using various built-in sensors, such as the accelerometer and the gyroscope.

Built-in sensors in the smart device are kinds of microelectromechanical systems that capture
the subtle changes of light, heat, and temperature. For instance, a tiny embedded accelerometer in
a smartphone has the capability to detect instantaneous acceleration magnitude on three coordinate
axes. Researchers also attempt to acquire accurate velocity and direction of the smart device from
these instantaneous acceleration magnitudes in order to identify the motion state of a human target
including walking up, running and tumbling [1].

Recently, researchers found that built-in sensors in a smart device could output response when
they receive voice as actuating signals [2,3]. Based on this feature, built-in sensors gradually replace
microphone to realize voice control in various application scenarios. At present, the voice-activated
communication between user and smart device increasingly becomes a brand-new interactive pattern.
For instance, Siri in iOS system and Google Now in Android system [4,5] are two successful voice
interactive platforms in mobile devices. Generally, these two systems would receive the specific
voice commands and transform them into instructions to control a smart device to complete multiple
real-time tasks by using a built-in microphone. Meanwhile, the microphone has to be kept in working
condition to give immediate feedback to users. This significant energy consumption mode undoubtedly
becomes a challenge in the battery-powered smart device. Therefore, a low-power built-in sensor is
considered to become a viable alternative to resolve the conflict between high-energy consumption
and real-time monitoring of speech signal [6,7].

Due to its hardware structure constraint, the output signal of a built-in sensor usually appears
strong non-linear [8]. Therefore, on the basis of non-linear dynamics chaotic theory, we attempt to
reveal the chaotic features of output signal of the built-in accelerometer when the smart device receives
voice commands. We also try to develop a suitable mathematical model to express the nonlinear
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properties of built-in accelerometer for realizing accurate output signal prediction, characteristics
extraction, and pattern recognition.

The main contributions of this paper are as follow:

(1) We attempt to apply nonlinear dynamics and chaotic theory to built-in sensor signal analysis.
(2) We calculate the optimal delay time and proper correlation dimension, and then we reveal the

nonlinear properties of built-in accelerometer in the smart device by reconstructing the attractors.

The remaining parts of the paper are arranged as follows:
In Section 2, we illustrate the feasibility of built-in accelerometer in smart-device. In Section 3,

the optimal delay time and proper correlation dimension are calculated. In addition, the attractors
are also reconstructed. We present the results of experiments in Section 4. We also try to show the
results of nonlinear mapping between microphone and accelerometer in Section 5. The conclusions
and subsequent research directions are finally presented in Section 6.

2. Feasibility of Built-in Accelerometer

Current MEMS (Micro-Electro-Mechanical System) built-in accelerometers in smart devices are
usually composed of three main components–an inertial mass, spring legs, and stationary fingers.
As shown in Figure 1, a change in the capacitance between the stationary fingers would be caused by
inertial mass moving when an accelerometer is working. This change is recorded as an accurate
acceleration. Moreover, three separate sets of components could be employed to measure the
accelerations separately in three directions.

Owing to the limitations of hardware, capturing the voice signal is not the target of the built-in
sensors in the smart device. Therefore, the accurate frequency response range under the condition of
voice actuating should be determined.
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Figure 1. The sketch of a MEMS built-in accelerometer.

As shown in the Figure 2, we placed two smartphones on a table, and 0–22,000 Hz chirp sound
signals were generated by a small louder-speaker which was fixed 10 cm vertical above the two
smartphones. One of these smartphones was used to record the responding signal to the chirp sound
signals. Meanwhile, the responding signal of the built-in accelerometer to the same chirp signals was
recorded by another smartphone for comparison.
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Figure 2. Two smartphones record chirp sound signals.

It is clearly found from Figure 3 that the built-in microphone of the mobile phone can successfully
capture the chirp signal. In addition, the response signal was also an approximately straight line from
0 to 4000 Hz without aliasing. Conversely, the response signal frequency of the built-in accelerometer
was mainly concentrated below 200 Hz, although the frequency of the input chirp sound signals was
gradually increasing. This means that the built-in accelerometer usually filters out the sound signal
above 250 Hz while arising nonlinearly distorted.
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Figure 3. Time-frequency diagram of response signals to chirp signal. (a) Microphone
(b) Built-in accelerometer.

Next, we use two chirp signals with different starting frequencies as input sound signals which
are shown in the Figure 4. The response time-frequency diagrams of respond signals could be found
in Figure 5. It was found that both microphone and accelerometer can capture the two chirp signals.
Similarly, we also found that for multiple frequency signals, the response signal frequency range of
the built-in accelerometer was still mainly concentrated below 200 Hz and nonlinear distortion also
still existed.
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3. Nonlinear Characteristics Analysis

Chaotic time series analysis is one of the most important methods in nonlinear dynamics theory,
and phase space reconstruction is also the main goal which would be achieved. Usually, the basic target
of phase space reconstruction is to demonstrate the inherent nonlinearity of a system by studying the
chaotic attractor and characteristic parameters of a specific variable in the phase space. So, how to
find the most accurate attractor to effectively reconstruct the phase space for this particular built-in
acceleration system? Assuming that we obtain a univariate time series output signal of accelerometer
through the observation or experiment as {Xn} = X1, X2, . . . , XN a state variable of the reconstructed
phase space can be expressed as:

Xk = {X(k), X(k + τ), . . . , X(k + (m + 1)τ)}, k = 1, 2, 3, . . . , N (1)

Thus, an m dimensional state space Rm could be formed. Moreover, the mathematical model is to
be established in the state space Rm:

Xn + 1 = G(Xn) (2)

In [9,10], Takens and Mane proved that the reconstructed state space Rm has the same topological
structure and geometric features with the original chaotic dynamic system, provided that the
parameters m and τ are properly selected. It also means that all these differential and topological
invariants in the original chaotic dynamic system could be calculated in the reconstructed state
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space. Furthermore, the dynamic system can be analyzed and predicted by establishing a specific
mathematical model in the state space Rm. It is clear that the correct determination of delay time τ and
embedding dimension m is the key for phase space reconstruction. In the modern chaos theory, it is
generally believed that these two parameters are dependent on each other [11,12]. Therefore, we could
obtain the attractor of a built-in accelerometer system and complete phase space reconstruction just
after the two parameters have been simultaneously determined.

It can be known from the delay embedding theorem [13,14] that the delay time τ can be randomly
selected if the time series is infinitely long, noiseless, and infinitely accurate. However, in a general
practical application, the accelerometer output signal would be a time-limited sequence with noise
pollution and measurement error. Thus, the delay time τ can only be chosen depending on experience.
Basically, the principle of it is to give Xn and Xn + τ a certain degree of independence to process
them as independent coordinates during the reconstruction of phase space. If τ is small Xn and
Xn + τ would get too close to effectively differentiate in the phase space. Moreover, they are also very
close to the “diagonal” in the reconstructed phase space, which means a large amount of redundant
information would be carried by the attractor. Thus, the phase space would be disordered and mixed
without rules. On the contrary, the attractor track would be projected in two completely opposite
directions because of the minor relevancy between Xn and Xn + τ, which means that the actual
evolution rule of the trajectory in the phase space cannot be reflected.

Referencing to the C-C algorithm [15,16], we define τw = (m− 1)τd as the delay time window
while τ(τ = t) is the delay time. So, the correlation integral can be represented as follows:

Cm
s (m, N, r, t) =

2
M(M− 1) ∑

1≤i<j≤M
θ{r−‖Xi − Xj

∥∥} (3)

In Equation (3), θ(a) is a step function, N and M = N − (m− 1)t represent the length of the data
set and m dimensions embedding points, respectively. The correlation integral in Equation (3) is a
cumulative distribution function, which shows that the probability of the distance between any two
points in the phase space is less than the radius r. Further, we define a statistic:

S1(m, N, r, t) = C(m, N, r, t)− Cm(1, N, r, t) (4)

When the excitation input of built-in accelerometer in the smart device is a voice signal,
in order to calculate the detection statistic in Equation (4), we split the output variable time series
{Xn} = X1, X2, . . . , XN into t disjoint sub-sequences which are shown in Equation (5):

{X1, X1+t, . . . , XN−t+1}
{X2, X2+t, . . . , XN−t+2}
. . .
{Xi, Xi+t, . . . , XN−t+i}
. . .
{Xt, X2t, . . . , XN}

(5)

The lengths of all these sub-sequences are Ns = N/t, t is reconstruction delay time. The detection
statistic in Equation (4) of each sub-sequence can be calculated as follows:

S2(m, N, r, t) =
1
t

t

∑
s=1
{C(m,

N
t

, r, t)− Cm
s (1,

N
t

, r, t)} (6)
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Generally, output signal sequences of the built-in accelerometer are time-limited and correlated
between each other. Therefore, S2(m, N, r, t) is not zero. Moreover, the autocorrelation characteristics
between these output signals also can be reflected by S2(m, N, r, t) ∼ t.

According to the autocorrelation properties of statistics signal, in order to make all points in
the reconstructing phase space close to a uniform distribution, there are two optional values for the
optimal delay time τd. One is the first zero coordinated point of S2(m, N, r, t) ∼ t, another is time
point of the minimum mutual differentiation between S2(m, N, r, t) ∼ t to all radius r. In addition,
an equation can be defined as follows to measure this differentiation.

∆S2(m, t) = max{S2(m, ri, t)} −min{S2(m, ri, t)} (7)

Therefore, local maximum time would be the zero coordinate points of S2(m, N, r, t) ∼ t or
minimum value of ∆S2. Besides, the optimal delay time τd would be the first one among these local
maximum time points [17–20].

Then, the relevant statistics can be calculated by selecting proper parameters. According to the
mathematical statistics results of asymptotic distribution, we chose N = 3000, m = 2, 3, 4, 5, i = 1, 2, 3, 4
and put them into Equations (6) and (7) separately:

S2(t) =
1

16

5

∑
m=2

4

∑
i=1

S2(m, ri, t) (8)

∆S2(t) =
1
4

5

∑
m=2

∆S2(m, t) (9)

By this stage, the first zero of S2(t) or the first minimum point of S2(t) is the optimal time delay
τd in the reconstructed phase space of built-in accelerometer. Further, Equations (8) and (9) also can be
synthesized as to follow:

Sc(t) = ∆S2(t) +
∣∣S2(t)

∣∣ (10)

The globe minimum value of Sc(t) is time-window length of the built-in accelerometer output
signal sequence. An instance of S2(t), ∆S2(t) and Sc(t) base on a measured acceleration signal is
shown in Figure 6.
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4. Experiments and Results Analysis

We verified the nonlinearity of built-in accelerometer in the smart device by experiments.
As shown in Figure 7, we placed two smartphones (one is the Motorola Nexus 6, another is the
HUAWEI Honor 8) closely on the surface of a still wooden table. In order to obtain the voice excitation
signal with stable intensity and frequency, the smart-phones received the voice signal from two
loudspeakers which were fixed above at close distance. Then, the output signals of an accelerometer
in the Motorola Nexus 6 were extracted. Simultaneously, the original voice from loudspeakers was
recorded by HUAWEI Honor 8 as a comparison. As excitation signals, the three specific words “on”,
“zero” and “two” were spoken and played by loudspeakers. Each word was repeated 10 times with 3
seconds intervals between each repetition. Moreover, we repeated the experiment under a different
distance between the speaker and mobile phone with 5 cm, 10 cm, 15 cm, 25 cm, and 30 cm, respectively.

The output signals of the built-in accelerometer on X, Y and Z-axis at different distances from
loudspeakers are shown in Figure 8. As a comparison, the output signals of the built-in microphone
at different distances are shown in Figure 9. Besides, it is important to note that the gravity which is
loaded on the Z-axis signal needs to be eliminated. It can be clearly found that the built-in accelerometer
had obvious response output when we made voice as an excitation although with noise effect.
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Figure 9. The recorded voice at 5 cm and 30 cm, respectively for comparison. (a) The recorded voice at
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Using the optimal delay time τ and embedding dimension m which was determined by previous
calculation, the reconstruction attractors with the condition of τ= 3, 4, 5, 6 for X, Y and Z-axis of the
built-in accelerometer shown in Figures 10–12 are attractors.
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It was clearly found from these figures that the convergence of attractors when τ = 3, 4 and
m = 4 are better than others, which is consistent with the calculation results in Section 3. However,
the edges of these attractors were not smoothing due to the effect of white noise in original output
signals which were generated by metal plate capacitance vibration inside the acceleration when it
received voice signal.

5. Nonlinear Mapping between Microphone and Accelerometer

Since the sampling rates of a microphone of VCS (44 kHz) and built-in accelerometer (200 Hz)
have a large gap, it is hard to match their record voice directly. The nonlinear mapping phenomenon
motivated us to find a matching relation between the microphone readings and the low sampling rate
sensor data. By using nonlinear mapping, we could convert the microphone data to low-frequency
data and compare that with the same frequency range motion sensor for similarity check.

We used a voice application to generate a sound of pure frequency tones in the frequency range
of 100 Hz–1600 Hz (with 100 Hz interval) and checked whether the signal could be observed in the
frequency domain of microphone and built-in accelerometer. Figure 13 shows that some high-frequency
voices could be observed in accelerometer (230 Hz). Significant frequency response on accelerometer
readings was on 400 Hz and 1600 Hz.Future Internet 2019, 11, x FOR PEER REVIEW 12 of 13 
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6. Conclusions

Besides collecting user’s information, such as the speed and direction, the output signal of the
built-in sensor in the smart device shows obvious nonlinear characteristics when the voice commands
as excitation. In this paper, using chaotic system theory, we calculated the optimal delay time and the
best embedding dimension, and further attractors for a nonlinear system. In addition, we also made
phase space reconstruction of the built-in acceleration system under the condition of inputting voice
commands. Therefore, this is the foundation of further feature extraction and nonlinear analysis of
built-in sensor output signals.
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