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Abstract: With advances in machine learning, knowledge discovery systems have become very
complicated to set up, requiring extensive tuning and programming effort. Democratizing such
technology so that non-technical domain experts can avail themselves of these advances in an
interactive and personalized way is an important problem. We describe myDIG, a highly modular,
open source pipeline-construction system that is specifically geared towards investigative users
(e.g., law enforcement) with no programming abilities. The myDIG system allows users both to build
a knowledge graph of entities, relationships, and attributes for illicit domains from a raw HTML
corpus and also to set up a personalized search interface for analyzing the structured knowledge.
We use qualitative and quantitative data from five case studies involving investigative experts from
illicit domains such as securities fraud and illegal firearms sales to illustrate the potential of myDIG.

Keywords: knowledge discovery; domain specific; no programming; knowledge graphs; information
extraction; investigative domains; search; personalized analytics

1. Introduction

As research in machine learning and AI continues to progress, front-facing systems have become
steadily more complicated, expensive, and limited to specific applications like Business Intelligence
(BI) [1,2]. Democratizing technology is a complex issue that involves multiple stakeholders with
different sets of abilities [3,4]. A particular user whose needs are very real, but which are seldom
addressed except in BI or military-specific situational awareness situations [5], is a domain expert with
extremely limited technical abilities. In particular, such users do not know how to program, let alone
cope with complex machine learning or deep learning algorithms, and cannot satisfy their information
needs through a simple Google search for several subsequently-described reasons.

A real-world example of such a domain expert that we encountered in the securities fraud domain
is an employee from the Securities and Exchange Commission (SEC) who is attempting to identify
actionable cases of penny stock fraud [6]. Penny stock offerings in Over-The-Counter (OTC) markets
are frequently suspected of being fraudulent, but without specific evidence, usually in the form of
a false factual claim (that is admissible as evidence), and their trading cannot be halted. With thousands
of penny stock offerings, investigators do not have the resources or time to investigate all of them.
One (technical) way to address this problem is to first crawl a corpus of relevant pages from the web
describing the domain, a process alternately known in the Information Retrieval (IR) literature as
relevance modeling or domain discovery [7]. The latter term is more encompassing, as it involves not
just relevance modeling, but the actual crawling of the data.

Once such a corpus is obtained, an expert in information extraction and machine learning
would elicit opinions from the users on what fields (e.g., location, company, stock ticker symbol)
are important to the user for answering domain-specific questions, along with example extractions
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per field. This sequence of Knowledge Graph Construction (KGC) steps results in a graph-theoretic
representation of the data (a Knowledge Graph or KG) where nodes are entities and field values and
the (directed, labeled) edges are relationships between entities or assignments of field values to
entities [8,9]. Since the KG is structured, it is amenable to aggregations and to both keyword and
structured querying. With a good interface, for example, the domain expert can identify all persons
and organizations (usually shell companies) associated with a stock ticker symbol, aggregate prices, or
zero in on suspicious activity by searching for hyped-up phrases that indicate fraud.

A Google search is inadequate for the knowledge discovery described above as it does not
allow one to specify fields nor to limit the search to a specific corpus. Google also does not offer
the specialized aggregation facilities that such domain experts would need. While Google works
exceedingly well for document-level information indexing and retrieval, it is not designed to support
complex analytical tasks, either with or without training.

In this paper, we present a system called myDIG (my Domain-specific Insight Graphs)that ingests
the output of domain discovery, i.e., a raw corpus of web pages, and presents an intuitive multi-step
KGC and search interface to a user that requires no programming, can be refined iteratively, and
requires an hour or less of example-based training. An implemented prototype of myDIG has already
undergone evaluations by domain experts in five different investigative domains, each of which
involves significant technological potential. We describe the dataflow of myDIG and the important
algorithmic aspects of the system that allow users to construct and search knowledge graphs, and
thereby discover new and relevant knowledge by conducting data-driven analysis. We also present
qualitative and quantitative data collected from the five case studies to illustrate the real-world potential
of myDIG in making an advanced set of knowledge discovery technologies accessible to non-technical
users. Using myDIG, practicing, non-technical domain experts from the five case study domains were
able to build a personalized domain-specific search engine over corpora containing more than a million
raw web pages in 4–6 working hours. The myDIG project is open-source, with a dedicated web
page (http://usc-isi-i2.github.io/dig/) and a GitHub (https://github.com/usc-isi-i2/dig-etl-engine)
repository associated with it.

2. Related Work

The myDIG system draws on work in several different communities in AI. To the best of our
knowledge, it is the first KGC and search system that allows users to set up their domains (and perform
knowledge discovery in it) with no programming or tuning of any kind. However, the components
underlying myDIG draw on important advances in areas such as knowledge graph construction
and information retrieval, described below. We also provide examples of work in the AI community
with a similar philosophy to ours: allowing a non-technical user, typically a domain expert, to avail
themselves of, and navigate, AI technology with easy or minimal setup.

2.1. Knowledge Graph Construction

Knowledge Graph Construction (KGC) has witnessed much research attention in the last decade,
an industry-scale success story being the Google Knowledge Graph [10]. A knowledge graph is usually
defined as a set of triples of the form (h, r, t), where h and t are nodes representing entities and r
is a relationships between the entities. In communities like the Semantic Web, much finer-grained
definitions have been recognized [11,12]. For example, a node can be not just an entity, but also
a field (equiv. attribute) value. A relationship in this context can exist between an entity and a literal
(e.g., (John, : age, 29)), which is an atomic value like a string or integer, or between two entities
(e.g., (John, : brother_o f , Mary)). In the research literature, KGC is a broad term that primarily includes
Information Extraction (IE), but can also include other post-extraction inferential steps [8,9]. Good
surveys of IE, particularly web IE, may be found in [13–15].

The myDIG system uses a set of IE technologies but does not require the user to understand such
technologies, provide training data, or perform any algorithmic tuning. IE technologies include an
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interactive wrapper-based [16,17] IE called Inferlink that is subsequently described, glossary extractions
(which use a glossary of terms that are extracted from text using exact matching) [18,19], declarative
frameworks like regular expressions [20,21], and natural language rules such as implemented by
packages like SpaCy or Stanford NER [22,23]. In general, interactive KGC systems, even involving
technical expertise, are still quite uncommon. A good example is the DeepDive system [21], which
allows customized, interaction-driven information extraction. Another system, Snorkel, which relies
on weak supervision, thereby easing the burden of acquiring and manually annotating large amounts
of training data, requires users to code functions and like DeepDive and has no facilities for supporting
search and analytics [24].

2.2. Information Retrieval

The search in myDIG draws upon several independently-developed techniques in the IR
community. Chief among these are query reformulation and constraint relaxation [25–28]. These
techniques are designed to be robust to erroneous or missing data, which is an unavoidable problem for
semi-automatic KGC systems. Our search system uses advances in NoSQL databases like Elasticsearch,
which use optimized inverted index querying for fast retrieval [29]. A survey of NoSQL can be found
in [30]. The myDIG system also supports faceting and filtering [31], in addition to basic keyword search.

2.3. AI for Non-Technical Domain Experts

In recent years, there has been the recognition in both the machine learning and database
communities of the importance of building end-to-end interactive systems that adapt to users’ needs
and are relatively robust. We cite some influential examples that are pertinent to myDIG. In the
database community, interactive data exploration and novel methods of data visualization are currently
active areas of research, especially for specific domains like crisis informatics or social media analysis.
Examples of influential systems that are visualization- and human-centric include Ushahidi [32],
Twitris [33], Twitcident [34], AIDR [35], CrisisTracker [36], TweetTracker [37], and several others [38,39].
These systems are highly engineered to their domain (describing crisis informatics data like natural
disasters and terrorism) and usually facilitate a specific task, such as gleaning situational awareness at
scale. Another such highly-tuned application that we noted in the Introduction is Business Intelligence
(BI) [1,2]. A commonality with myDIG is that such systems, post-engineering, are designed to be
operated without programming or technical ability and involve graphical interfaces. An important
difference, however, is that myDIG can be set up without technical effort, which makes it amenable to
search and analytics for arbitrary domains and experts.

The myDIG architecture is heavily influenced by similar developments in the HCI community
that attempt to ease the pain of setting up sophisticated algorithms or visualizations. A good example
of such a development is NewsViews [40]. NewsViews is an automated news visualization system
that generates interactive, annotated maps without requiring professional designers. Its motivation is
similar to myDIG, which allows complex knowledge graph-based search and analytics engines to be
set up without requiring programmers or data scientists.

3. System Overview and User Experience

The myDIG action dashboard is illustrated in Figure 1. The input to the system is a corpus of web
pages that is assumed to have been crawled by a domain discovery system prior to the user engaging
with myDIG. While domain discovery is, by no means, a solved research problem, significant advances
have been made in recent years (including the deep crawls of specific Top Level Domains or TLDs like
backpage.com) [41–43]. We make the loose assumption that a significant fraction of this corpus is
relevant, but that there may be many irrelevant pages as well. The myDIG architecture is designed to
be reasonably robust to such irrelevance, as we explain.

User experience in myDIG can be separated into two phases. The first phase, domain setup and
curation, involves setting up the domain with the goal of answering a certain set of questions in which

backpage.com
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the user is interested. This phase does not comprise a strictly linear set of steps, but can involve several
interleaved steps (Figure 1). At a high level, the user loads a sample of the corpus to explore, followed
by defining wrappers using the Inferlink tool, customized domain-specific fields, and add field-specific
glossaries (if desired). Periodically, the user can crystallize a sequence of steps by running extractions
(akin to constructing the knowledge graph) and uploading the knowledge graph to an index. Once the
upload is complete, the user can “demo” their effort by clicking on the Sample DigApp button in the
upper left corner in Figure 1 to explore the knowledge graph using a search interface. The process
is iterative: the user can always return to the dashboard to define or refine more fields, define more
wrappers with Inferlink, or input more glossaries.

The second phase is the “in-use” phase, when the system is actually being used to satisfy
information retrieval needs. This phase tends to begin when the user is finished setting up the
domain and is ready to deploy all changes on the full dataset (the entire corpus). In subsequent
sections, we describe the user experience and dataflow for both phases.

Figure 1. The myDIG dashboard, with corresponding elements and actions.

3.1. Setting Up the Domain

The myDIG system allows personalized setting up of a domain. Users can define and customize
their own fields, choose what extractions to retain from web pages (using the Inferlink tool), add
glossaries that might be available to them as investigators, and repeat the process till they are satisfied
with the domain setup.

Defining Fields and Glossaries

The myDIG system allows users to define their own fields and to customize the fields in several
ways that directly influence their use during the second phase (domain exploration). To define a field,
users click on the Fields tab (Figure 1), which provides them with an overview of fields that are already
defined (including pre-defined fields like location, detailed further below) and also allows them to add
their own fields. A “field form” is illustrated in Figure 2. In addition to customizing the appearance of
a field by assigning it a color and icon, users can set the “importance” of the field for search (on a scale
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of 1–10), declare the field to represent an entity by selecting the “entity” rather than the “text” option in
Show as Links (thereby supporting entity-centric search, described in Exploring the Domain), and assign
it a pre-defined extractor like a glossary.

Figure 2. A form that allows the user to define/customize fields.

A powerful, interactive extractor that uses wrapper technology [16,17] to extract structured
elements from web pages is the Inferlink tool. Inferlink operates in various steps. For convenient
formalism, let us define a TLD (e.g., backpage.com) T as a set {w1, . . . , wn} of web pages (e.g., backpage.
com/chicago/1234). As a first step, Inferlink uses an unsupervised template clustering algorithm to
partition T into clusters, such that web pages in each cluster are structurally similar to each other. To
provide some real-world intuition, one cluster could contain taxonomy web pages that contain lists of
things; another cluster could contain web pages describing forum posts, while a third cluster could
contain web pages containing long text. Inferlink presents the users with samples from these clusters
and allows users to select a “relevant” cluster for curation. At this point, users see an illustration like
the one in Figure 3 wherein Inferlink has extracted common structural elements from the web pages in
the cluster and presents it to the users in a column layout, with one row per web page and one column
per structured element that is common to the web pages. Users can open a web page by clicking on
a link, delete a column, or assign it to a field that has already been defined, as in the figure. In the
literature, this step is also called semantic typing of columns [44]. Users must separately type columns
for each top level domain (TLD), since different web domains share different structures in the web
pages they contain. We also trained users to perform more advanced customizations with Inferlink in
less than an hour of example-based demonstrations. For example, users could choose to curate and
semantically type more than one cluster from a given TLD, if they felt it gave them added value over
another cluster from a less important TLD.

backpage.com
backpage.com/chicago/1234
backpage.com/chicago/1234
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Figure 3. An illustration of the semantic typing facility in Inferlink. In this illustration, semantic typing
has already been done.

In addition to the Inferlink took, myDIG offers extraction methods suitable for information
extraction from blocks of text or other content that is not delimited as structured HTML elements,
i.e., delimited using HTML tags. To ease user effort, some generic extractors are pre-trained and cannot
be customized, but can be disabled. A good example is the location extractor, which extracts the names
of cities, states, and countries, using a machine learning model that was trained offline. However,
myDIG offers users the option to input a glossary (with incumbent options, such as whether the
glossary terms should be interpreted case sensitively or not) for a given field. This option was popular
with domain experts, as we describe in the Qualitative Feedback section. Although not evaluated herein,
the latest version of myDIG also offers users an intuitive rule editor for expressing and testing simple
natural language rules or templates with extraction placeholders. For example, a name extractor can
be set up with a pattern recognition rule like “Hi, my name is [NAME]”.

3.2. Exploring the Domain

Once the domain has been set up, users begin the second phase, which involves exploring the
domain to get the answers they need or even to generate new leads and questions (an important
concern in investigative domains where users are sometimes not sure quite what they are looking for).
We describe the main components of a typical user experience.

3.2.1. Specifying Queries: Keywords and More

The myDIG system supports both basic keyword search, as well as structured search, wherein
the user curating the domain can fill out values in a form containing fields that she/he has declared
(during domain setup) as being searchable (Figure 4). As described in Algorithms and Technologies, the
search engine in myDIG uses an advanced set of techniques from the IR literature to ensure that user
intent is captured in a robust and high-recall manner. The myDIG system also supports entity-centric
search, which is described shortly. While keyword search is designed to be primarily exploratory,
structured search allows a user to quickly hone in on pages containing certain key details that the user
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has specified in the form. Since myDIG uses ranking and relevance scoring, satisfying more criteria on
a form will lead to a page having higher ranking, compared to another page that satisfies fewer criteria.

Figure 4. A form that allows the user to pose fine-grained, structured queries (counterfeit
electronics domain).

3.2.2. Facets

As shown in Figure 5, myDIG supports faceted search and filtering on select fields (e.g., Model or
Make in the figure (taken from the Illegal Firearms Sales (IFS) domain)) that the user can specify during
domain setup. In all of our case studies, users made fairly intuitive choices: except for “free-form”
fields like text, descriptions or comments, they favored faceting over non-faceting. In addition to
allowing more informed search and filtering, facets also help the user to see an overview of the search
results. For example, in the figure, one can deduce that (among the glock models) Models 19 and 17
occur far more often in the data than other models.

3.2.3. Entity-Centric Search and Summarization

Entity-Centric Search (ECS) and summarization is an important argument that distinguishes the
domain exploration facilities of myDIG from the more generic Google search. An example is illustrated
in Figure 6 for the entity Glock 26, which is presumably a firearm model that an investigator in the Illegal
Firearms Sales (IFS) domain is interested in further investigating for suspicious transaction-related
activity. The ECS dashboard summarizes the information about this entity by providing a (1) timeline
of occurrences, (2) locations extracted from web pages from which the entity was extracted, (3) other
entities co-occurring with the entity (along with non co-occurrence information to enable intuitive
significance comparisons), and (4) relevant pages related to that entity. Users can declare the extractions
of any field to be ECS-amenable by toggling the Show as Links option in the form in Figure 2.
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Figure 5. The search interface offered by myDIG (illegal firearms sales domain).

Figure 6. Entity-Centric Search (ECS) for the illegal firearms sales domain in myDIG.

3.2.4. Provenance

The interface supports provenance both at the (coarse-grained) level of web pages and the
(fine-grained) level of extractions. Concerning the latter, provenance information is obtained by
clicking on the green circle next to an extraction (see Figure 5), which brings up the specific extraction
method such as Inferlink, SpaCy, glossary, etc. (Figure 7), and in the case of context-based extractors
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that use methods like word embeddings, the text surrounding the extraction. Multiple provenances
are illustrated, as shown in the figure, if applicable (e.g., glossary extractions from text that originated
in different structures in a web page). We also support web page-level provenance by allowing the
user to open the cached (it is important to show the cached, rather than the “live” web page (which
can also be shown by clicking on the pre-defined URL extraction that exists for every web page in the
corpus) since the web page may have changed, or even been removed, since domain discovery) web
page in a new tab.

Figure 7. Provenance of glossary-based organization name extraction “square enix” (securities
fraud domain).

3.2.5. Summary

User experience in myDIG is geared toward supporting personalized, domain-specific search, but
without being constrained to a specific domain (or all domains simultaneously, like Google) a priori.
The system operates in two phases, namely domain setup and curation and search, to allow a user
to build a search engine over a domain-specific corpus, whether involving an investigative domain
like firearms sales or an “ordinary” domain like soccer. Furthermore, the system does not make
ontological commitments, but allows users to set up and customize their own “meta-data” (fields and
importance). No coding or parameter tuning of any sort is required. Users were able to use myDIG
on their own with less than an hour of example-based demonstrations, much of which was spent on
familiarizing users with the facilities of the Inferlink tool and the search interface.

4. Algorithms and Technologies

From a systems-level perspective, myDIG involves a complex combination of technologies.
We focus on the core elements that are critical for supporting an interactive user experience. While we
aim to be specific about the actual technologies used and their rationale, we omit a full technical account.
We also note that all myDIG technologies are available under GitHub under a permissive license.

4.1. Inferlink Wrapper

Inferlink was briefly described earlier as a key step in setting up the domain. Inferlink is based on
years of research on wrapper-based web information extraction systems [16,17,45]. As explained earlier,
it also involves web page clustering, using a variety of syntactic and structural features. The clustering
is designed to be both robust and unsupervised; this is why users already see the clusters (with sample
pages) when they first open a TLD in Inferlink. Once a cluster is picked by the user as being relevant,
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the wrapper algorithms in Inferlink extract structured elements from each HTML page in the cluster
and show them to a user in a column layout, as illustrated in Figure 3. Other elements of user
experience, including assigning field names to columns (denoted as the semantic typing step), were
described earlier. The final output of Inferlink processing (per TLD) is a set of machine-processable
rules that include automatically-generated regular expressions that identify the beginning and end of
each extraction. These rules are executed on a server on every web page (from that TLD), including
web pages not belonging to the initial training cluster that the user selected and curated. Heuristics
are used to identify incorrect extractions from “out of cluster” pages. An important advantage of the
rule-based execution is that, once the rules are stored on a server, they can be re-used across user
sessions or even shared by different sets of users. Rule execution is also computationally efficient:
while the clustering and rule inference steps are expensive (5 min/TLD), even complex Inferlink
rule-sets are able to execute in milliseconds per web page. Inferlink continues to be actively maintained
by a private company.

4.2. Cloud-Based Spark Workflow

Because of the iterative dataflow that users follow and their expectations of a speedy execution,
serial processing was found to be too slow even for small samples of documents. This, coupled with
the observation that each web page was processed independently of other web pages, led to the
adoption of Apache Spark as our backend processing infrastructure [46]. The backend of myDIG is set
up on a server in Amazon Web Services (AWS), which is configured both to run a workflow of Spark
jobs and to report progress (Figure 1), so that users have near real-time feedback (at least one user
expressed appreciation for this feature in qualitative feedback) on how long the workflow will take.
We note that users are free to both continue setting up the domain using Inferlink and to explore the
knowledge base populated by the previous iteration using the search interface, while waiting for the
current iteration to finish.

In a similar vein, as new data are crawled and ingested by myDIG (after the domain has been
set up), the Spark workflow can be executed at periodic intervals, similar to how a search engine’s
spider operates. In the human trafficking domain, for example, myDIG was refreshed with new data
once every 24 h. For other domains, this period could be shortened or lengthened. Typically, “old”
data (generally taken to mean a web page that has changed its content, or since been taken offline) are
not thrown away by myDIG since our users have reported that such data can be useful for spotting
trends or even producing evidence for prosecutions. An important agenda for future work is to build
an integrated, real-time version of myDIG that is able to continuously crawl, analyze, index, and load
domain-specific web pages.

4.3. NoSQL Knowledge Graph Representation

The output of the extraction workflow is stored as a text-enriched knowledge graph in an Elasticsearch
NoSQL database instance [29]. Every document in an Elasticsearch index is a set of key-value pairs,
formally serialized using the JSON file format [47]. We assign a permanent ID to every web page in
the corpus (e.g., see the document ID in Figure 7), which serves as an internal means of identifying
and storing each web page as a separate document. Keys in the document represent fields: by the
nature of NoSQL, a key only exists if an extraction for that field (for that web page) exists. Depending
on the field, the value is either atomic (like a string) or a list of atoms. With some minor exceptions
(such as the document ID field), each field is indexed by Elasticsearch using the inverted index
facilities of the Lucene information retrieval system that is used to support Elasticsearch queries and
indices [29,48]. Finally, to support fast ECS (Figure 6), we also populate the NoSQL database with a set
of entity documents, with the entity summaries contained within as key-value pairs.

We note that using a key-value document store such as Elasticsearch (or other rival NoSQL
document stores such as MongoDB) is a design choice and not completely necessary, since the front-end
queries (posed using the form) are initially formulated to SPARQL, before being reformulated as a forest
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of Elasticsearch Boolean tree queries. One could potentially represent and store the KGs in a triplestore
such as Apache Jena (https://jena.apache.org/). At the time that myDIG was being implemented,
such triplestores had two problems that precluded us from using them. First, they did not support an
AI-centric query reformulation strategy such as what we intended for the system to have high recall
and correctly deal with issues of noise in real-world KG construction. Second, and more fundamentally,
there were issues with speed. Technologies like Elasticsearch are inspired by indexing research in the
Information Retrieval (IR) community and are consequently able to retrieve and rank results very
quickly. In contrast, triplestores can handle more sophisticated reasoning, but are slower. Since speed,
rather than reasoning, was an important desideratum for our system to be adopted by real-world users,
we chose to represent our KG as key-value documents. Similar arguments applied to graph databases
like Neo4j (https://neo4j.com/). In future work, a re-implementation of the system could potentially
include cloud-based graph databases with significantly improved speeds (an excellent recent example
is Blazegraph, which is supported by Amazon Web Services: https://www.blazegraph.com/).

4.4. Search Engine

The myDIG search engine uses a robust set of algorithms to increase both recall and precision.
Recall is important because user intent can sometimes be different from user input. Even if input
closely represents intent, there are multiple such representations possible, not all of which will be
directly observed in a web page. As a simple example, a user might search for Microsoft Corporation,
whereas only Microsoft is present in the web page (or only Microsoft got extracted for a field like
Company). Clearly, an exact match will not work in such situations, mainly because of data heterogeneity.
However, handling recall should not come at the cost of decreasing the precision of responses. The
search should be reasonably immune to wrong and missing extractions.

Based on our early experimentation conducted over more than a year, we found two techniques
to be particularly useful for addressing these challenges in myDIG, namely loosely-constrained search
and selective boosting. The latter is controlled by users, since users can assign importance values to
fields when defining them or when modifying pre-defined fields (Figure 2). We use the importance
values in our Elasticsearch-based query engine to boost matches on certain fields so that the score is
influenced more by hits on those fields. Loosely-constrained search is based on constraint relaxation in
the query reformulation literature [27,28]. The key idea is to “relax” the query (e.g., by also searching
on text fields, in addition to the fields specified by the user on the search form) to maximize recall, but
to lower the relevance scores of hits obtained by the relaxed queries (as opposed to hits obtained by
the original, strict-semantics query). This ensures that retrieval is “smooth” in that the system is still
able to retrieve information even when an extraction is missing or misplaced, as long as there is some
signal in the text.

5. Evaluations and Case Studies

In the last six months, myDIG was evaluated by the DARPA MEMEXprogram in five different
investigative domains, namely securities (specifically, penny stock) fraud, illegal firearms sales, illicit
shipments via USPS mail, narcotics, and counterfeit electronics. Each of these domains is extremely
specialized, but has common characteristics that make it particularly amenable to analysis in myDIG.
When describing each domain, we focus on the types of investigative questions domain experts are
looking to answer.

Concerning the evaluation protocol, to keep the user study as unbiased as possible, DARPA, NIST,
and a contracted private firm conducted all evaluations (the one exception is a post-hoc evaluation
of extraction quality that was conducted by researchers in our group) described herein and released
a select set of results both to inform future work and to provide guidance on the current state and
usability of the system. Based on a number of factors, the most important of which was the preference
expressed by domain experts, not every result was released to our research group or can be published
in the open research literature. By necessity, therefore, some evaluations are more detailed than others.

https://jena.apache.org/
https://neo4j.com/
https://www.blazegraph.com/
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5.1. Users and Domains

The myDIG system was evaluated by five pairs of users, each of which was affiliated with either
a federal agency or a national organization. The users are practicing experts in their respective domains.
Because they involve highly illicit activities, the domains described below may also have a significant
Dark Web presence, but in this paper, all data discussed, released, analyzed, or presented were crawled
over the Open Web.

Concerning protocol, each pair of domain experts arrived on a separate day in the Washington
D.C. facility reserved by DARPA for these evaluations. A member from our research team trained the
users for 1–2 h in navigating the system, setting up the domain, and conducting search as we have
described in this paper. Users were then left to set up their domains (Phase 1, as described in System
Overview and User Experience) in myDIG. On a separate day (usually the next, but always within the
week), users conducted actual knowledge discovery and search (Phase 2) by using the search interface
for 2 h. All feedback was collected by NIST and DARPA after Phase 2 had concluded.

5.1.1. Securities Fraud

Securities, particularly penny stock, fraud is a complex domain that falls under the direct authority
of the Securities and Exchange Commission (SEC) in the United States. Penny stock fraud is unusual
because much of the activity that accompanies fraudulent behavior, including hype and promotional
activity, is legally permitted. Many of the actual actors involved may not be physically present in the
U.S., but for regulatory reasons, “shell” companies fronting such activity for promotional and legal
purposes have to be registered in the U.S. to trade stocks legitimately in Over-The-Counter (OTC)
exchanges. In addition to the longer term goal of investigating, and gathering information on, such
shell companies and the people involved in them, investigators are also interested in taking preventive
activity. This can happen when a penny stock company is caught actively engaging in factually
fraudulent hype (for example, a false claim that a contract was just signed with a well-known customer
firm), in which case, trading can be halted or even shut down (this is why the step is preventive;
trading is shut down before unwary investors “buy in” and subsequently end up losing their savings).
The myDIG system supports these goals by allowing users to aggregate information (in the crawled
corpus, which contains many web domains) about suspicious penny stocks using the ECS facilities,
and also to zero in on burgeoning promotional activity.

5.1.2. Illicit Shipments via USPS Mail

Unlike the securities fraud domain, illicit shipments via USPS happen in the physical world, but
communications about the illicit shipment, particularly tracking numbers, happen digitally in specific
forums and typologies that investigators in this domain understand well. Like the Narcotics domain,
and unlike the other three domains, the USPS domain is an “under the cloak” domain about which
investigators have not shared much information. After training, however, these investigators were
able to set up the domain and use it on their own despite having no technical or programming abilities.
While the actual search methodology and the questions that investigators were seeking to answer are
strictly confidential and cannot be revealed, we were allowed to assess (and report on) user effort in
setting up the domain and subsequent KG quality.

5.1.3. Illegal Firearms Sales

In the U.S., firearms sales are regulated in the sense that transactions cannot be conducted with
arbitrary persons or over arbitrary channels like the Internet. Investigators in the IFS domain are
interested in pinpointing activity that, either directly or indirectly, provides evidence for illicit sales
that leave some digital trace. The domain is similar to the SF domain (and dissimilar to the CE domain,
described below) for the important reason that investigators limit their focus to domestic activities.
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5.1.4. Counterfeit Electronics

Despite what the name suggests, investigators in the counterfeit electronics domain are interested,
not in consumer electronics, but in microchips and FPGAs that form the computational backbones of
more complex “application” devices. The FPGAs may resemble an FPGA from a genuine contractor,
but are fakes, and may have malicious modifications at the hardware level. Certain countries,
companies, and devices are more relevant to this kind of activity than others. We note that there is an
obvious national security component to these investigations, and just like with the other described
domains, domain expertise plays a crucial role both in setting up the domain and in the knowledge
discovery itself.

5.1.5. Narcotics

Due to confidentiality constraints, there is little that we can reveal about the narcotics domain,
except the self-explanatory implication in the name itself. Like the other domains, it is important to note
the caveat that investigators are specifically interested in activity that has some digital component that
can guide further investigation. That is, it does not purport to cover all narcotics activity. Among all
five domains, this domain is featured most prominently in the Dark Web data.

5.2. Domain Discovery Corpora

Figure 8 characterizes the corpus for each domain. From the roughly power-law distributions
seen for most of the domains (near-linearity on log-log scale), despite their diversity, we note that some
TLDs in each distribution are much more heavily represented than others. In turn, this immediately
suggests why a tool such as Inferlink (that requires users to curate on a per-TLD basis) could be useful.
By focusing on the largest TLDs, users can end up curating a large fraction of web pages. On the other
hand, there is a significant long tail, which means that Inferlink (which is best suited for the short tail
or largest TLDs) cannot be the only solution for recall-friendly knowledge discovery. Glossaries, as
well as pre-defined extractions, are required to take up the slack. There is a clear tradeoff between user
effort and knowledge graph quality. In the evaluations described subsequently, we measure both.

Figure 8. Document counts per TLD (Y-axis) against the ranked list of TLDs (ordered by document
count on the X-axis).
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5.3. Evaluation of User Effort

5.3.1. Tasks and Materials

We evaluated user effort in setting up the domain in myDIG in two different ways. First, we
evaluated the level of effort that was expended in each domain on using the Inferlink tool to curate one
or more relevant (as judged by the users) clusters of web pages. Since Inferlink operates on a per-TLD
(more specifically, a per-cluster per TLD), we refer to its extractions as short tail extractions. We plot the
short tail against the long tail, by reporting the numbers of web pages for both cases per field such that
the web page had at least one extraction (from Inferlink for the short tail and overall, i.e., any extraction
at all, for the long tail) for that field. Second, we evaluated the level of user effort in defining the
domain by reporting the total number of fields for each domain, with some representative examples of
fields that users defined from scratch. We also quantified the number of glossaries used per domain,
since qualitative feedback by users indicated that glossaries were extremely popular in incentivizing
users to set up custom fields.

5.3.2. Results

Figures 9–13 illustrates the distribution of the numbers of web pages with at least one extraction
(per field, as noted on the y-axis) both for the short and long tails. The figures illustrate two interesting
aspects quantifying the importance of expending effort in the Inferlink tool vs. more all-encompassing
methods like glossaries. In the IFS and SF domains, we find that Inferlink has made significant
fractional contributions to some fields (at the bottom of the y-axis) compared to domains like narcotics,
where the long tail overwhelms Inferlink. On the other hand, we find that, for some fields, only
Inferlink has yielded any extractions at all. For example, in the CE domain, fields like UserRole and
Product had non-zero extraction numbers only because of Inferlink. In post-hoc qualitative feedback,
users expressed that using Inferlink gave them a means of expending effort with the confidence that
the effort yields usable, interpretable results.

Results in Table 1 show that between 20 and 40 fields were retained (from the generic set of
pre-defined fields, like city or state) or defined by users. Some domains are much more fine-grained
than others, an example being N. Users also made good use of the glossary facility, with the number of
glossaries (eight) being the highest for the IFS domain.

Table 1. Quantifying user effort in terms of total numbers of fields and glossaries per domain, after the
users had finished setting up their respective domains.

Domain Number of Fields Number of Glossaries Examples (User-Defined Fields)

IFS 27 8 caliber_gauge, ffl_status
CE 21 6 PartNumber, Company

USPS 21 5 confirmations, Tracking_Number
N 43 5 used_bitcoin, vendor
SF 32 6 counsel, disclaimer
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Figure 9. For the IFS domain, a comparison of web page count (x-axis) such that at least one value
per field (y-axis) was extracted from that website (green bar/long tail), against the short tail/red bar
wherein only Inferlink extractions are considered.

Figure 10. For the SF domain, a comparison of web page count (x-axis) such that at least one value
per field (y-axis) was extracted from that website (green bar/long tail), against the short tail/red bar
wherein only Inferlink extractions are considered.
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Figure 11. For the Narcotics domain, a comparison of web page count (x-axis) such that at least one
value per field (y-axis) was extracted from that website (green bar/long tail), against the short tail/red
bar wherein only Inferlink extractions are considered.

Figure 12. For the USPS domain, a comparison of web page count (x-axis) such that at least one value
per field (y-axis) was extracted from that website (green bar/long tail), against the short tail/red bar
wherein only Inferlink extractions are considered.
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Figure 13. For the CE domain, a comparison of web page count (x-axis) such that at least one value
per field (y-axis) was extracted from that website (green bar/long tail), against the short tail/red bar
wherein only Inferlink extractions are considered.

5.4. Evaluation of Knowledge Graph Quality

5.4.1. Tasks and Materials

The aim of this evaluation was to assess the quality of the KG; specifically, the precision of the
extractions for fields in the KG. We conducted this task by sampling 25 random web pages per domain
and assigning each domain to an annotator from our research group. Each extracted element (for each
field) reported by myDIG was given a 0/1 score for correctness. Each annotator made this assessment
by referring back to the original cached web page to verify whether the answer was correct. We report
these precision metrics, along with the total numbers of extractions evaluated for correctness, and
comment on the results.

5.4.2. Results

Results in Table 2 show that myDIG was able to achieve reasonable levels of precision for the
collective sets of extractions. For some domains, like CE and USPS, precision was close to (or above)
90%, while for others, it tended to be between 70 and 80%. While there is room for improvement, these
precision numbers show that, on average, there was considerably more signal than noise in facets and
extractions.

Table 2. Manually-judged precision of field extractions stored in the knowledge graph for each domain.

Domain Number of Extractions Correct Precision

IFS 168 125 74%
CE 85 75 89%

USPS 116 109 94%
N 211 156 74%
SF 67 48 72%
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6. Qualitative Feedback and Analysis

Much feedback was elicited during the testing of myDIG from users of all five domains. In the
interest of space and the contributions that we claimed in the introductory section of this paper, we
focus on how myDIG helped users obtain insights that were otherwise not achievable using generic
search technology like Google.

6.1. Insights beyond Google

In response to the question, did the tool ever help you achieve an insight that would have been otherwise
difficult to identify without the tool? If so how? posed by NIST evaluators, users had the following
comments (comments are not syntactically modified in any way):

[IFS] Yes, it allowed us to see possible connections to phone numbers, email addresses, locations, etc., that
could not necessarily be verified/discovered using Google or site-led searches within Armslist, backpage, etc.

[CE] SAVES SO MUCH TIME. Aggregates data that would be searched using Google.
Comments from SF users revealed, however, that the actual corpus crawled can sometimes be an

important bottleneck:
[SF] Conceptually, maybe it would, but for the use cases proposed by SEC, there were no insights found;

data extraction/crawling issues.

6.2. Productivity

Users also felt that myDIG improved their productivity and helped them to focus on relevant
information. In response to the question, did the tool identify any new and relevant sources of information
that you had not found through other methods previously? If so, what were they? users had the
following comments:

[IFS] It was able to categorize postings by location, which allowed us to focus our investigation.
[CE User 1] -Spartan6 xlinx (email addresses); -domain search and aggregation on email addresses; -filling

in relevant domain endings to match (while hard to interpret post-hoc, we believe these indicate relevant
information sets discovered by User 1).

However, once again, the crawled data were noted to be an issue by both SF and CE User 2.
[SF] No; index properly; Investorshub was not indexed correctly: some posts are crawled and scraped

correctly, most are not.
[CE User 2] Was really unhappy with data that was pulled in by the tool. A better (more efficient) domain

discovery process...
Despite the comments by SF users, we note that they explicitly indicated to us that they would

like the system to be transitioned to their office and that they would like to keep using myDIG to
curate their domain and applying it in actual on-the-ground investigations.

6.3. Useful Features

Users were also asked the following: were there any features within the tool that stood out as particularly
useful? Most users expressed that the glossary feature was very useful, and ECS was also singled out
by some; specific responses are noted below:

[CE] -Really liked the glossary feature; -Can have multiple domains; -Inferlink integration is Really
straightforward; -Status bar was helpful to know when a process is running vs. when it is not; -subset of
TLDs helpful.

[SF] -Being able to ‘click’ on the entity; -documents that relate to an address; find relevant information
associated with a particular entity.

7. Discussion: Implications for Future Design

Based on the results and analyses in the previous sections, we summarize some important
implications uncovered over the course of testing myDIG in five different domains.
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Automatic data acquisition is the new bottleneck. Many, if not most, of the users expressed satisfaction
with the facilities offered by myDIG and felt that the potential of myDIG would have been more fully
realized if the quality of the data ingested had been better. Unfortunately, we had no control over
this issue, although the DARPA MEMEX program used state-of-the-art data acquisition, relevance
modeling, and crawling systems. One area of future work currently being considered is the integration
of domain discovery and knowledge discovery. While such an integration would introduce new
complexities and dependencies into the system, it could potentially improve data acquisition quality
by incorporating richer user feedback into the domain discovery process.

Users should be empowered to specify their own vocabularies. In the AI literature, there are powerful
data models and representations for specifying fine-grained ontologies [11,49,50]. These have merits
in certain fields, such as biomedicine, but are not suitable for users who do not explicitly deal with
vocabularies, ontologies, or data models on a regular basis [51]. Instead, systems like myDIG allow
users to crystallize their internal vocabularies by exploring the data and specifying fields as they go
along; for example, many of our users interleaved Inferlink annotations while defining new fields.
This methodology is in sharp contrast to the more traditional view of specifying a domain model
upfront before data acquisition, processing, or modeling begins.

Provenance, going all the way to the original source, is key to fostering trust. We are, by no means, the
first to make this observation, but believe that it is important to (re-)state owing to the rapid progress
in deep learning technologies for information extraction, without the same progress in interpreting or
explaining the results. Users expressed trust in our system because of the provenance offered both at
the web page and extraction levels. We note that, recently, the AI community has recognized this issue
and is tackling the explainability problem with vigor.

8. Conclusions and Future Work

There is a need to democratize and personalize machine learning and search technologies as
they become ever more complicated, such that users and analysts in specific domains can interact
with these tools without sacrificing the benefits of years of domain expertise. The myDIG knowledge
discovery system is an effort funded under the DARPA MEMEX program to facilitate this high-level
goal. User experience while using myDIG can be roughly separated into two phases: setting up the
domain and conducting search. The myDIG system does not require specifying vocabularies or making
ontological commitments in advance and is not specialized for a single domain. More specifically, in
all five investigative domains where myDIG was evaluated, users were able to build a personalized,
domain-specific search engine over corpora that contained hundred of thousands, and in some cases,
millions, of raw HTML web pages.

Feedback from investigative users shows that the system has potential for tackling some difficult
questions, with the quality of domain discovery and data acquisition proving to be an important
bottleneck that we are looking to address in future work. Most encouragingly, users (particularly in
the securities fraud domain) have explicitly indicated to us that they would like to keep using the
system and would like the system to be transitioned to them.

In keeping with the democratic principles espoused in this work, and by the DARPA MEMEX
program, myDIG was packaged, documented, and released to the public in November, 2017 (with
regular updates), shortly after the MEMEX program held its final Quarterly Period Review (QPR).
We are already experimenting with myDIG in the classroom and laboratory settings and using it to
explore domains other than the investigative domains described in this paper. A specialized instance
of myDIG has been transitioned to a state-level law enforcement agency for investigating crimes such
as human trafficking.
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AI Artificial Intelligence
IE Information Extraction
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