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Abstract: Edge computing is a distributed computing paradigm that encompasses data computing
and storage and is performed close to the user, efficiently guaranteeing faster response time.
This paradigm plays a pivotal role in the world of the Internet of Things (IoT). Moreover, the concept
of the distributed edge cloud raises several interesting open issues, e.g., failure recovery and security.
In this paper, we propose a system composed of edge nodes and multiple cloud instances, as well
as a voting mechanism. The multi-cloud environment aims to perform centralized computations,
and edge nodes behave as a middle layer between edge devices and the cloud. Moreover, we present
a voting mechanism that leverages the edge network to validate the performed computation that
occurred in the centralized environment.

Keywords: byzantine fault-tolerance; IoT; cloud computing

1. Introduction

Cloud computing has tremendously impacted society by allowing users to use infrastructure,
platforms, and software provided by cloud providers at a low cost. Current services use multiple
clouds to increase data availability and performance. Contrarily, the complexity of an application
increases, along with the risks in security and privacy [1]. In conventional cloud computing, the process
of uploading data to centralized servers creates significant pressure on the network, specifically in
the data transmission costs of bandwidth and resources. The network performance worsens with
increasing data size [2].

Edge computing is used as a method for optimizing cloud applications by taking a certain portion
of data or services away from a central cloud to nodes closer to the end-users. While everyday devices
take advantage of cloud computing, Internet of Things (IoT) manufacturers and application developers
are only just starting to discover the benefits of doing more computing and analytics on the devices
themselves [3]. For critical solutions, edge computing is used to reduce latency and for real-time
computation, to better manage the massive deluge of data being generated by the IoT devices, and to
lower the dependence on network connectivity into the cloud. For instance, the agriculture industry
requires real-time monitoring of the soil properties to determine the soil quality, moisture, and type
of crop production [4]. In support of this, all agriculture entities need to be connected to have a
decision-making system that can help increase production and ease the distribution of agricultural
products from farmers to marketing agencies and from vendors to farmers.

Yet, edge computing cannot defeat the benefits of using a centralized cloud, which includes better
overall management of applications and data since they are centralized. Companies are always looking
for the perfect cloud environment, which is secure and easy to configure, to overcome the various cloud
limitations: Loss of availability and privacy, data corruption, and vendor lock-in. Using multiple clouds
to replicate services can be viewed as a solution, but it does not come for free. Initially, using multiple
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clouds is more expensive in every sense than using one cloud. Even so, interoperability and portability
are important factors to the success of this architecture [5]. By using multiple clouds, companies can
reduce long-term costs, improve resilience and security, and avoid vendor lock-in.

Cloud computing can improve the quality of smart-city services, offer support to store,
and analyze and extract knowledge from raw data [6]. In a recent vision of computing for smart
environments, academics and experts published a blueprint to help build smart cities by adopting a
secure hybrid cloud architecture [7]. Edge computing can support time-sensitive requirements of IoT
applications and exploit the constrained resources of edge devices, while cloud-based programming
models can strongly secure sensitive data, perform cloud backups for disaster recovery, and reduce
costs in general.

A generic IoT network (see Figure 1) can be viewed as a three-tier network with the existing
infrastructure networks (e.g., cloud and cellular networks). This architecture consists of ‘cloud tier’,
‘edge tier’, and ‘device tier’. The device tier corresponds to the endpoints of the networks, where IoT
devices act as data sources. Optionally, some IoT devices can be connected to edge gateways. The edge
intelligence resides in the second tier: The edge computing layer. This layer comprises network devices,
such as routers, gateways, and switches, that are capable of processing, computing, and temporarily
storing the received information. The edge tier is composed of a group of edge nodes structured
hierarchically and located between the cloud servers and the IoT devices. Edge nodes are devices
capable of routing network traffic and usually also possess high computing power. They can range
from base stations, routers, or switches to small-scale data centers. The cloud tier corresponds to cloud
intelligence and is capable of storing and processing an enormous amount of data, depending on the
capability of the data centers.

Edge

Cloud Cloud Tier

Edge Tier

Device Tier

Edge Nodes

Edge Gateway

Cloud

Edge
Datacenter

Figure 1. Generic three-tier edge network architecture.

The three-tier architecture retains the core advantage of using clouds as a support infrastructure
and places the control and trust decisions on the edge devices. Other solutions have expanded this
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architecture to use more layers. These additional layers are designed to add business requirements
to the traditional architecture [8,9]. The capabilities of a generic three-tier architecture satisfy the
requirements for this solution.

Byzantine fault tolerance (BFT) relates to the dependability of computer systems, especially
in distributed systems where components may fail arbitrarily and provide erroneous information.
The problem of Byzantine generals was first proposed by Lamport et al. [10] and is still of significant
interest in the present day [11]. Distributed computing that occurs in environments such as centralized
clouds or edge nodes are prone to Byzantine failures. These are the most challenging class of failure
modes, which imply no restrictions and make no assumptions about the kind of behavior of the
system [10].

In today’s networks, the data that pass through the edge network are frequently unattended and
unsupervised. Sometimes edge nodes may fail, and there is imperfect information about whether a
particular node has failed. The lack of fundamental security features exacerbates the privacy risks
of edge devices and edge computing, and the decentralized management of a highly distributed
environment can lead to security or privacy violations [3,12,13]. Consequently, authentication and
access control mechanisms must be extended from current cloud deployments and customized for
the edge ecosystem. The need to create methods to ensure ‘correctness’ in an unsafe environment
has become a critical issue. There are risks associated with edge computing that are different from
the threats that occur in a centralized environment. Ensuring edge computing security is much
more challenging than providing cloud security because it involves distributed data processing.
One step to improve safety is to use a set of Byzantine agreement protocols to detect data or
computation corruption.

Byzantine failures also affect cloud services running in data centers. First, arbitrary faults are
known to happen in the data center, corrupting the processing and affecting the ‘correctness of the
results’ [14–16]. Second, malicious attacks perpetrated by cloud insiders or external hackers can also
cause corruption of the processing and of its results [17–19]. Third, cloud outages may lead to the
unavailability for cloud services. Experience shows that these events are frequent, with cases of
unavailability of hours in services like Facebook or Cloudflare, to name just a few, that can impact the
global traffic [20].

In this paper, we propose a voting scheme that works in a set of edge nodes located in the same
geographical region that validates the computation that occurred in the multi-cloud environment.
The novelty of this proposal arises from the combination of using multiple clouds and edge nodes to
not only parallelize computation but also to tolerate Byzantine faults transparently. This solution can
be useful for information-centric IoT applications that require the following requisites: (i) IoT data
rely on the network for further computational analysis, (ii) it is necessary to ensure the correctness
of the computation, and (iii) applications are not subject to reduced latency. The nature of most IoT
applications tends to possess these characteristics because consumers desire to receive meaningful
knowledge from the data.

Our solution addresses several non-trivial challenges toward this purpose in the edge
environment. First, it aims to be transparent for the user or any IoT device. Second, this is a general
framework that aims to relay computation from edge nodes into the cloud. Third, this framework uses
a voting scheme that validates cloud computation in the edge network.

2. Related Work

Edge computing has been useful in supporting applications in several domains. Ha et al. used
cloudlets to offload computing tasks for wearable cognitive assistance [21]. Chun et al. presented
CloneCloud that enables mobile applications to leverage from the cloud [22]. Both solutions reduce
energy consumption by offloading part of the execution onto the cloud.

Wang et al. proposed an in-network distributed processing for IoT data based on the widely
deployed MapReduce framework called MR-IoT [23]. MR-IoT is built upon information-centric
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networking architecture to offer better network support for generic IoT applications. The whole
network is responsible for deploying and executing MapReduce tasks based on the naming scheme.
This solution is constrained to the computational power of the nodes in the network and security
issues. MR-IoT is not practical for a consumer to send large volumes of data since it will overload the
network. Additionally, MR-IoT does not concern itself with authentication, or privacy, ignoring the
challenge of providing security to the network.

Few works address fault-tolerance in edge computing. In the work [24], researchers proposed a
new fault-tolerant architecture for IoT applications that allows data to be computed in edge nodes and
later sent to the cloud for further computation and storage, if necessary. This architecture consists of
three layers—(i) application isolation, (ii) data transport, and (iii) multi-cluster management—to allow
the placement of the computation on either the edge or the cloud. The authors considered surveillance
systems where edge nodes can operate under hardware faults. Nevertheless, this solution tolerates
crash faults by replicating data so that a fault in the edge or cloud will not disrupt the data processing.

EdgeCons [25] is the only known consensus protocol, with a Paxos-based approach, that achieves
fast ordering in an edge network. EdgeCons runs a sequence of Paxos instances on the edge network,
but it distributes the leadership of the Paxos instances based on the recently running history of the
consensus process. The purpose of this protocol is to guarantee the ordering of concurrent requests by
the edge network. This protocol achieves a fast event ordering for large-scale distributed applications
in edge computing networks. Nonetheless, this protocol must assume that there is a cloud behind the
edge network that never fails or becomes network-partitioned, which is unrealistic.

Blockchain systems use different consensus mechanisms to achieve necessary agreement on a
single data value or a single state. Stanciu has investigated the use of blockchain as a platform for
edge computing to execute critical distributed algorithms in a secure environment [26]. This ongoing
project uses Hyperledger Fabric in the edge network to validate transactions and to connect the
client to validating peers. Hyperlegder Fabric is an authorised blockchain platform, which means
that, similar to our proposal, every identity is known. In terms of performance, there is a limitation
regarding the load that can be processed in real time.

There could exist a debate between blockchain and BFT state machine replication.
Vukolic compared PoW-based blockchain limitations with BFT state machine replication in terms of
scalability and performance [27]. While BFT solutions are known for its poor scalability, in terms of
performance, these protocols sustain thousands of transactions with practically equal network speeds.
In contrast, blockchain performance is dependent on ‘block size’ and ‘block frequency’. Noticing
the blockchain limitations, Decker et al. proposed a new system called PeerCensus that acts as a
certification authority and relies on blockchain to regulate entities joining the system and in Chain
Agreement Protocol (CA) to commit transactions [28]. The system ensures that at any time t, 2

3 of the
nodes are in ‘secure state’, keeps track of system membership, resolves conflicts in case of a blockchain
fork, and augments the system with strong consistency. Consequently, CA ensures that Byzantine
fault-tolerance protocols such as PBFT [29] or Zyzzyva [30] can function accurately in the system.

3. System

This section begins by presenting the system architecture and then defines the system model by
providing examples of possible attacks.

3.1. Architecture

The system is composed of a set of distributed processes that run in edge and cloud nodes.
Each edge node has a service that deals with edge device requests. The processes in the edge nodes
have the objective of receiving the client requests, the responses from the cloud instances, as well as
performing a voting mechanism with all its peers to validate the output from the cloud instances.
In this architecture, there will also exist cloud services waiting for requests from the edge nodes.
The cloud instances aim to receive the requests from the edge nodes, perform the computation from
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the request, produce a cryptographic digest from the output of the computation, and send the digest to
the edge node. Each edge node is connected to a single cloud instance, and a single edge device sends
the request to a set of edge nodes. From the client request, each edge node can identify each peer that
the client also submits the request. All the entities in the system are connected by reliable channels,
so no messages are lost, duplicated, or delivered out of order (e.g., TCP ). Data integrity and privacy
are maintained through cryptographic hash functions (e.g., SHA-512 ) and public-key cryptography
(e.g., TLS ).

A cryptographic hash function is applied to the output of the computation performed in the
cloud. To prevent any disclosure of the computation, only the produced message digest, or digest,
is sent to the edge nodes. All messages that circulate between each party are encrypted with a session
key to preventing eavesdropping and authenticated to guarantee that each party correctly belongs to
the system.

Figure 2 illustrates the multi-layer architecture composed by a cluster of edge nodes E (e.g., e0,
e1, and e2) that are in the same geographical region and are connected to a set of cloud instances C
(e.g., c0, c1, and c2) through the Internet Backbone. Contrary to the edge nodes, there is no requirement
regarding the geographical distribution of cloud instances. When the client submits an operation σ,
the operation is replicated to the nearest cluster E and forwarded to C.

Cloud Tier

Edge Tier

Device Tier

Internet
Backbone

same geographical region

e0 e1 e2

California Oregon Texas

c0 c1 c2

Edge
Gateway

Figure 2. Edge network architecture with multiple cloud instances.

The result of the operation from each cloud Vσ, which comes in the form of a message digest,
H(Vσ), is sent to E and validated by all ei : i ∈ E. It is assumed that Vσ is correct if E obtained at least
f + 1 equal H(Vσ).

Our system is configured with parameter f. In distributed systems, f is usually the maximum
number of faulty results. Given an output vi ∈ Vσ, our system can tolerate not only f faults but also
any number of faulty replicas as long as no more than f faulty replicas return the same wrong output.
It includes the possibility that up to f replicas maliciously collude and the system remains able to reach
a correct output.

Consider a system of n edge nodes in an all-to-all message-passing network, n = 2 f + 1. Each edge
node (ei : i = {0, 1, ..., n− 1}) is connected to a single cloud instance (ci : i = {0, 1, ..., n− 1}). Of these
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2n nodes, which includes n edge nodes and n cloud instances, our system is correct if the edge nodes
can still vote for the correct value v whether there are f faulty edge nodes, f faulty cloud instances,
or any combination of both.

Initially, this solution seems expensive in terms of the number of resources needed. Each cloud
instance is a set of several nodes with the goal to execute computer-intensive operations. The edge
nodes are responsible for the voting mechanism operation, leaving the computation of complex
operations to the cloud instances. While we use 2 f + 1 cloud instances with variable size to get
the benefits of using a multi-cloud environment, it is necessary to add the 2 f + 1 edge nodes to
this solution.

Byzantine fault tolerant systems are considered by the research community to be state-of-the-art
with regard to providing reliability in distributed systems. A typical BFT system consists of n = 3 f + 1
replicas that each provide a finite state machine and execute operations from clients in the same
order [29]. This is an expensive solution, but it guarantees safety and liveness properties in
harsh environments.

Cloud outages are common, and adapting services to use multiple clouds have been the solution
to eliminate reliance on any single cloud provider and improve reliability [31]. Using multiple cloud
instances to run services is even more expensive, but it has been shown that it could be a good strategy
to tolerate BFT and cloud outages [32]. Similar to the mentioned work, this solution uses several cloud
instances for the same purpose; however, we add the edges nodes to this architecture to validate the
computation performed in the centralized environment. We can consider the cost of adding edge
nodes to the solution as negligible when setting up a multiple cloud environment.

In terms of communication cost, traditional BFT algorithms require n2 messages exchanged
in nice executions, i.e., when there are no failures, and the system is synchronous enough for the
leader not to be changed [29] and require five communication steps [33]. Our solution requires fewer
communication steps comparing with other BFT algorithms. Moreover, the client is not responsible
for the computation in our solution, which contrasts with [32]. The parts responsible for the system
execution are the edge network and the cloud instances.

3.2. System Model

This solution does not need a leader to propose values as with other BFT algorithms [30,34].
Each cloud instance is connected to a single edge node. Each edge node accepts the proposed value
from the correct cloud instance. We detail the algorithm from the client and edge node perspective.

3.2.1. Algorithm

The execution is replicated in 2 f + 1 cloud instances for ensuring the existence of f + 1 identical
outputs even in the presence of arbitrary or malicious faults. Each cloud instance proposes a value v to
the particular edge node. Each edge node begins the voting mechanism. The algorithm must enforce a
set of properties to ensure correct operation:

1. Voting: All correct processes must terminate with single value v.
2. Agreement: All correct processes must choose the same value v.
3. Termination: Processing or communication delays are bounded to a value ∆.

The first two properties are concerning safety. The algorithm must guarantee that no correct
process should ever make a decision that is contrary to what the remaining correct processes have
chosen. The third property is concerning liveness.

The algorithm that is depicted in the Figure 3 is composed of three phases—PROPOSE, PREPARE,
COMMIT. In this example, we are considering f = 1, which means that three edge nodes and three
cloud instances are necessary. In the next paragraph, we detail the execution of the system from the
client and server perspectives.
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E1

E2

E3

v1c1 v1c2 v1c3

Client [ v1,v1,v1 ]

Propose Prepare Commit

v1

v1

v1

v1

v1

Figure 3. Correct execution of voting mechanism.

3.2.2. Client

A client c sends a request of the execution to a set of 2 f + 1 edge nodes by sending a message
〈REQUEST, seq, σ〉pc. Requests are signed with session keys pc created for the operation. Requests with
invalid signature are ignored. seq is the request identifier that is used to ensure that the REQUEST will
only compute once. σ refers to the operations performed in the cloud instances.

The client expects to receive 〈seq, H(Vσ)〉 from the edge nodes. H(Vσ) is a message digest from
the outcome of the computation σ, Vσ. The client knows that the computation ended successfully, if it
receives at least f + 1 equal H(Vσ).

3.2.3. Edge Node

The client request is forwarded to the respective cloud instance with the message
〈REQUEST, seq, σ, ei〉pk. ei identifies the edge node that forwarded the request and that will execute the
voting mechanism. Requests are signed with session keys pk created for the operation.

The output of the computation performed in the cloud ci comes in the form of 〈ci, H(Vσ〉pk. ci ∈ C
identifies the cloud that performed the computation. Lets refer to vi = 〈ci, H(Vσ〉pk as the result of the
computation in cloud instance ci.

The voting algorithm comprises three phases as depicted in Figure 3, which begin from the
moment the first reply is received by an edge node ei from the cloud instance ci. First, in the PROPOSE

phase, each edge node will receive 〈PROPOSE, seq, v〉 that represents the result from the computation.
PROPOSE is the type of message sent from the ci to ei. seq is the initial sequence number. vi is the
proposed value that resulted from the computation σ in cloud ci.

After an edge node ei receives vi, it forwards during the PREPARE phase 〈PREPARE, seq, vi, ei〉 to
2 f peers. vi is the proposed value from ci. ei is the edge node that received the value. The COMMIT

phase begins when all the values have been broadcast.
In the COMMIT phase, the edge nodes apply a simple majority scheme to find a single value v

that identifies the computation. Finally, each node will relay the result to the client with the message
〈RESPONSE, seq, v, ei〉pc.

In the simple use case, the sequence of events on the server-side is the following: (1) Each cloud
instance sends the result of the computation to the respective edge node; (2) after all edge nodes receive
the proposed value v, it is propagated to every other peer; (3) each edge node will apply a voting
scheme for value v; (4) each edge node will send the voted value to the client; (5) the client c waits
for f + 1 matching replies with the content 〈RESPONSE, seq, v, ei〉pc to know that the computation was
performed successfully.

From the client perspective, it receives a message from each ei. If the client finds a majority of
equal results, it knows that the computation performed successfully.
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There is no synchronization between edge nodes. In other words, each edge node can be in
different phases at the same time, or have a Byzantine behavior. With this algorithm, the following
scenarios are possible: (i) One node already finished the PREPARE phase, but the other peers did not
complete the PROPOSE phase yet. The only edge node that has already propagated its value cannot
continue execution because it still does not have enough values to vote; (ii) ei cannot wait indefinitely
if it did not receive vi from a ci, or from its peers. Thus, it is necessary to implement a simple timeout
mechanism to guarantee liveness [29].

By using the following inequality in |Tcj + Tk j − Tci + Tki| < ∆, the system calculates the
parameter ∆ that binds processing and communication delays. Tc refers to the processing time, and Tk
is the latency of a message. After ei ∈ E receives vi from ci ∈ C, the system expects that any ej ∈ E
receives a value within a ∆ interval. Namely, it is expected that the time difference between the first
process to finish, Tci + Tki, and any other process j, Tcj + Tk j is less than ∆. If ej does not receive any
message after ∆ time, it is considered that ej failed.

We model an attacker from the Byzantine failure model. The cloud and edge nodes are prone
to arbitrary and malicious faults. The cloud outages are considered by the system as an ‘omission
failure’. In Figure 4, we depict a scenario where e1 is compromised by a malicious insider and tampers
the value v1. In this case, e1 distributes the wrong value v2 to the remaining nodes. Nevertheless,
the remaining 2 f nodes can still vote correctly and send the correct result to the client.

e1

e2

e3

v1c1 v1c2 v1c3

Client [ v2,v1,v1 ]

Propose Prepare Commit

v2 v1

v1

v1

v1

Figure 4. Execution with one fault.

In Figure 5, we depict another example where the system suffered two faults: c2 suffered an
arbitrary fault that altered the outcome to v3, and e1 is compromised by a malicious attacker. c1 and c3

are the only clouds that proposed the correct value, and the e2 and e3 nodes are in ‘correct’ state.
In the PROPOSE phase, a set of mixed values is distributed to the edge nodes, and it will be

propagated to all edge nodes in the PREPARE phase. The nodes e1 and e2 have the set of values
{v1, v2, v3}, and the node e3 has the set {v1, ∅, v3}. The ∅ in e3 is a consequence of e1 not sending the
value v2. Consequently, in the COMMIT phase, the simple voting scheme cannot find the correct value,
and ∅ will be sent to the client. In this case, the system suffered two faults which are higher than what
was configured initially, f = 1. If we want to tolerate f = 2, five edge nodes and five cloud instances
are necessary.
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e1

e2

e3

v1c1 v3c2 v1c3

Client

Propose Prepare Commit

v2 v3

v3

v1

v1

[ v1,v2,v3 ]

[ v1, ,v3 ]∅

[ v1,v2,v3 ]

Figure 5. Execution with two faults.

4. Conclusions

In this paper, we presented a voting scheme that validates computation in a multi-cloud
environment by leveraging edge-computing technology. The proposed solution uses edge nodes
for two purposes. First, to forward operations initiated by the client to a set of cloud instances. Second,
to validate the computation performed in the multi-cloud environment. Information-centric IoT
applications that rely on the network for further computational analysis can benefit from this solution
because the system guarantees dependability in the computation, even in the presence of Byzantine
faults. In future work, we intend to compare our methods with related work to understand how
latency can affect the functioning of the system.
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