
future internet

Article

A Novel Neural Network-Based Method for Medical
Text Classification

Li Qing , Weng Linhong * and Ding Xuehai *

School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China; qli@shu.edu.cn
* Correspondence: wenglinhong@shu.edu.cn (W.L.); dinghai@shu.edu.cn (D.X.)

Received: 21 October 2019; Accepted: 30 November 2019; Published: 10 December 2019
����������
�������

Abstract: Medical text categorization is a specific area of text categorization. Classification for
medical texts is considered a special case of text classification. Medical text includes medical
records and medical literature, both of which are important clinical information resources. However,
medical text contains complex medical vocabularies, medical measures, which has problems with
high-dimensionality and data sparsity, so text classification in the medical domain is more challenging
than those in other general domains. In order to solve these problems, this paper proposes a unified
neural network method. In the sentence representation, the convolutional layer extracts features from
the sentence and a bidirectional gated recurrent unit (BIGRU) is used to access both the preceding
and succeeding sentence features. An attention mechanism is employed to obtain the sentence
representation with the important word weights. In the document representation, the method uses
the BIGRU to encode the sentences, which is obtained in sentence representation and then decode
it through the attention mechanism to get the document representation with important sentence
weights. Finally, a category of medical text is obtained through a classifier. Experimental verifications
are conducted on four medical text datasets, including two medical record datasets and two medical
literature datasets. The results clearly show that our method is effective.

Keywords: text classification; neural network; medical text; data sparsity; high dimensionality

1. Introduction

As a classic task of natural language processing, text classification can quickly find the
corresponding categories from massive data and realize automatic classification [1]. Therefore, text
classification plays an essential role in text data retrieval and mining. However, text classification in a
specific area can lead to high dimensionality and data sparsity problems, especially in the medical field.

Medical text contains medical records and medical literature [2]. The former is a record of the
medical activity process of the doctor’s examination, diagnosis and treatment and development of
the patient’s disease. It describes the patient’s medical history and the effect of the prescription. It is
the detailed information of the patient during treatment. The latter is a documentary record of the
research results of the latest medical methods. Both are important clinical information resources. With
the development of information technology and the popularity of electronic medical records, huge
amount of electronic medical record texts and medical literature have been accumulated, providing
valuable data resources for information mining in the medical field.

Medical text generally contains normalized medical terminology, which refers to some concept or
abbreviations in the medical field, such as blood pressure of 140/65. Besides, medical records often
have poor grammatical sentences [3,4]. Therefore, text classification in the medical domain is more
challenging.

Since the deep learning method achieves good performance in image classification and speech
recognition, it has been widely used in the field of natural language processing in recent years and
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achieves good results. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
are the most commonly used deep learning methods and play an important role in text categorization.
At the same time, current classification studies on medical texts are directed to the classification of
specific medical texts, such as classifications specific to electronic medical records or classifications
for medical literature. Huang et al. develops and evaluates representations of clinical notes using
bidirectional transformers (ClinicalBert) [5]. It uncovers high-quality relationships between medical
concepts as judged by humans but it is the specific study in clinical notes. It is difficult to find a
universal classification model that performs well in both medical records and medical literature. It is
difficult to find a universal classification model that performs well in both medical records and medical
literature.

Based on this, we propose a novel and unified hierarchical neural network method for medical
text. The method constructs sentence representations of sentences by segmenting the document
and then aggregating those into the document representation. In the sentence representation, the
convolutional layer extracts features from the sentence and bidirectional gated recurrent unit (BIGRU)
is used to access both the preceding and succeeding sentence features. An attention mechanism is
employed to obtain the sentence representation with the important word weights. In the document
representation, the method uses the BIGRU to encode the sentences which is obtained in sentence
representation and then decode it through the attention mechanism to get the document representation
with important sentence weights. Finally, a category of medical text is obtained through a classifier. In
order to verify the performance of the proposed approach, four comprehensive labeled datasets of
experiments (including two medical record datasets and two medical literature datasets) are conducted.
Compared with other state-of-the-art text classification methods, the experimental results clearly show
that our method is effective.

The main contributions of the paper are as follows:

1. In order to solve the problem of high-dimensionality of medical texts, we propose a new
hierarchical neural network method.

2. The method uses the attention mechanism at the word level and sentence level respectively to
solve the problem of data sparsity.

3. The experimental results show that the proposed method is effective in medical records and
medical literature, especially in medical records.

The remainder of this paper is organized as follows. Section 2 introduces gated recurrent unit
and gives a short literature review on text classification both in general domain and in medical
domain. Section 3 describes our work of the proposed method in details. In Section 4, we evaluate
and analyze the proposed method through experiments on four datasets, which provide experimental
settings, baseline methods and experimental results. At last in Section 5, we make a conclusion for
the whole text.

2. Related Work

2.1. Gated Recurrent Unit

Recurrent neural networks (RNNs) are a kind of feedforward neural networks which have a
recurrent hidden state and the hidden state is activated by the previous states at a certain time.
Therefore, RNNs can model the contextual information dynamically and can handle the variable
length sequences. Gated recurrent unit (GRU) is a kind of RNN architecture and has become the
mainstream structure of RNNs at present [6]. GRU addresses the problem of vanishing gradient by
using a gating mechanism which tracks the state of sequences without using separate memory cells.
There are two types of gates in GRU—the reset gate rt and the update gate zt. They control how
information is updated to the state together. A GRU unit consists of the four components and it is as
illustrated in Figure 1 [7].
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Figure 1. Gated recurrent unit.

The mathematical form of GRU shown in Figure 1 is given below. The hidden state ht given input
xt is computed as follows:

rt = σ(Wrxr + Urht−1 + br) (1)

zt = σ(Wzxt + Uzht−1 + bz) (2)

ȟt = tanh(Whxt + rt ⊗ (Uhht−1) + bh) (3)

ht = (1− zt)⊗ h(t− 1) + zt ⊗ ȟt (4)

where, zt is the update gate. rt is the reset gate. ht−1 is a previous state. ȟt is the candidate state
at time t. xt is the sequence vector at time t. σ(.) and tanh(.) is sigmoid and hyperbolic tangent
function respectively. bz, bh, br are bias terms, respectively. The operator

⊗
denotes element-wise

multiplication.

2.2. Text Classification in General Domain

The traditional text classification mainly uses machine learning methods. Text is first represented
as a vector by use of the feature engineering, and then through the machine learning algorithm to realize
the classification process. In the past, the most classical feature engineering is bag-of-words (BOW) [8].
In deep learning, convolutional neural networks are widely used in text classification. Kim represents
the text as a 4-dimensional tensor format of the image and inputs it into a simple convolutional neural
network for text classification. The experimental results show that the classification performance of
the convolutional neural network method is higher than the traditional machine learning method [9].
Based on this, a large number of researchers have made improvements to the convolutional neural
network. For the word order problem of text, Zhang et al. add the word order to the convolutional
neural network to increase the context information of the text [10]. Since the performance of the
neural network is greatly affected by the parameter adjustment, Li et al. initialize the filter used
in the convolution operation. In this process, the n-grams are extracted from the train data and
clustered by k-means. The experimental results show that the method effectively reduces the error
caused by parameter adjustment [11]. Johnson et al. propose a deep pyramid convolutional neural
network model, which improves the classification accuracy by deepening the hierarchical structure of
convolutional neural networks. Experimental results show that the method has good classification
performance when the number of data is large [12].

In addition to convolutional neural networks, recurrent neural networks are widely used in
text classification because of their natural sequence structure, which is suitable for natural language
processing. However, there is a well-known problem with recurrent neural networks, that is, when
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the length of the text sequence is too long, the model is prone to gradient disappearance or gradient
explosion. Based on this, many researchers have proposed improvements. Wang presents a novel
model named disconnected recurrent neural network (DRNN), which incorporates position-invariance
of CNN into RNN. By limiting the distance of information flow in RNN, the hidden state at each time
step is restricted to represent words near the current position [13]. Liu et al. use the multitask learning
framework to propose three different shared information mechanisms to model text with task-specific
and shared layers [14]. In addition, many researchers combine CNN and RNN. Lai et al. apply a
recurrent structure to capture contextual information when learning word representations and then
employ a max-pooling layer that automatically judges which words play key roles in text classification
to capture the key components in texts [15]. Zhou et al. propose a C-LSTM model, which utilizes CNN
to extract a sequence of higher-level phrase representations and are fed into a long short-term memory
recurrent neural network (LSTM) to obtain the sentence representation [16].

2.3. Text Classification in Medical Domain

In addition to the text classification in the general domain, we will introduce some papers on the
classification of medical domain in this paragraph. Yao et al. proposed a text representation method
for traditional Chinese medicine clinical records. This method combines the deep learning with the
domain knowledge of traditional Chinese medicine. Compared with other general text representation
methods, the experimental results show that the method has a good effect in classification of traditional
Chinese medicine [17]. HUGHES et al. present an approach to automatically classify clinical text
at a sentence level. This method uses deep convolutional neural networks to represent complex
features [18]. Baker et al. use a Convolutional Neural Network (CNN) approach to biomedical
text classification. Evaluation using a recently introduced cancer domain dataset involving the
categorization of documents according to the well-established hallmarks of cancer shows that a
basic CNN model can achieve a level of performance competitive with a Support Vector Machine
(SVM) trained using complex manually engineered features optimized to the task. Further adjusting
the parameters in the CNN reveals that the modified model is better than SVM [19].

3. Our Work

Medical text generally contains complex medical vocabularies, medical measures. Some of them
have poor grammatical sentences. For example, clinical records describes a patient’s chief complaint
and history, how a doctor diagnoses and prescribes its effects. A large number of Chinese medicine
names are included in the description of the doctor diagnosis and these words appear infrequently in
the document. Figure 2 is an example of medical literature. it contains lots of medical vocabularies and
abbreviations. A large number of medical vocabularies and abbreviations make high dimensionality
and data sparsity problems in classification. To solve these problems, we propose a new method.

Figure 2. An example of medical literature.

The method is an improvement of the hierarchical attention neural network (HAN) [20]. The
overall architecture of our model is shown in Figure 3. It consists of two parts—sentence representation,
document representation. We describe the details of different components in the following sections.
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Figure 3. The structure of our proposed model.

3.1. Sentence Representation

3.1.1. Word Embedding

Word embedding usually needs to transform words into vectors with the low-dimensional
distribution. In fact, it maps words from vocabulary to corresponding vector of real values to
capture the morphological, syntactic and semantic information of words. The Bag-Of-Words is also
low-dimensional but there is a lack of context between words. To better represent the text content,
we use the word2vec method proposed by Mikolve et al. [21] for word embedding in this paper.
The skip-gram model is used in the word2vec method for the task. Assume that a document has L
sentences si and each sentence contains Ti words. xit with t ∈ [1, T] represents the words in the ith
sentence. Given a sentence with words wit(t ∈ [1, T]), our model embeds the words to vectors through
an embedding matrix We. The xit is the vector representation of wit, which is formulated by (5).

xit = Wewit. (5)

In this paper, the dimensionality of each word vector is 300.

3.1.2. One Dimension Convolutional Layer

The convolutional layer is used to capture the sequence information and reduce the dimensions
of the input data. The convolutional operation in the convolutional layer is conducted. In the
convolutional layer, 100 filters with windows size of 3 move on the textual representation to extract the
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features. As the filter moves on, many sequences, which capture the syntactic and semantic features,
are generated. A feature s is generated from a window of words xh by

s = f (W · ht + b), (6)

where W is the weights of filter, b is a bias term. f (.) represents the nonlinear activation function of the
convolutional operation, rectified linear units (ReLU). In our model, ReLU is used as the nonlinear
activation function because it can improve the learning dynamics of the networks and significantly
reduce the number of iterations required for convergence in deep networks.

As filters do convolutional operation from top to bottom in sentence, we can obtain a feature
sequence Ls = [s1, s2, s3, ..., sn].

3.1.3. Bidirectional GRU and Attention Mechanism

GRU is specified for sequential modeling and can extract the contextual information from the
feature sequences obtained by the convolutional layer. The effect of the bidirectional GRU is to
establish the word vector representation. Because each word contributes differently to the sentence,
extracting important words in the sentence is a common way of solving the problem. Attention
mechanisms can quickly extract important features of sparse data to enhance understanding of
sentence. Therefore, a combination of bidirectional GRU and attention mechanism can obtain more
important features in sentence.

Bidirectional GRU obtains the annotations for words by summarizing the two directions (forward
and backward) information of words, so the annotations contain contextual information for the
sentence. Bidirectional GRU include the forward GRU (represented as

−−→
GRU) which reads the feature

sequence Ls and the backward GRU (represented as
←−−
GRU) which reads Ls. Formally, bidirectional

GRU outputs in two directions are stated as follows:

−→
hi f =

−−→
GRU(Lsn), n ∈ [1, 100] (7)

←−
hib =

←−−
GRU(Lsn), n ∈ [100, 1]. (8)

An annotation for a given feature sequence Ls of sentence i is obtained by the forward hidden
state

−→
hi f and the backward hidden state

←−
hib. These states summarize the information of the sentence

centered around Lsn and implement the word encoding.
Attention mechanism can focus on the features of the keywords to reduce the impact of

non-keywords on the text. The workflow of attention mechanism in sentence representation is
detailed below.

The word annotation
−→
hi f is first fed to get −→ui f by one layer perceptron a hidden representation of

−→
hi f . The −→ui f is formulated as follows:

−→ui f = tanh(w
−→
hi f + b), (9)

where w and b are represented as the weight and bias in the neuron, tanh(.) is hyperbolic tangent
function. The model uses the similarity between −→ui f and a word level context vector −→vi f to measure the
importance of each word. And then it uses the softmax function to get the normalized weight −→ai f of
each word. −→ai f is formulated as follows:

−→ai f =
exp(−→ui f ∗ −→vi f )

∑M
j=1(exp(−→ui f ∗ −→vi f ))

, (10)

where M is the number of words in the text and exp(.) is the exponential function. ∗ is multiplication.
The word level context vector −→vi f in sentence si can be seen as a high-level representation of



Future Internet 2019, 11, 255 7 of 13

the informative words over the words and is randomly initialized and jointly learned during
the training process.

After that, a weighted sum of the forward read word annotations based on the weight −→ai f is
computed as the forward sentence representation Fi. The Fi is the part of the output of the attention
layer and it can be expressed as:

Fi = ∑(−→ai f ∗
−→
hi f ). (11)

Similar to −→ai f ,←−aib can be calculated using the backward hidden state
←−
hib. Like Fi, the backward

sentence representation Hi is also the part of the output of the attention layer and it can be expressed as:

Hi = ∑(←−aib ∗
←−
hib). (12)

In this way, we obtain an annotation for a given feature sequence Ls by concatenating the forward
sentence representation Fi and backward sentence representation Hi. The sentence representations
si = [Fi, Hi] are obtained.

3.2. Document Representation

3.2.1. Sentence Encoder

Given the sentence vectors si, we can get a document vector by bidirectional GRU and attention
mechanism. We use a bidirectional GRU to encode the sentences:

−→
h f =

−−→
GRU(si), i ∈ [1, L] (13)

←−
hb =

←−−
GRU(si), i ∈ [L, 1]. (14)

We concatenate
−→
h f and

←−
hb to get an annotation of sentence i. hs = [

−→
h f ,
←−
hb ]. hs summarizes the

neighbor sentences around sentence i but still focus on sentence i.

3.2.2. Sentence Decoder

To extract sentences that are important to the meaning of the document, we use the attention
mechanism and introduce a sentence level context vector vs and use the vector to form a document
representation. This yields

us = tanh(wshs + bs) (15)

as =
exp(us ∗ vs)

∑M
i=1(exp(us ∗ vs)

(16)

Fc = ∑(as ∗ hs), (17)

where ws and bs are represented as the weight and bias in the neuron. Fc is the document vector that
summarizes all the information of sentences in a document. Similarly, the sentence level context vector
can be randomly initialized and jointly learned during the training process.

Finally, the comprehensive context representations Fc are obtained. The comprehensive context
representations are considered as the features for text classification. In our model, the dropout layer
and the sigmoid layer are used to generate the conditional probabilities over the class space to achieve
classification [22]. The purpose of the dropout layer is to avoid overfitting.
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Currently, the cross entropy is a commonly used loss function to evaluate the classification
performance of the models. It is often better than the classification error rate or the mean square
error. In our approach, RMSProp optimizer [23] is chosen to optimize the loss function of the network.
The model parameters are finetuned by RMSProp optimizer which has been shown as an effective
and efficient algorithm. The cross entropy as the loss function can reduce the risk of a gradient
disappearance during the process of stochastic gradient descent. The loss function can be denoted as
follows in Equation (17).

L =
−1

num ∑
cd
[y ln o + (1− y) ln(1− o)], (18)

where num is the number of training samples, cd represents the training sample, y is the label of the
sample, o is the output of our model.

In our method, the evaluation metric which measures the overall classification performance
is accuracy p.

p =
mc

m
, (19)

where mc is the number of true classified medical texts and m is the number of whole medical texts.
Compared with HAN, our method has been improved in the following ways:

1. In sentence representation, our method uses convolutional layer to extract features and then
through BIGRU and attention mechanism.

2. In model optimization, our method uses RMSProp optimizer to replace Adam which used in HAN.

4. Experiments

4.1. Experimental Setup

Experiments were conducted to evaluate the performance of the proposed approach for text
classification on various benchmarking datasets. In this section, the experimental setup and baseline
methods followed by the discussion of results are described.

All the experiments were tested with the computer with configuration described as follows—OS
system: Ubuntu 14.04 LTS; GPU Memory: 16 GB; Python: 3.5.2; Tensorflow: 1.7.0.

4.1.1. Datasets

Our model was evaluated on a medical text classification task (including medical record
classification and medical literature classification) using the following datasets. Summary statistics of
these datasets are as follows in Table 1:

Medical record datasets

TCM—Traditional Chinese medicine clinical records from Classified Medical Records of
Distinguished Physicians Continued Two (Er Xu Ming Yt Lei An in Chinese, ISBN 7-5381-2372-5) [17]. It
contains five categories with internal medicine, surgery, gynaecology, ear-nose-throat and stomatology
and paediatrics.

CCKS—An open inpatient medical records dataset of China Conference on Knowledge Graph
and Semantic Computing(CCKS) 2017, which contains four categories—medical history, general items,
treatment and discharge [https://biendata.com/competition/CCKS2017_1/].

Medical literature datasets

Hallmarks—corpus of biomedical publication abstracts annotated for the hallmarks of cancer
by Baker et al. [24]. The dataset is contains three hallmarks of cancer in 1852 biomedical publication
abstracts annotated for the hallmarks of cancer. They are activating invasion and metastasis,
tumor-promoting inflammation and deregulating cellular energetics.

https://biendata.com/competition/CCKS2017_1/
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AIM—Activating invasion and metastasis. It is a hallmark of cancers. Cancer cells can break
away from their site of origin to invade surrounding tissue and spread to distant body parts [24]. The
dataset contains two categories of positive and negative.

Table 1. Dataset statistics. The results are based on the test set.

Datasets Classes Sentence Length Dataset Size Vocab Size Training Set Validation Set Test Set

TCM 5 428 5413 99,243 3789 1082 541
CCKS 4 73 400 2980 280 80 40

Hallmarks 3 833 8474 29,141 5931 1694 847
AIM 2 833 2648 29,141 1853 529 264

4.1.2. Parameter Settings

For TCM, we split documents into sentences and split sentences into words with TCM domain
knowledge like Yao [17]. For English literature, we split documents into sentences and tokenized each
sentence using Stanford’s CoreNLP by Manning et al. [23]. During training of our model in the text,
the input sequence xm is set to the mth word embedding (a distributed representation for a word [25])
in an input sentence. The size of these embeddings is 300. The memory dimension of bidirectional
GRU is set to be 100 and the number of filters of length 3 is set to be 100 in the convolutional layer.
The training batch size for all datasets is set as 50. The dropout rate is 0.5. We conduct hyperparameter
tuning on the validation data in the standard split. After each training epoch, the network is tested on
validation data. The log-likelihood of validation data is computed for convergence detection.

4.2. Baseline Methods

This paper benchmarks the following baseline methods for text classification, they are effective
methods and have achieved some good results in text classification:

CNN—Convolutional neural network with pre-trained word embedding vector from word2vec.
It is a classical convolutional neural network in text classification which is proposed by Kim [9].

LSTM—Long short term memory. It is a classical recurrent neural network [7].
RCNN—Recurrent convolutional neural networks. It is an improved method which combines the

CNN with RNN. The method is proposed by Lai et al. [15].
HAN—Hierarchical attention networks. It is an improved method for document classification.

which is proposed by Yang et al. [20].
SVM—Support Vector Machine [26]. It is a classical traditional machine learning method.
Fasttext—An efficient text classification algorithm [27].
Logistic Regression—BOW + Logistic Regression [28].
AC-BiLSTM—A new hybrid neural network with combination of CNN and attention mechanism

by Liu in 2019 [29].

4.3. Results

4.3.1. Overall Comparison

In this section, our evaluation results are shown on the medical texts (medical records and medical
literature) classification task. Some approach analysis are given.

The comparison results for medical texts (TCM, CCKS, AIM, Hallmarks) are presented in Table 2.
The best results are shown in boldface. From Table 2, among the seven approaches mentioned above,
our approach outperforms other baselines on four datasets.
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Table 2. The classification accuracy of the proposed method against other models on four datasets (%).

Methods TCM CCKS AIM Hallmarks

CNN 73.17 89.37 95.47 70.85
LSTM 60.00 80.62 57.36 72.73
RCNN 62.03 84.38 96.06 74.76
HAN 76.62 88.75 97.30 74.70
SVM 48.78 53.00 89.93 70.34

Fasttext 80.00 75.01 90.28 80.45
Logistic Regression 56.50 73.12 89.84 74.24

AC-BiLSTM 80.51 88.12 97.92 74.97
Our method 89.09 93.75 97.73 75.72

In medical record datasets, the results of our method are 89.09%, 93.75% for TCM and CCKS
datasets. Our method gives the relative improvements of 12.47%, 4.38% compared to CNN on TCM
dataset and CCK dataset, respectively. RCNN, HAN, AC-BiLSTM are all well-classed methods in
general text classification recently. However, our method far exceeds these methods in the medical
records data. This is because the professional vocabulary in the medical record is more dense than the
general news text. The general text classification algorithm which performs well in the news domian
does not produce a good classification effect on the medical record. However, our method makes use
of the attention mechanism in the word level and sentence level to extract important vocabulary, which
solves the problem of data sparsity. Therefore, we can find that our model is effective for medical
record texts.

In medical literature classification, our method outperforms two traditional machine learning
methods (SVM, Logistic Regression) and other deep learning methods (CNN, LSTM, RCNN, HAN,
AC-BiLSTM) on two datasets (AIM and Hallmarks). This is because the professional vocabulary of
the medical literature is much more sparse than the medical record and our method is better for text
categorization with professional vocabulary, which has higher density. Therefore, the classification
method that generally works well in the general field can achieve good results in the classification
of medical literature but our method is still effective compared with the latest and classic methods.
For the dataset Hallmarks, Fasttext is the only method to arrive at above 80% but our method has the
closest result to fasttext. It demonstrates that with our method, as an end to end model, the results are
still promising and comparable with those models.

Combined with the results in medical record classification and medical literature classification,
our results consistently outperform the most of the published baseline models. In view of the above
discussion it can be concluded that the overall performance of our method is effective for the medical
texts, especially for medical records.

4.3.2. Effect of Parameter Tuning

The classification performance of neural networks is greatly influenced by parameter adjustment,
especially the optimization algorithm and function in classifier. In this section, we explore the effects
of parameters on the model through experiments.

In the process of modeling, it is found that the number of hidden units will affect the performance
of the model. In order to get better performance, we select the most suitable number of hidden units
for our model. We conduct experiments on four datasets with the different number of hidden units.
The effect of different number of hidden units on accuracy of the model as show in the Figure 4.
The experimental results show that the performance of text classification is best when the number of
GRU hidden units is 100 in three datasets. However, when hidden units are 128, CCKS dataset has
best accuracy. This result shows that the number of GRU hidden units has a slight influence on the
model and the number of GRU hidden units can be variable. Considering comprehensively, we set the
number of hidden units to be 100.
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Figure 4. The classification effect of different hidden units of gated recurrent unit (GRU).

The different optimization algorithms and activation functions can also affect the performance
of the model. We conduct experiments on four datasets with the different optimization algorithms
(RMSProp and Adam [30]) and different activation functions (softmax and sigmoid). Figure 5 left
shows the classification effect of two different optimization algorithms (RMSProp and Adam) on four
datasets. From the experimental results, we know that the optimization algorithm RMSProp used
in our method is better than Adam for the medical record datasets (TCM and CCKS). However, in
the medical literature datasets (AIM and Hallmarks), the classification results of the two are basically
equal. Combining the results of four datasets, it shows that both Adam and RMSProp can perform
well in our model but RMSProp is better.

Figure 5. Left: The classification effect of different optimizations; Right: The classification effect of
different functions.

Figure 5 right shows the classification effect of two different activation functions (softmax and
sigmoid) in the classifier. Softmax and sigmoid are two functions which are commonly used in logistic
regression and neural networks. It shows that the classification performance of the sigmoid function
in the medical record datasets (TCM and CCKS) far exceeds the softmax function but, in the medical
literature datasets (AIM and HAllmark), the classification accuracy is similar. The classification model
of HAN which uses the softmax function get optimal results in the general domain. However, in the
medical texts the classification performance of sigmoid is better than softmax. From this, it can be
known that sigmoid function is more suitable for our method.

5. Conclusions

The classification of medical texts is a special case of text categorization. It has a large number
of professional vocabulary and irregular grammar, which makes the problem of data sparsity in
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the classification. To solve this problem, we propose a new hierarchical neural network method for
medical text classification in this paper. The method constructs sentence representations of sentences by
segmenting the document and then aggregating those into the document representation. At the word
level, it includes the convolutional layer, BIGRU and the attention mechanism. At the sentence level, it
uses BIGRU and attention mechanisms for encoding and decoding. In this process, we construct a
hierarchical model for the problem of high-dimensionality in medical text. Moreover, the attention
mechanism, used at the word level and sentence level respectively, solves the sparse problem of
medical data. Finally, compared with the other methods in the general field, the experimental results
show that our method is effective.
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