
future internet

Article

Performance Analysis of On-Demand Scheduling
with and without Network Coding in
Wireless Broadcast

G. G. Md. Nawaz Ali 1,* , Victor C.S. Lee 2, Yuxuan Meng 2, Peter H. J. Chong 3 and Jun Chen 4

1 Department of Applied Computer Science, University of Charleston, Charleston, WV 25304, USA
2 Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong;

csvlee@cityu.edu.hk (V.C.S.L.); yxmengwhu@sina.com (Y.M.)
3 Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland 1010,

New Zealand; peter.chong@aut.ac.nz
4 School of Information Management, Wuhan University, Wuhan 430072, Hubei, China;

christina_cj@whu.edu.cn
* Correspondence: ggmdnawazali@ucwv.edu

Received: 16 October 2019; Accepted: 20 November 2019; Published: 26 November 2019 ����������
�������

Abstract: On-demand broadcast is a scalable approach to disseminating information to a large
population of clients while satisfying dynamic needs of clients, such as in vehicular networks.
However, in conventional broadcast approaches, only one data item can be retrieved by clients
in one broadcast tick. To further improve the efficiency of wireless bandwidth, in this work,
we conduct a comprehensive study on incorporating network coding with representative on-demand
scheduling algorithms while preserving their original scheduling criteria. In particular, a graph
model is derived to maximize the coding benefit based on the clients’ requested and cached data
items. Furthermore, we propose a heuristic coding-based approach, which is applicable for all
the on-demand scheduling algorithms with low computational complexity. In addition, based on
various application requirements, we classify the existing on-demand scheduling algorithms into
three groups—real-time, non-real-time and stretch optimal. In view of different application-specific
objectives, we implement the coding versions of representative algorithms in each group. Extensive
simulation results conclusively demonstrate the superiority of coding versions of algorithms against
their non-coding versions on achieving their respective scheduling objectives.

Keywords: network coding; on-demand broadcasting; data scheduling algorithm;
performance evaluation

1. Introduction

Data broadcast is an attractive solution for large-scale data dissemination in wireless
communication environments. With ever-expanding data-centric mobile applications and the recent
advances in wireless communication technologies, data broadcast techniques have attracted much
attention in a variety of mobile computing environments, such as vehicular networks, mobile ad hoc
networks etc. [1–3]. Generally, push-based and pull-based are two commonly used broadcast
approaches [4,5]. Push-based broadcast (broadcast is done periodically based on a predefined pattern)
is suitable for applications with small database sizes and stable data access patterns, such as emergency
message broadcast from the backend server [6,7]. In contrast, pull-based broadcast also known
as on-demand broadcast disseminates data items based on clients’ request patterns, such as traffic
update query in traffic navigation systems [8]. In other words, in on-demand broadcast approach,
the scheduling decisions are made online, which is more suitable for dynamic and large-scale data
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dissemination services [9]. In this work, we focus on further improving the bandwidth efficiency of
on-demand broadcast by exploiting network coding.

Several previous studies have focused on on-demand broadcasting [9–11], which have different
application-specific performance objectives. In a broadcast tick (transmission time of a unit-sized data
item), these strategies only able to broadcast a single data item. This restriction hinders the further
improvement of broadcast bandwidth efficiency. In contrast, network coding [12] can transmit multiple
data items through an encoded packet in a broadcast tick. We observe that an inherited advantage of
on-demand broadcast is having the feedback information from clients to the server, and hence applying
network coding in on-demand broadcast does not require additional overhead for explicit feedback.

A variety of network coding techniques have been studied. Random linear network coding
(RLNC) [13] is suitable for push-based broadcast, especially for broadcasting popular contents which
may serve a large population of clients [6,14], such as periodic safety message, traffic information, etc.
However, RLNC is not adaptive to customized services, such as mobile infotainment, gas station query,
parking space query, etc. To support such services, the server needs to receive explicit on-demand
requests from clients, so that it can provide services by encoding corresponding data items accordingly.
XOR (⊕)-based network coding is a suitable candidate for such cases, as it has very low encoding
and decoding overhead and it is simple to be implemented [15]. Many studies have applied
XOR-based coding for improving network throughput [15–17] and enhancing packet delivery ratio [18].
Chaudhry and Sprintson [19] introduced the index coding problem in wireless multicast network
leveraging the network coding and opportunistic listening techniques. Wang et al. [20] studied the
network coding-based approach for minimizing deadline misses of real-time multi-item requests.
Chen et al. [21] proposed a decoding-oriented cache management scheme in coding-assisted broadcast
for reducing the overall response time. Asghari et al. [22] proposed a coded multicast delivery strategy
for reducing the bandwidth usages in content placement problem.

With respect to the different performance objectives, the on-demand scheduling algorithms
can be classified into three groups: real-time, non-real-time and stretch optimal scheduling algorithms.
Specifically, in real-time scheduling, the primary objective is to minimize the deadline miss ratio,
namely serving as many requests as possible before their deadlines expire. For instance, in vehicular
networks, real-time traffic information must be broadcast to vehicles with certain time-constraint (e.g.,
must serve before a vehicle exits the service range of a road-side unit) [23,24]. Representative real-time
scheduling algorithms include EDF (Earliest Deadline First) [25] and SIN (Slack time Inverse Number
of pending requests) [9]. In non-real-time scheduling, the primary objective is to minimize the average
response time, namely serving the requests as soon as possible. For instance, mobile clients wish to
receive non-real-time infotainment information as soon as possible [10]. Representative non-real-time
scheduling algorithms include FCFS (Fist Come First Served) [26], MRF (Most Requested First) [27],
LWF (Longest Wait First) [27] and R ×W (Number of Pending Request Multiply Waiting Time) [4].
In stretch optimal scheduling, the primary objective is to minimize the stretch, which is the ratio of
the response time to the service time, where the service time refers to the transmission time of the
data items. For instance, fairness treatment to different size requests in satellite networks, wireless
LANs, cellular networks etc. [28]. Representative stretch optimal scheduling algorithms include LTSF
(Longest Total Stretch First) [29] and STOBS (Summary Table On-demand Broadcast Scheduler) [28].

Although existing studies have considered to improve scheduling performance with respect to
different application-specific objectives, they do not fully use the advantage of on-demand broadcast,
where the server can be aware of the requested and cached data items of mobile clients. The impact of
network coding on different scheduling objectives highly depends on the applied coding strategy at
the server. In order to evaluate possible benefits brought by network coding, apparently, it is desirable
to preserve the original scheduling criteria when applying network coding to existing on-demand
scheduling algorithms. In this work, we will investigate the potential benefit of applying network
coding into different groups of on-demand scheduling algorithms. The major contributions of this
work are stated as follows.
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• We present a graph model, where a CR-graph (Cache-Request-graph) [11,19] is formed based on
the clients requested and cached data items for reducing redundant broadcasting.

• We transform the scheduling problem to the problem of finding maximum clique in the derived
CR-graph, which is a well-known NP-complete problem in graph theory [30,31]. Accordingly,
we propose a heuristic coding-based approach, which ensures that each scheduling algorithm will
transform into its corresponding coding version while preserving its original scheduling criterion.

• For the three groups of scheduling algorithms, namely real-time, non-real-time and stretch
optimal, we select representative solutions in each group and present the detailed implementation
of their coding versions with the proposed approach.

• To evaluate the impact of network coding to different groups of algorithms, we build the
simulation model for each group and define the used performance metrics.

• We give a comprehensive performance evaluation, which demonstrates the efficiency of network
coding on enhancing system performance with respect to different scheduling objectives under
various circumstances.

The rest of this paper is organized as follows. Section 2 reviews the related work. Section 3
presents the system model. Section 4 proposes a heuristic coding-based approach. We build the
simulation model in Section 5. An extensive performance evaluation is conducted in Section 6. Finally,
we conclude this work in Section 7.

2. Related Works

The two main components of the proposed work in this paper are the on-demand wireless
data broadcast and network coding. In the following subsections, first we review some existing
representative on-demand scheduling algorithms in real-time, non-real-time and stretch optimal
models. Then we review some exiting works in network coding, and state the possibilities and
challenges of applying network coding in on-demand wireless data broadcast.

2.1. Real-Time Model

In real-time applications, the requests submitted by clients are associated with deadlines, and the
primary objectives of real-time scheduling is to minimize the deadline miss ratio of requests. EDF
(Earliest Deadline First) [25] is a classical scheduling algorithm in real-time systems, broadcasts data
item based on the urgency of the request. To achieve the lower request deadline miss ratio and access
time, Hu [32] proposed to consider request urgency, service productivity and scheduling fairness in
scheduling. Motivated from EDF and MRF (Most Requested First), Xu et al. [9] proposed a real-time
scheduling algorithm called SIN (Slack time Inverse Number of pending requests). For time-critical
services, Chung et al. [33] proposed an algorithm called SUSC (Scheduling under Sufficient Channels),
which creates a broadcast program under sufficient channels. Alternatively, PAMAD (the Progressively
Approaching Minimum Average Delay) is used when the number of channels is insufficient. DTIU
(Dynamic Temperature Inverse Urgency) [34] is proposed to cater real-time multi-item requests, which
considers both data item popularity and request urgency. Ali et al. [3] studied the performance of
different scheduling algorithm under strict deadline environment. He et al. [35] proposed UPF (Urgent
and Popular data item First) for scheduling real-time requests under multi-channel environment.

2.2. Non-Real-Time Model

In non-real-time applications, the responsiveness of the system is measured by the time
from the submission of a request to the time that this request has been served. The primary
objectives of non-real-time scheduling algorithms is to minimize the response time of serving requests.
Many classical algorithms have been proposed for non-real-time applications. FCFS (First Come
First Served) [26] broadcasts data items in the arrival order of the corresponding requests. Wong [27]
proposed two popular scheduling algorithms: MRF (Most Requested First) and LWF (Longest Wait
First). MRF broadcasts the data item according to the popularity of the requested data items. LWF
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broadcasts the data item with the longest total waiting time. Aksoy and Franklin [4] suggested that
the straightforward implementation of LWF is exhaustive and not suitable for large systems. They
proposed a new scheduling scheme called R ×W (Number of Pending Requests Multiply Waiting
Time), which combines the benefits of MRF and FCFS. R × W broadcast the data item with the
maximum R ×W value. Liu and Lee [5,10] analyzed the mean response time of different existing
scheduling algorithms under multi-channel environment. Polatoglou et al. [36] studied the complexity
of adaptive push-based broadcast system for reducing mean response time. Lu et al. [37] studied the
combined data push and data retrieval scheduling problem in multi-channel environment.

2.3. Stretch Optimal Model

In stretch optimal scheduling, the algorithm takes the variable sizes of data items into
consideration (i.e., the service time to different data items). A metric called stretch is proposed
in [29]. It is the ratio of the response time to the service time of the requested data item. The response
time refers to the duration from the instance when the request is submitted to the time when the
request is satisfied, whereas the service time is the duration for transmitting the data item. Acharya
and Muthukrishnan [29] proposed a stretch optimal scheduling algorithm called LTSF (Longest Total
Stretch First). In LTSF, the data item with the largest current stretch is broadcast first. Wu and Cao [38]
reduced the computation overhead to make the stretch-based scheduling more scalable in on-demand
broadcast environments. STOBS (Summary Tables On-demand Broadcast Scheduler) is proposed
in [28], which broadcasts the data item with the maximum R×W

S value. Here, R, W and S, respectively,
denote the number of pending requests for the data item, the waiting time of the oldest request and
the data item size. Lee et al. [39] proposed PRDS (Preemptive Request Deadline Size), for minimizing
the response time and stretch in scheduling size variant data item.

2.4. Network Coding

Random linear network coding (RLNC) is initially proposed for the transmission and compression
of information in multi-source multicast networks [13]. Ye et al. [6] applied RLNC for pushing
popular contents from a single sever to multiple clients. Hassanabadi and Valaee [14] proposed to
apply RLNC for repetitive reliable safety message rebroadcasting in the congested wireless channel.
Ploumidis et al. [40] analyzed the throughput and delay in wireless mesh networks incorporating
RLNC. Qu et al. [41] also studied the tradeoff between the throughput and decoding delay in applying
RLNC in wireless mesh networks, and proposed a protocol named DCNC (Delay Controlled Network
Coding). However, as in RLNC, the random coefficients need to be attached with the coded message,
the coding overhead can be significant in a congested network. To reduce the overhead, a number
of studies have considered XOR-based network coding in on-demand broadcast. Chu et al. [42]
proposed On-demand Encoding (OE) algorithm for reducing clients’ access time in on-demand
broadcast. However, OE can only encode two data items in an encoded packet, and hence it is not
flexible, and it cannot maximize the coding benefit. Chaudhry and Sprintson [19] transformed the
on-demand broadcast coding problem to the Boolean satisfiability (SAT) problem. They proposed
several heuristic solutions based on graph coloring and color saving algorithms. Gao et al. [43] studied
XOR coding for packet retransmission in erroneous wireless medium. Chen et al. [44] proposed
an on-demand broadcast algorithm called ADC (Adaptive Demand-oriented Coding) for serving
multi-item requests. In [11], Chen et al. proposed ADC-1 and ADC-2, where ADC-1 considers
scheduling and network coding operations separately, and in ADC-2, these two operations are
considered integrally. Zhan et al. [17] proposed a model for constructing encoding packet with several
data items. The proposed approach greedily finds maximal cliques based on constructed graph model
to find an approximate solution to the formulated coding problem. Ali et al. [45] proposed network
coded opportunistic relaying for improving data dissemination performance.

In summary, to improve the scheduling performance by further exploring the strength of
on-demand broadcast, it is desirable to adopt network coding into data broadcast. With network coding,
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different data items can be encoded into one packet. Since different coding strategies have different
impacts on scheduling performance, in this paper, we propose a general heuristic coding-based
on-demand broadcast scheme, by which the data scheduling problem can be transformed to the
maximal clique problem. With the proposed approach, existing on-demand scheduling algorithms
can be migrated into their corresponding coding versions while preserving their original criteria in
scheduling data items. In addition, this work validates the advantage of applying network coding in
on-demand scheduling through a comprehensive simulation study.

3. System Model

3.1. System Architecture

The system architecture shown in Figure 1 represents a typical on-demand data broadcast system
in wireless communication medium [4]. The system consists of one server and multiple clients. When a
client needs a data item and is not found in its local cache, the client submits a request via the uplink
channel to the server, and senses the downlink channel for the transmission of the requested data
item. According to a used underlying scheduling algorithm, the server retrieves the data items from
the local database and constructs an encoded packet for broadcasting. While a server broadcasts the
encoded packet, it also broadcasts the index information of the data items that are being encoded
in the coded packet. Hence, when a client receives an encoded packet, it knows which data items
from its local cache need to be used in decoding. A client can decode a requested data item from an
encoded packet if it has cached all the other data items in the encoded packet except the requested
one. Once decoding is successful, the decoded data item is then added in its local cache. The bitwise
XOR (exclusive-OR) operation is commonly adopted for encoding and decoding due to its trivial
computation overhead [11,42,46]. For example, as shown in Figure 1, C3 (i.e., the Client 3) has cached
d1. Suppose C3 requests d2 and the server broadcasts an encoded packet d1⊕ d2. C3 can decode d1⊕ d2

and retrieve d2 by such a schedule. For the cache management in a client, the LRU (Least Recently
Used) cache replacement policy is adopted. A client will generate a new request only when the previous
submitted request is satisfied or misses its deadline, which resembles the closed system model [11].
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Figure 1. System architecture.

3.2. Graph Model

The key to improve the system performance for real-time, non-real-time and stretch optimal
models is to disseminate a greater number of requested data items per broadcast tick. From the
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network coding perspective, it needs to make the encoding decision in such a way so that more
number of clients will be satisfied per coded packet and eliminates the redundant encoding. For
this, assume that G(V, E) is a CR-graph (Cache-Request-Graph) which is formed from the clients’
cached and requested data items. The next step is to find a maximum clique which contains the
maximum priority vertex based on the used scheduling algorithm. In on-demand broadcast, CR-graph
construction is a practical assumption because clients can piggyback their updated cache information
in the requests submitted to the server. With the knowledge of clients’ cached and requested items,
a graph G(V, E) is constructed at the server to guide the encoding decision. A brief overview of graph
construction is given below. The summary of used notations in this paper is shown in Table 1.

Table 1. Summary of notations.

Notation Description Notes

ci A client ci ∈ C; C = {c1, c2, · · · , cn}
dj A data item dj ∈ D; D = {d1, d2, · · · , dm}
R(ci) Requested data items by ci
CH(ci) Cached data items by ci R(ci) ∩ CH(ci) = ∅
G(V, E) A graph
vij A vertex representing client ci requests data item dj vij ∈ V(G), 1 ≤ i ≤ n, 1 ≤ j ≤ m
N(dj) popularity of dj
dj(i) Client ci is pending for dj
ti Waiting time of ci
∑ t(dj) Summed waiting time of clients pending for dj
Ti Slack time of ci
li Size of the requested data item of ci
δ A clique
|δ| Number of vertices in δ
Cδ Set of clients covered in δ Cδ = {c1, c2, · · · , c|δ|}
β(δ) Encoded packet for the clique δ β(δ) = {d1 ⊕ d2 ⊕ · · · ⊕ dK}
K Number of different data items encoded in β(δ) K ≤ |δ|
δmax Maximum clique
δ

vps
max Maximal clique covering vertex vps |δvps

max| ≤ |δmax|
B Channel broadcast bandwidth

C denotes the set of clients in the system, which is, C = {c1, c2, · · · , cn}, where n is total number
of clients. The set of data items requested by client ci is denoted by R(ci), and the set of data items
cached at ci is denoted by CH(ci) (1 ≤ i ≤ n). The server has a database D with m data items, where
dj is the jth data item (1 ≤ j ≤ m).

Definition 1. Based on the clients’ requested and cached data item, a graph G(V, E) is constructed by the
following rules:
V = {vij| client ci requests f or item dj, 1 ≤ i ≤ n, 1 ≤ j ≤ m}
E = {(vi1 j1 , vi2 j2)| j1 = j2; or j1 6= j2, dj2 ∈ CH(ci1), dj1 ∈ CH(ci2)}

Accordingly, the rules for constructing edges are specified below:

• e(vi1 j1 , vi2 j2) with j1 = j2 means that if clients ci1 and ci2 request the same data item, there will be
an edge between the two vertices vi1 j1 and vi2 j2 .

• e(vi1 j1 , vi2 j2) with j1 6= j2, dj2 ∈ CH(ci1), and dj1 ∈ CH(ci2) means that if client ci1 ’s cache contains
the data item being requested by client ci2 and vice versa, there will be an edge between vertices
vi1 j1 and vi2 j2 .

A clique, denoted by δ, is a subset of the vertices in the CR-graph G, such that every two vertices
are connected by an edge, i.e., δ ⊆ V(G).
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Definition 2. Let an arbitrary clique δ contains |δ| number of vertices, i.e., δ = {vi1 j1 , vi2 j2 , · · · , vi|δ| j|δ|}. The
corresponding clients are Cδ = {c1, c2, · · · , c|δ|}. The encoded packet for clique δ will be β(δ) = {d1 ⊕ d2 ⊕
· · · ⊕ dK}, where K different data items are requested by clients in Cδ. Please note that K ≤ |δ|.

By encoding the set of data items in δ for broadcasting, scheduling with coding can satisfy multiple
requests for different data items in a broadcast tick. In contrast, scheduling without coding can only
serve the requests for the same data item in a broadcast tick.

3.3. Coding-Based On-Demand Broadcast

Recalling vij denotes a client ci for the requested data item dj. For simplicity, we assume that
the vertices in the graph are denoted by v1, v2, · · · , vn, where n is number of vertices. Please note
that this simple assumption does not refrain a vertex to also denote the corresponding requested data
item. vi corresponds to the request ci, where vi ∈ V(G) and 1 ≤ i ≤ n. A vertex vi is associated
with three weights, namely ti, li, and Ti, which represent the waiting time, the item size and the
slack time, respectively. A data item dj is also associated with a weight N(dj), which represents
the popularity, namely the number of pending requests for dj. The broadcast channel bandwidth is
B. The relationships between the scheduling objectives and the properties of the cliques are stated
as follows.

• Relationship 1: Real-time scheduling algorithms which aim to serve the request with the minimum
slack time such as EDF, should select the largest clique δ which includes the vertex vi with the
largest 1

Ti
value. The other real-time algorithm SIN, also considers popularity in addition of

slack time.
• Relationship 2: Non-real-time scheduling algorithms which aim to serve the request with the

longest waiting time such as FCFS, should select the largest clique δ which includes the vertex vi
with the largest ti value.

• Relationship 3: Non-real-time scheduling algorithms which aim to broadcast the data item with
the highest popularity such as MRF, should select the largest clique δ which includes the maximum
number of vertices.
The working properties of other non-real-time algorithms are the combination of the properties
of FCFS (waiting time) and MRF (data item popularity), such as LWF and R×W, both consider
waiting time and data item popularity for scheduling.

• Relationship 4: Stretch optimal scheduling algorithms which aim to reduce the stretch such
as LTSF, should select the clique δ which has the maximum current stretch, namely with the
maximum summation of ti

li
B

value. The other stretch optimal scheduling algorithm STOBS

considers data item popularity in addition of request waiting time and data item size.

The relationships of all the algorithms are summarized in Table 2. From the above relationships
it is understandable that to migrate the traditional scheduling algorithms into the network coding
versions by exploiting the full coding benefits, we need to find the maximum clique δmax in the graph
G(V, E). This is because the number of satisfying clients is equivalent to the number of vertices
in δmax. However, finding the maximum clique is a well-known NP-complete problem in graph
theory [30]. This is computationally expensive, because the new maximum clique needs to find out
every time before making a broadcast decision. This turns out applying network coding in on-demand
broadcast may be infeasible in practice. Hence in the following we propose a heuristic coding-based
approach to convert the traditional scheduling algorithms into the coding version in polynomial time,
while preserving the original scheduling criteria.
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Table 2. Coding-based on-demand broadcast.

Type Algorithm Remarks

Real-time EDF Find the largest clique δ with Tmin

SIN Find the largest clique δ with the maximum |δ|
Tmin

value

Non-real-time

FCFS Find the largest clique δ with tmax
MRF Find the largest clique δ
LWF Find the largest clique δ with the maximum summed waiting time

R×W Find the largest clique δ with the maximum |δ| × tmax value

Stretch optimal
LTSF Find the largest clique δ with the maximum

∑vi∈δ ti

maxvi∈δ{ li
B }

value

STOBS Find the largest clique δ with the maximum
|δ|∗maxvi∈δti

maxvi∈δ li
value

4. Proposed Heuristic Coding-Based On-Demand Broadcast

Recalling the objective of this work is to convert a traditional scheduling algorithm into the coding
version with its original scheduling criteria along with maximizing the coding benefit by keeping
the overhead minimal. Hence the key idea of the proposed heuristic coding-based approach is to
broadcast the encoded packet, which (1) must contain the vertex corresponds to the scheduled client
by the scheduling algorithm, and (2) satisfy as many clients as possible per broadcast by keeping
the encoding complexity as minimal as possible. The proposed approach contains the following two
important considerations.

• Find the vertex, which holds the maximum priority value of the scheduling algorithm. If a data
item ds ∈ D of a client cp is selected to broadcast, the corresponding vertex is vps, we call as
selected vertex.

• To maximizing the exploitation of network coding and reducing encoding complexity, need to
find the maximal clique δ

vps
max (approximate maximum clique) which covers the selected vertex vps.

Please note that δ
vps
max is the maximum among all the possible maximal cliques covering vps in G.

δ
vps
max will be used to form the encoded packet β(δ

vps
max) for broadcasting.

Lemma 1. For an arbitrary vertex vij ∈ δ
vps
max, the corresponding client ci ∈ Cδ can retrieve dj from the encode

packet β(δ
vps
max).

Proof. As the proposed system is a closed system, which infers that one client can have only one
pending request in the service queue. Hence, we can infer that all the vertices in a clique represents the
unique clients. According to the clique definition, all the vertices in a clique are inter-connected. Again
according to the edge definition of a CR-graph (Definition 1), a client only has edges with other clients
if they request the same data item, or one client’s cached data item is being requested by another client
and vice versa. This implies that for a client ci ∈ Cδ, if vij ∈ δ

vps
max, for K ≥ 1, ci already has (in the cache)

all the data items of β(δ
vps
max), except dj; otherwise all the vertices in δ

vps
max requested for the same data

item dj and dj = ds. Hence ci can easily decode dj from β(δ
vps
max) with its cached data items.

Lemma 2. Broadcasting the encoded packet β(δ
vps
max) for the selected vertex vps, ensures the migration of a

scheduling algorithm into the coding version with preserving its original scheduling criteria.

Proof. The proposed coding-based system first selects the selected vertex vps, then finds the maximal
clique δ

vps
max, which covers vps. Please note that vps is the highest priority vertex based on the scheduling

criteria of a scheduling algorithm. For instance, in the real-time model, for EDF scheduling, vps is
vertex with the highest urgency; in the non-real-time model, for FCFS scheduling, vps is vertex with the
longest waiting time; in the stretch optimal model, for LTSF scheduling, vps is vertex with the longest
stretch. After selecting vps, the maximal clique δ

vps
max is found from the CR-graph G, which cover vps.
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This means that encoded packet β(δ
vps
max) must contain the selected data item ds of client cp. Hence by

broadcasting β(δ
vps
max), all the scheduling algorithms’ criteria are preserved in the coding version.

4.1. The Heuristic Algorithm

To sum up, our heuristic coding-based on-demand broadcast consists of the following three key
steps. The pseudo code is shown in Algorithm 1.

Algorithm 1: Heuristic coding-based on-demand broadcast.

1 Step 1: CR-graph construction

2 G(V, E) is the already constructed CR-graph, and vkr is the vertex for a newly arrived client ck,
where 1 ≤ k ≤ n, 1 ≤ r ≤ m ;

3 for each vij ∈ V(G) do
4 if j=s then
5 E(G)← E(G) + e(vij, vkr);

6 else if dj ∈ H(ck) & dr ∈ H(ci) then
7 E(G)← E(G) + e(vij, vkr);

8 else
9 /* There is no link between vij and vkr */

10 V(G)← V(G) + vkr;

11 Step 2: Find the selected vertex vps

12 Each vertex vij ∈ V(G) is associated with Ti, ti, li;
13 Each data item dj ∈ D is associated with N(dj);
14 Initialize MAX ← 0;
15 for each vij ∈ V(G) do
16 P← Invoke the underlying scheduling algorithm with Ti, ti, li, N(dj);
17 if P > MAX then
18 MAX ← P;
19 vps ← vij;

20 Step 3: Encode and broadcast the encoded packet β(δ
vps
max)

21 Find the maximal clique δ
vps
max for the selected vertex vps;

22 Form the encoded packet β(δ
vps
max)← {d1 ⊕ d2 ⊕ · · · ⊕ dk}; k ≤ |δvps

max|;
23 Broadcast β(δ

vps
max);

24 /* Update G(V, E) */

25 for each vij ∈ δ
vps
max do

26 V(G)← V(G)− vij;

Step 1: CR-graph G(V, E) construction
Upon a request arrival from a client ck for the data item dr, the corresponding vertex vkr will be

added in the vertex set V(G). According the edge definition as defined in Definition 1, all the possible
edges are formed for vkr with the vertices in V(G).

Step 2: Finding the selected vertex vps

Based on the associated weights of a vertex vi, namely ti, Ti, li, and the associated weight of the
requested data item dj, namely N(dj), a particular scheduling algorithm selects a vertex vps with the
highest scheduling priority value (P) among all the vertices in V(G). For instance, EDF selects the
vertex vps with the lowest Tp value, MRF selects a vertex vps with the highest N(ds), LTSF selects
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a vertex vps with the highest tp
ls
B

value. The details of vps selection criteria of each of the scheduling

algorithms are shown in Section 4.2.
Step 3: Encoding and broadcasting the encoded packet β(δ

vps
max)

After finding the selected vertex vps, in this step the heuristic approach finds the maximal clique
δ

vps
max which covers vps. For finding the maximal clique, we use the approach presented in [11], in which

only the adjacent vertices of vps (directly connected vertices with vps) are checked for finding the
maximal clique. After finding the maximal clique δ

vps
max, the next job is to encode the packet β(δ

vps
max)

which consists all the corresponding data items in δ
vps
max. After broadcasting β(δ

vps
max), the system updates

the CR-graph G.
For n number of vertices the Step 1 has O(n) complexity, Step 2 must search the selected vertex

vps which incurs O(n) complexity, and the Step 3 needs to find the maximal clique for a specific
selected vertex vps from the constructed (in Step 1) CR-graph G, which incurs O(n3) complexity.
As both encoding and decoding operations are performed using bitwise XOR (exclusive-OR) technique,
the decoding can be performed with one single operation at each client. Therefore, decoding only
incurs constant complexity O(1). Hence, for each client, the decoding complexity is O(1). Therefore,
the total complexity of the proposed heuristic coding-based broadcast approach is O(n) + O(n) +
O(n3) + O(1) ≈ O(n3), which is practical to implement.

4.2. Scheduling Algorithms with Heuristic Coding Implementation

We select several representative on-demand scheduling algorithms from each group and present
the implementation of their coding versions. In particular, we analyze how the coding versions of
different algorithms can fulfil their original scheduling objectives.

4.2.1. Real-Time Algorithms

• EDF [25]: EDF serves the request with the minimum slack time. In other words, it prioritizes
the request urgency in scheduling. The network coding version of EDF, needs to find the largest
clique δ which contains the vertex vi with the minimum slack time Tmin among all the vertices
in graph G. In the heuristic coding implementation (denoted by EDF_N), the system first finds
the selected vertex vps with Tmin. In Algorithm 1, this is done in Step 2. vps is the vertex with
the highest EDF scheduling priority, i.e., vps = {vij|Ti = max{ 1

T1
, 1

T2
, · · · , 1

Tn
}, 1 ≤ j ≤ m}. Then

Step 3 searches for the maximal clique δ
vps
max to ensure that the encoded packet β(δ

vps
max) consists the

requested data item of the most urgent client.
• SIN [9]: SIN broadcasts the item with the minimum SIN value. The network coding version

of SIN, needs to find the clique δ in G with the maximum |δ|
Tmin

value, where Tmin is the
minimum value among all Ti in δ. In the heuristic coding implementation (denoted by SIN_N),
the system first finds the selected vertex vps with the minimum Tp

N(ds)
value, In Step 2 of

Algorithm 1, the vps selection is done by finding the vertex with the maximum N(ds)
Tp

value,

i.e., vps =

{
vij |

N(dj)
Ti

= max
{

N(dr(1))

T1
,

N(dr(2))

T2
, · · · ,

N(dr(n))

Tn
, 1 ≤ r, j ≤ m

}}
. Then Step 3 searches

for the maximal clique δ
vps
max to ensure that the encoded packet β(δ

vps
max) consists the requested data

item of the client with the minimum SIN value.

4.2.2. Non-Real-Time Algorithms

• FCFS [26]: FCFS serves requests according to their arrival order. The network coding version of
FCFS, needs to find the largest clique δ which contains the vertex vi with longest waiting time
tmax among all ti in G. In the heuristic coding implementation (denoted by FCFS_N), the system
first finds the selected vertex vps with tmax. In Step 2 of Algorithm 1, vps is the vertex with the
highest FCFS scheduling priority, i.e., vps = {vij|ti = max{t1, t2, · · · , tn}, 1 ≤ j ≤ m}. Then
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Step 3 searches for the maximal clique δ
vps
max to ensure that the encoded packet β(δ

vps
max) consists the

requested data item of the client with the longest waiting time.
• MRF [27]: MRF broadcasts the data item with the largest number of pending requests.

The network coding version of MRF, needs to find the maximum clique δmax in G, where δmax is
the maximum clique among all the possible cliques in G. In the heuristic coding implementation
(denoted by MRF_N), the system first finds the selected vertex vps with the maximum N(ds)

value. In Step 2 of Algorithm 1, vps is the vertex with the highest MRF scheduling priority,
i.e., vps = {vij|N(dj) = max{N(d1), N(d2), · · · , N(dm)}, 1 ≤ i ≤ n}. Then Step 3 searches for the
maximal clique δ

vps
max to ensure that the encoded packet β(δ

vps
max) consists the requested data item

with the largest number of pending requests.
• LWF [27]: LWF broadcasts the data item with the largest total waiting time. The network coding

version of LWF, needs to find the largest clique δ in G with the maximum summed waiting time
of the corresponding vertices. In the heuristic coding implementation (denoted by LWF_N),
the system first finds the selected vertex vps with the maximum sum waiting time (∑ ti, 1 ≤ i ≤ n)
value of data item ds, denoted as ∑ t(ds). In Step 2 of Algorithm 1, vps is the vertex with the highest
LWF scheduling priority, i.e., vps = {vij |∑ t(dj) = max{∑ t(d1), ∑ t(d2), · · · , ∑ t(dm)}, 1 ≤ i ≤
n}. Then Step 3 searches for the maximal clique δ

vps
max to ensure that the encoded packet β(δ

vps
max)

consists the requested data item with the largest total waiting time of the pending requests.
• R × W [4]: R × W schedules the data item with the maximum R × W value, where R is the

number of pending requests for that data item and W is the waiting time of the earliest request
for that data item. The network coding version of R ×W, needs to find the largest clique δ with
the maximum |δ| × tmax value, where tmax is the maximum waiting time value among all ti in δ.
In the heuristic coding implementation (denoted by R ×W_N), the system first finds the selected
vertex vps with the maximum N(ds)× tp value. In Step 2 of Algorithm 1, the vps selection is
done by finding the vertex with the maximum N(ds)× tp value, i.e., vps = {vij |N(dj)× ti =

max{N(dr(1))× t1, N(dr(2))× t2, · · · , N(dr(n))× tn, 1 ≤ r, j ≤ m}}. Then Step 3 searches for the

maximal clique δ
vps
max to ensure that the encoded packet β(δ

vps
max) consists the requested data item

with the maximum R ×W value.

4.2.3. Stretch Optimal Algorithms

• LTSF [29]: LTSF broadcasts the data item with the largest total current stretch. The network

coding version of LTSF, needs to select the largest clique δ with the maximum
∑vi∈δ ti

maxvi∈δ{ li
B }

value, where ∑vi∈δ ti is the total waiting time of the vertices in δ and maxvi∈δ{ li
B} is

the service time of the vertices in δ. Please note that the service time of the coded
packet will be the service time of the largest data item in the clique. In the heuristic
coding implementation (denoted by LTSF_N), the system first finds the selected vertex vps

with the largest total current stretch
(

max
{

∑ t(ds)
lp
B

})
for the data item ds. In Step 2 of

Algorithm 1, the vps selection is done by finding the vertex with the maximum
{

∑ t(ds)
lp
B

}
value,

i.e., vps =

{
vij |

{
∑ t(dj)

lj
B

}
= max

{{
∑ t(d1)

l1
B

}
,
{

∑ t(d2)
l2
B

}
, · · · ,

{
∑ t(dm)

lm
B

}
, 1 ≤ i ≤ n

}}
. Then

Step 3 searches for the maximal clique δ
vps
max to ensure that the encoded packet β(δ

vps
max) consists the

requested data item with the largest total current stretch.
• STOBS [28]: STOBS broadcasts the data item with the largest R×W

S value, where R, W and S
denote, respectively, the number of pending requests, waiting time of the earliest pending request
and the item size. The network coding version of STOBS, needs to find the largest clique δ with

the maximum
|δ|∗maxvi∈δti

maxvi∈δ li
value, where maxvi∈δti and maxvi∈δli are respectively the maximum

waiting time and the maximum item size among all the vertices in δ. Please note that maxvi∈δli
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also denotes the size of the encoded packet. In the heuristic coding implementation (denoted

by STOBS_N), the system first finds the selected vertex vps with the maximum N(ds)×tp
ls

value.

In Step 2 of Algorithm 1, the vps selection is done by finding the vertex with the maximum N(ds)×tp
ls

value, i.e., vps =

{
vij |

N(dj)×ti
lj

= max
{

N(dr(1))×t1
lr(1)

,
N(dr(2))×t2

lr(2)
, · · · ,

N(dr(n))×tn
lr(n)

, 1 ≤ r, j ≤ m
}}

.

Then Step 3 searches for the maximal clique δ
vps
max to ensure that the encoded packet β(δ

vps
max)

consists the requested data item with the largest R×W
S value.

5. Simulation Model

5.1. Setup

The simulation model is built according to the system architecture described in Section 3.
The model is implemented by CSIM19 [47]. Unless stated otherwise, the simulation is conducted
under the simulator’s default setting. The major explicit parameters are shown in Table 3.

Table 3. Simulation parameters.

Parameter Default Range Description

ClientNum 400 100∼600 Number of clients
THINKTIME 0.01 — Request generation interval
m 1000 — Size of the database
SIZEMIN, SIZEMAX 1, 30 —, 10∼60 Min. and Max. data item size
CacheSize 60 30∼180 Client cache size
θ 0.4 0.0∼1.0 Zipf distribution parameter
µ−, µ+ 120, 200 80∼160, 160∼240 Min. and Max. laxity

A client only submits a new request when the previous submitted request is satisfied or misses
its deadline, which exhibits a closed system model [11]. The request generation interval of each
client is shaped by THINKTIME, which follows the Exponential distribution. The clients’ data access
pattern is shaped by the Zipf distribution [48], where the skewness is controlled by the parameter
θ. Specifically, when θ equals 0, it means the random distribution (all the data items have the equal
access probability). With an increased value of θ, the data access pattern becomes more skewed.

For real-time algorithms, the relative deadline of a request qi (RDi) is computed by:

RDi = (1 + uni f orm(µ−, µ+)) ∗ Tserv
i

The deadline of qi (Dli) is computed by:

Dli = ATi + RDi

where ATi is the arrival time of qi. µ− and µ+ represent the minimum and the maximum laxity,
respectively. Tserv

i represents the service time of qi. A request is feasible for serving as long as its slack
time remains greater than its service time. The system routinely removes the infeasible requests from
the service queue.

The channel bandwidth is 1 unit/tick, i.e., the server disseminates one unit-sized data item in each
broadcast tick. For the real-time and the non-real-time scheduling, the item size is 1 unit. For the
stretch optimal scheduling, the sizes of data items are generated using random distribution [49]:

DataItemSize[i] = SIZEMIN + brandom(0.0, 1.0)× (SIZEMAX− SIZEMIN + 1)c
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where SIZEMIN and SIZEMAX are the minimum and the maximum data item size in the database,
respectively, and i = 1, 2, · · · , m.

5.2. Metrics

We define the following metrics to give an intensive performance analysis.

• Deadline Miss Ratio (DMR): It is the ratio of the number of deadline missed requests to the
number of submitted requests. The primary objective of a real-time scheduling algorithm is to
minimize the DMR.

• Average Response Time (ART): It is the average duration for getting the response from the server
after submitting a request. ART measures the responsiveness of the system. The primary objective
of a non-real-time scheduling algorithm is to minimize the ART.

• Average Stretch (AS): It is the ratio of the response time to the service time of the corresponding
data item. It is a widely used metric in heterogeneous database environments. The primary
objective of a stretch optimal scheduling algorithm is to minimize the AS.

• Average Encode Length (AEL): It is the average size of an encoded packet. It measures how a
scheduling algorithm exploits the coding opportunity. The larger AEL mean more coding benefit.

• Average Broadcast Productivity (ABP): It is the average number of requests satisfied per broadcast.
It measures the productivity of a broadcasted packet/item. A large ABP implies the efficient
bandwidth use.

6. Performance Evaluation

In this section, we evaluate the performance of both the non-coding and the coding versions
of real-time, non-real-time and stretch optimal scheduling algorithms in a variety of circumstances.
The simulation was continued until 95% confidence interval was achieved.

6.1. Simulation Results in Real-Time Models

Figures 2 and 3 show the comparative performance graphs of the real-time algorithms for both
the non-coding and the coding versions.

6.1.1. Impact of Workload

Figure 2a shows the impact of workload under different number of clients. When the number of
clients increases, the system workload becomes heavier. As a result, more requests miss their deadlines
and the algorithms’ performances decline (Figure 2a). In the non-coding versions of the real-time
algorithms, SIN outperforms EDF, because EDF only considers the request urgency. On the contrary,
SIN considers both the request urgency and the item popularity, and hence SIN satisfies more requests
than EDF (Figure 2b). The performance difference between EDF and SIN becomes more significant
with an increase workload. The observations are consistent with the results reported in previous
studies [9,50].

The network coding versions of EDF and SIN, namely EDF_N and SIN_N, outperform their
respective non-coding versions notably in terms of achieving the lower deadline miss ratio (DMR).
For instance, with the moderate system workload (default setting) this performance improvement is
28% and 19%, respectively for EDF_N and SIN_N. The main reason of this performance improvement is
that the coding version achieves a higher average broadcast productivity (ABP) than the corresponding
non-coding version (Figure 2b). This result shows that more requests can be satisfied by a single
broadcast with network coding.
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Figure 2. Impact of workload on the real-time model.
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Figure 2b shows that with an increase number of clients, the ABP of both the coding and
non-coding version increases. With the growing number of requests, the popularity of data items
increases. Therefore, for the non-coding version, despite a heavier system workload, the ABP increases.
For the coding version, more requests provide more coding opportunities (Figure 2c), thereby yielding
a higher ABP (Figure 2b). Please note that the amount of performance improvement of using network
coding for EDF is larger than SIN and the amount of performance improvement of SIN_N over SIN
diminishes when the number of clients is large. This is because network coding indirectly endows the
item popularity attribute to EDF when it chooses the largest clique that contains the data item with
the earliest deadline. Therefore, the performance improvement of EDF_N is more significant, and it
increases with the item popularity. However, since SIN has already considered the item popularity,
the performance gain due to network coding in SIN_N is less significant. On the whole, SIN_N
achieves the highest ABP and the lowest DMR (Figure 2a).

Figure 2c shows that SIN_N consistently achieves a higher average encode length (AEL) than
EDF_N. The result shown in Figure 2d explores the reason. In particular, it shows the percentage
distribution of number of items in an encoded packet under the default setting. Most of the encoded
packets consist of two items, while the rest packets consist of one or three items. Specifically, SIN_N
gives a higher chance of encoding more than one data items in a packet than EDF_N. For instance,
77.2% of the packets encoded by SIN_N consist of two data items, while 74.8% of the packets encoded
by EDF_N consist of two data items. On the other hand, the number of items which are not encoded in
SIN_N is less than that of EDF_N. Specifically, 11% of the items are not encoded in SIN_N, while 14.2%
of the items are not encoded in EDF_N. In general, a higher ABP and AEL can be achieved if there are
more encoded packets which consists of more data items. This has been demonstrated in Figure 2b,c,
respectively.

6.1.2. Impact of Deadline Range

Recalling that the relative deadline of requests is uniformly selected from the range µ− ∼ µ+.
A larger value of the relative deadline gives a looser request deadline. Consequently, the DMRs
of all the algorithms (Figure 3a) drop with an increase mean value of µ− ∼ µ+. Evidently, SIN_N
outperforms others.

In the coding versions, when the deadline becomes loose, the system has more opportunities to
encode and disseminate data items to serve clients. As shown in Figure 3a,b, for the coding versions,
the DMRs drop and the ABPs increase slightly. However, a loose request deadline does not have
much impact on the AELs (<0.1) of EDF_N and SIN_N (Figure 3c). In the non-coding versions, when
deadline range increases, the ABP of EDF does not change, whereas SIN shows a downward trend.
This is because EDF only considers the request urgency, but SIN considers both the request urgency
and the item popularity. As data items with less popularity may have better chance to be disseminated
when the request deadline is getting looser, the ABP of SIN drops.

6.2. Simulation Results in Non-Real-Time Models

Figures 4 and 5 show the comparative performance graphs of the non-real-time algorithms for
both the non-coding and the coding versions.



Future Internet 2019, 11, 248 16 of 24

0.0 0.2 0.4 0.6 0.8 1.0

140

160

180

200

220

240

260

280

 

 

A
ve

ra
ge

 R
es

po
ns

e 
Ti

m
e 

(A
R

T)

THETA

 MRF
 FCFS
 LWF
 R×W

(a) Average Response Time (ART) of the non-coding version.

0.0 0.2 0.4 0.6 0.8 1.0

80

90

100

110

120

130

140

150

160

 

 

A
ve

ra
ge

 R
es

po
ns

e 
Ti

m
e 

(A
R

T)

THETA

 MRF_N
 FCFS_N
 LWF_N
 R×W_N

(b) Average Response Time (ART) of the coding version.

0.0 0.2 0.4 0.6 0.8 1.0
1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

 
 

A
ve

ra
ge

 B
ro

ad
ca

st
 P

ro
du

ct
iv

ity
 (A

B
P

)

THETA

 MRF
 FCFS
 LWF
 R×W

(c) Average Broadcast Productivity (ABP) of the non-coding
version.

0.0 0.2 0.4 0.6 0.8 1.0
2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

A
ve

ra
ge

 B
ro

ad
ca

st
 P

ro
du

ct
iv

ity
 (A

B
P

)

THETA

 MRF_N
 FCFS_N
 LWF_N
 R×W_N

(d) Average Broadcast Productivity (ABP) of the coding
version.

0.0 0.2 0.4 0.6 0.8 1.0
1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

A
ve

ra
ge

 E
nc

od
e 

Le
ng

th
 (A

E
L)

THETA

 MRF_N
 FCFS_N
 LWF_N
 R×W_N

(e) Average Encode Length (AEL) of the coding version.

Figure 4. Impact of skewness parameter (θ) on the non-real-time model.
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(d) Average Broadcast Productivity (ABP) of the coding
version.
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Figure 5. Impact of workload on the non-real-time model.

6.2.1. Impact of Skewness Parameter (θ)

Figure 4 shows the impact of the data access pattern θ on the non-real-time algorithms. Evidently,
both the non-coding and the coding versions of the algorithms have better performance in terms
of minimizing the average response time (ART) with an increased value of θ. With an increased θ,
the data access pattern is getting skewed. Previous studies [4,9,23] have demonstrated that algorithms
will perform better when the data access pattern is getting skewed. This is because each broadcast data
item has the potential to satisfy more requests. In addition, the coding version of an algorithm achieves
a much lower response time (Figure 4b) than its non-coding version (Figure 4a). On an average,
irrespective of the skewness of the data access pattern, the coding version of each algorithm has at
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least 40% less ART than the non-coding version. The relative performance positions of the algorithms
in the coding group are identical to the non-coding group. MRF performs the best when the data
access pattern is less skewed. When the data access pattern is skewed, MRF becomes the worst because
unpopular data items may suffer from starvation, which causes the large ART. The result is consistent
with the findings in previous works [10,34,51]. MRF_N shows similar trend in Figure 4b. FCFS
which only considers the request waiting time, performs the worst in most cases. Similarly, FCFS_N
has the worst performance among the coding versions. R ×W and LWF have similar performance,
because both the algorithms consider the item popularity and the request waiting time in scheduling.
In the coding version, LWF_N significantly outperforms other algorithms in a highly skewed data
access pattern environment. In the non-coding version, excepting MRF, the ABPs of all the algorithms
increase steadily when the data access pattern is getting skewed (Figure 4c). This is because MRF
solely considers item popularity in scheduling, resulting in very low ABP for unpopular data items.
Similar results are observed in the coding versions of the algorithms (Figure 4d). The AELs increase
when the data access pattern is getting skewed (Figure 4e). These results further explain the relative
performance of algorithms as shown in Figure 4a,b.

6.2.2. Impact of Workload

Figure 5 shows the impact of workload on the non-real-time scheduling algorithms. As expected,
when the system workload is getting higher, the ARTs of both the non-coding and the coding versions
increase (Figure 5a,b). MRF and MRF_N have the best performance in the non-coding and the coding
versions, respectively. Please note that θ = 0.4 in the default setting, where MRF has been shown
with satisfactory performance because the data access pattern is not quite skewed. FCFS and FCFS_N
perform the worst in the respective groups. R ×W and R ×W_N have the moderate performance
in the non-coding and the coding versions, respectively. LWF and LWF_N rank next to R ×W and
R ×W_N, respectively. Please note that the coding version of an algorithm significantly reduces the
access time than its non-coding version under different workloads. It demonstrates the advantages
of network coding in terms of adapting to the change of system workloads. With an increase of
clients, data items will be requested more frequently. This helps to improve the broadcast productivity.
Therefore, the ABPs of the non-coding versions increase (Figure 5c). Moreover, this helps to improve
the coding flexibility, and hence the AELs of the coding versions increase (Figure 5e). As both the
reasons positively impact on the broadcast productivity of the coding versions, when the number of
clients is getting higher, the ABPs of the coding versions increase much more significantly than that of
the non-coding versions (Figure 5d).

6.3. Simulation Results in Stretch Optimal Models

Figures 6 and 7 show the comparative performance graphs of the stretch optimal scheduling
algorithms for both the non-coding and the coding versions. In this set of simulations, the sizes of
data items are various. Specifically, the sizes of data items are randomly generated between 1 and 30.
Moreover, for comparison purposes, we maintain a constant system workload with various data sizes
by changing the THINKTIME accordingly.
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6.3.1. Impact of Workload

Figure 6 depicts the behavior of the stretch optimal algorithms under different system workloads.
The coding versions show a significant better performance than their non-coding versions in terms
of minimizing the ART (Figure 6a). With respect to the average stretch (AS), a coding version also
outperforms the corresponding non-coding version (Figure 6b). Both in the non-coding and the coding
versions, LTSF and STOBS have similar performance. It is worth mentioning that STOBS schedules
the data item with the maximum R×W

S value. In contrast, LTSF schedules the data item with the
longest total current stretch, which is the total stretches of all the pending requests of that data item.
This implies that LTSF also considers both the data item popularity and the request waiting time. Given
the broadcast bandwidth of 1 unit/tick, the time to broadcast a data item (i.e., the number of broadcast
ticks) equals the number of units of the data item (i.e., the item size). On a whole, the attributes of LTSF
and STOBS are very similar, which result in their close performance. For the implementation of their

coding versions, STOBS_N computes N(ds)×tp
lp

for finding the selected vertex vps, which is the ratio of
the data item popularity multiply the maximum waiting time to the data item size. On the other hand,

LTSF_N computes
(

max
{

∑ ti
lp
B

})
for finding the selected vertex vps, which is the ratio of the sum of the

waiting time of requests to the item size of the corresponding data item. Likewise, the attributes of
STOBS_N and LTSF_N are similar, which result in their close performance. Moreover, with an increase
of clients, the AEL of a coding version increases (Figure 6c), and the ABPs of both versions increase.
Please note that the ABP of a coding version is much higher than its non-coding version (Figure 6d).

6.3.2. Impact of Data Item Size

Figure 7 shows the impact of the maximum data item size (SIZEMAX) on the performance
of the stretch optimal algorithms. The larger value of SIZEMAX means a longer service time (i.e.,
transmission time) of a data item. Recalling that the response time is the summation of the request
waiting time and the item service time. The large SIZEMAX increases the response time in two
aspects. First, the transmission time is getting longer. Second, the longer service time of the current
data item causes longer waiting time of other data items. As a result, with an increase of SIZEMAX,
the ARTs of both the non-coding and the coding versions increase (Figure 7a). Since the stretch is
the ratio of the response time to the transmission time of the requested data item, the stretches of the
non-coding versions do not changes much because both the response time and the transmission time
increase with larger SIZEMAX (Figure 7b).

In contrast, with an increase value of SIZEMAX, the stretches of the coding versions increase.
There is a tradeoff of applying network coding in scheduling for different item sizes. On the one
hand, an encoded packet may consist of more than one item, which means that broadcasting an
encoded packet can satisfy more pending requests simultaneously. Therefore, the average response
time decreases. On the other hand, since the transmission time of an encoded packet equals the
transmission time of the maximum size item of the corresponding clique, the transmission delay
of an encoded packet increases, which results in the longer average response time. To sum up,
whether an algorithm can take the benefit of network coding depends on which factors dominates
the performance. From Figure 7a, we note that ART of a coding version is better than its non-coding
version under different SIZEMAX values. However, in terms of minimizing the stretch, a coding
version cannot retain its superiority over the non-coding version when SIZEMAX increases to 60
(Figure 7b). For instance, when SIZEMAX is as low as 10, the coding versions of both LTSF and STOBS
improve around 18% stretch over the non-coding versions; however, this improvement diminishes
very quickly when SIZEMAX increases to 40 (3% maximum improvement). Even when SIZEMAX
reaches to 60, the improvement becomes negative. The reason is due to the penalty of small data items,
namely the coding version of an algorithm incurs higher AS for small data items. The penalty to small
data items increases with the value of SIZEMAX. Please note that SIZEMAX have no impact on the
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AELs (Figure 7c). Accordingly, the ABPs of different algorithms are similar under different item sizes
(Figure 7d).

7. Conclusions and Future Directions

On-demand data broadcast has been demonstrated as a promising way to disseminate information
to a large population of clients in wireless communication environments. Conventional scheduling
algorithms cannot best explore the broadcast efficiency of wireless bandwidth. In this study, we apply
network coding to enhance the scheduling performance of existing on-demand scheduling algorithms.
Based on the derived CR-graph, we propose a heuristic coding-based approach, which can efficiently
transform existing scheduling algorithms to their respective network coding versions while preserving
their original scheduling criteria. In particular, based on the classification of on-demand scheduling
algorithms, we select several representative algorithms in each group for performance evaluation and
enhancement, including two real-time algorithms (i.e., EDF and SIN), four non-real-time algorithms
(i.e., FCFS, MRF, LWF and RxW) and two stretch optimal algorithms (i.e., LTSF and STOBS). We
describe the detailed implementation of the network coding version of each algorithm and investigate
their potential performance improvement using a running example. We design a number of metrics
and build a simulation model to compare the performance of the non-coding version with the
coding version of each algorithm. The comprehensive simulation results under various circumstances
conclusively demonstrate that network coding can effectively improve the performance of on-demand
scheduling algorithms with different objectives.

In our future work, we will further investigate the network coding strategy in heterogeneous
service environment where data items are with different sizes. Specifically, since the benefit of network
coding largely depends on the size of the encoded packet, which is determined by the largest size of
data item which is encoded. It is interesting to strike a balance between encoding large and small data
items to maximize the overall system performance.
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The following abbreviations are used in this manuscript:

EDF Earliest Deadline First
SIN Slack time Inverse Number of pending requests
FCFS Fist Come First Served
MRF Most Requested First
LWF Longest Wait First
RxW Number of Pending Request Multiply Waiting Time
LTSF Longest Total Stretch First
STOBS Summary Table On-demand Broadcast Scheduler
CR-Graph Cache-Request-Graph
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