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Abstract: Information-Centric Networking (ICN) is an emerging communication paradigm built
around content names. Securing ICN using named-based security is, therefore, a natural choice.
For this paper, we designed and evaluated name-based security solutions that satisfy security
requirements that are particular to ICN architectures. In order to achieve our goal, we leverage
identity-based encryption, identity-based proxy re-encryption, and the emerging paradigm of
decentralized identifiers. Our solutions support outsourcing content storage, content integrity
protection and content authentication, and provenance verification, as well as access control. We show
that our solutions have tolerable storage and computation overhead, thus proving their feasibility.

Keywords: identity-based encryption; Information-Centric Networking; proxy re-encryption;
trust delegation

1. Introduction

Information-Centric Networking (ICN) architectures promise efficient content lookup and
dissemination [1], but at the same time, they present new security challenges. In this paper, we present
solutions for securing content distribution in ICN taking into consideration the unique properties of
this emerging paradigm. In particular, we consider the case of a content owner who wishes to share
content with some users. Content items can be provided either directly by the content owner or by
third parties. The latter network entities can be authorized by the content owner—for example, a
Content Distribution Network (CDN) node—or they may act on their own, as in an in-network cache.
We wish to provide solutions that assure that: (i) content has not been modified during distribution,
i.e., provide content integrity protection, (ii) sensitive content items are received from their real owner
or from authorized third parties, i.e., provenance verification, and (iii) a received piece of content is
what a user really asked for by name, i.e., authenticity verification. Moreover, we want to enable access
control independently from where the content came from (e.g., a cache).

ICN architectures use content names as the main element of their (inter-)networking functions.
Therefore, names are a natural choice for building security solutions that achieve the desired
properties. In the following, we consider hierarchical content names—for example, “Disney/little
princess/episode 1,” “User A/Pictures/Profile picture,” and so on. Content names are globally unique
(at least within the context of an application), and their “roots” are content owner specific.

Building security primitives based on names offers some significant advantages. Firstly, names
can be human readable, therefore, they can be memorable (as opposed, for example, to RSA public
keys). For this reason, it should be easier to disseminate them using out of band mechanisms, such
as by printing them on a business card or including them in a slide presentation. Secondly, names
can be predictable, as in it could be easy to predict the name of a content item that has not yet been
created, such as the name of the next chunk of a live video stream. Thirdly, the namespace of an ICN
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architecture can be hierarchical, reflecting real world organization and business relationships, as well
as content structures.

Security solutions relying on name-based primitives have some additional features compared to
traditional ones used for the same purposes. For example, it is easier to construct ephemeral keys, it
is easier to delegate trust, it is possible to verify content integrity and authenticity at the same time,
and access control can be implemented even at untrusted network entities. On the other hand, these
security solutions introduce a convenience-security tradeoff because secret keys are generated by an
external secret key generator using some known generator-specific public parameters. Hence, we
can either have a single (or a few) key generators and consider their parameters well known (which
is more convenient but less secure) or use many key generators (even one per user) and develop a
parameter look-up mechanism (which is less convenient but more secure).

The goal of this paper was to review identity-based encryption and identity-based proxy
re-encryption; to present security solutions based on these primitives that achieve content integrity
protection, content authenticity and provenance verification, and access control; and to develop a
convenient parameter look-up solution based on the emerging Decentralized Identifiers paradigm [2].
The functionality of these solutions is already built-in in most ICN architectures, using traditional
public-key encryption: In this paper, we use identity-based encryption, thus providing additional
properties. In summary, in this paper, we make the following contributions:

• We provide security solutions and notions that extend legacy security systems with new properties
and capabilities.

• We design our approaches to take advantage of the unique features of the ICN paradigm stemmed
from its location independence properties.

• We leverage Decentralized Identifiers to enhance the security of the proposed approaches.
• We propose a solution to the key revocation problem.
• We evaluate the proposed solutions and prove their feasibility.

The remainder of this paper is organized as follows. In Section 2, we give some background
information about identity-based Encryption, proxy re-encryption, and decentralized identifiers, and
we present related work in this area. In Section 3, we present the design of our solutions, which
we detail in Section 4. In Section 5, we evaluate the performance and the security properties of our
solutions. We conclude in Section 6 with a summary, discussion, and directions for future work.

2. Background and Related Work

2.1. Identity-Based Encryption

An Identity-Based Encryption (IBE) scheme is a public key encryption scheme in which an
arbitrary string can be used as a public key. An IBE scheme is specified by the four algorithms [3],
Setup, Extract, Encrypt, and Decrypt, summarized as follows:

• Setup: Executed once by a Secret Key Generator (SKG). It takes as input a security parameter and
returns a master-secret key (master) and some generator specific public parameters (PP). Master
is kept secret by the SKG, whereas PP are made publicly available. Master is only known to the
SKG and it is used only for extracting other secret keys (see next algorithm).

• Extract: Executed by a SKG. It takes as input PP, master, and an arbitrary string ID, and returns a
secret key SKID.

• Encrypt: Executed by users. It takes as input an arbitrary string ID, a message M, and PP, and
returns a ciphertext CID.

• Decrypt: Executed by users. It takes as input CID the corresponding private decryption key SKID,
and returns the message M.
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2.2. Identity-Based Proxy Re-Encryption

An Identity-Based Proxy Re-Encryption (IB-PRE) scheme is an extension to IBE that allows a third
party to alter a ciphertext, encrypted using an arbitrary string ID1, in a way that another user that
owns a secret key SKID2 can decrypt it. Such a scheme specifies two new algorithms [4], RKGen and
Reencrypt, in addition to the IBE algorithms already discussed:

• RKGen: it is executed by a user that owns a secret key SKID1. It takes as input PP, the secret key
SKID1 and an arbitrary string ID2 and generates a (public) re-encryption key RKID1→ID2.

• ReEncrypt: it is executed by a third party. It takes as input PP, a re-encryption key RKID1→ID2

and a ciphertext CID1 and outputs a new ciphertext CID2.

The ciphertext generated by the ReEncrypt algorithm can be decrypted only using SKID2. The
entity that performs the re-encryption learns nothing about the encrypted plaintext or about the secret
keys that correspond to ID1 and ID2.

Figure 1 illustrates an IB-PRE example. There are three users each owning a name root, namely
“User A”, “User B”, and “User C”. “User A” and “User B” have received the secret key that corresponds
to their roots from a SKG (Step 2). “User C” encrypts a message by executing the IBE Encrypt algorithm
using “User A” as a key and stores the generated ciphertext in a storage entity. Supposedly, “User A”
wishes to enable “User B” to access the ciphertext generated by “User C” in the previous step: She
generates an appropriate re-encryption key and sends it to the storage entity. The storage entity is now
able to re-encrypt the ciphertext in a way that can be decrypted using the private key of “User A”.

User B

SKG

MSK

(2a) Extract SKUserA
(2b) Extract SKUserB

SKUserB

User C

public 
parameters

CUserA

(4) RKGen RKUserA→UserB 

(3) Encrypt using `User A’

(5) ReEncrypt using 
RKUserA→UserB 

CUserB

(6) Decrypt using 
SKUserB

User A

SKUserA

(1) Setup

Figure 1. Identity-Based Proxy Re-Encryption (IB-PRE) example. MSK = Master Secret Key; SK = Secret
Key; RKGen = Re-Encrypt Key Generation.

2.3. Decentralized Identifiers

Decentralized Identifiers (DIDs) are a new type of identifier that is globally unique, resolvable
with high availability, and cryptographically verifiable [5]. From a high level perspective, a DID
system can be viewed as a registry where key-value pairs are stored. The key part of this pair is the
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DID, which can be any arbitrary string. The value is a DID document, i.e., a JSON-LD [6] encoded
document that contains (among other information) pubic keys that can be used for linking a DID to
that document, service endpoints related to that DID, as well as auxiliary information that can be used
for verifying the integrity of the document (e.g., a digital signature) [2]. A registry can be implemented
using blockchains, distributed ledgers, (decentralized) P2P networks, or other systems with similar
capabilities. It should be noted that DID specifications do not dictate how a registry is implemented.
Instead, they define the methods that it should implement.

Suppose that an entity (the prover) wants to prove to another entity (the verifier) that he is the
owner of a DID. The verifier retrieves the corresponding DID document form the registry and extracts
the public key associated with that DID. Then, using an “authentication” method that depends on the
type of the public key, which is also defined in the DID document, authenticates the prover (e.g., the
verifier generates a challenge, and the prover must provide a digital signature for that challenge).

Compared to traditional security certificates, DIDs (and DID documents) have some significant
advantages. Firstly, a DID acts as an indirection point towards some public information (i.e., the
DID document, which may include a certificate), and any modification to this public information
does not affect the DID. Secondly, DID documents are stored in a registry (maintained by a 3rdparty),
and before any other operation, a verifying entity may lookup this registry and obtain the latest
version of the DID document. This property is of importance when it comes to revocation. Thirdly,
DIDs offer “self-sovereignty,” i.e., DID owners (and only them) can freely manage their DIDs and the
corresponding DID documents.

2.4. Related Work

Name-based security solutions have been considered by many related research efforts.
Zhang et al. [7] leverage identity-based encryption and identity-based signatures to provide content
integrity and confidentiality protection for the CCN architecture. The difference between the content
integrity mechanism presented in that paper and our solution is that with our solution only the content
owner can generate a digital signature. This has the advantage that delegated storage entities (e.g.,
CDN nodes) cannot modify a stored item, but it has the disadvantage that it cannot be used for
“live” content stored in a location outside the administrative realm of the content owner. The content
confidentiality solution presented by Zhang et al. does not provide forward secrecy. Although we do
not propose any particular confidentiality mechanism, our solution can be used with the Transport
Layer Security protocol -like handshakes protocols that achieve ephemeral content encryption keys.

Hamdane et al. [8] achieve similar goals by using hierarchical identity-based encryption. The
advantage of hierarchical identity-based encryption is that once the secret key that corresponds to a
content name prefix has been generated, the keys for the names that use this prefix can be generated
without the involvement of the SKG. This comes with additional computational and storage overhead.
In this paper, we allow each content owner to maintain his own SKG, hence interacting with it does
not impose significant network overhead.

Wood and Uzun [9] use proxy re-encryption to implement an end-to-end content encryption
mechanism for CCN that does not prevent content caching. The difference between this approach and
our solution is that with our solution a storage endpoint can re-encrypt a content item for a user only
if the user is authorized to access it, whereas in the construction presented in [9] a storage endpoint
can perform this operation for all items; hence, if access control is required the storage endpoint must
be trusted. Similarly, Suksomboon et al. [10] use proxy re-encryption to provide access control by
semi-trusted proxies. Their approach has the same limitation as [9].

Bernardini et al. [11] use proxy re-encryption to build a privacy enhancing mechanism for the
NDN architecture. With their solution, they perform hop-by-hop name and data encryption and
re-encryption, in this way hiding user interests. In this paper, we do not provide any privacy-enhancing
solution; however, we believe that our constructions are compatible with the solution in [11].
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Attribute-based encryption (ABE) [12] is a type of encryption that is very similar to IBE and
for this reason it has been considered by many related ICN-specific efforts (e.g., [13–15]). However,
when it comes to our goals, ABE has bigger computational and storage overhead without offering any
additional security advantage. In any case, we believe that the solutions presented in this paper can be
easily adapted to use ABE instead of IBE.

3. System Design

3.1. System Entities and Namespace Structure

Our system design considers real world entities that own some content (content owners) and want
to share it with other users. A content owner owns some content name roots. Users are generally
anonymous. However, there are cases where users have to be identified (e.g., in order to apply access
control); in these cases, user names, similar to content name roots, are considered. Content items are
stored in network locations that may or may not belong to the administrative realm of the content
owner. Content items are requested and retrieved using standard ICN functions.

Our design assumes that the namespace of content names is organized in Direct Acyclic Graphs
(DAGs), where the root of each graph, i.e., the name root, is globally unique. The granularity and the
semantics of the names are application-specific. Throughout the paper, for illustrative purposes, we
consider the case of a file sharing application. Suppose a user in this application, that owns the content
name root “User A”: the namespace in that case can be organized as in Figure 2. In this example, “User
A/Videos/Holidays” and “User A/Videos/Graduation/Party/Chunk 1” are two valid names that
share the same root, as well as the same name “prefix”. As we will discuss in the following sections, a
security solution can be applied to a whole name prefix.

Videos Pictures

Holidays Graduation Personal Family

Ceremony Party

Chunk 1 Chunk 2

User A

Figure 2. Namespace organization for a sample file sharing application.

3.2. The Key Escrow Problem and a DID-Based Solution

Identity-based security schemes often suffer from the so-called key escrow problem, i.e., the fact
that a third party (the SKG) knows all secret keys. Even if we assume that this party is reliable and
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does not misuse the generated secret keys, these systems still are threatened by security breaches that
would reveal the master key (note that this is the secret key of the SKG, used to generate all user secret
keys). An obvious solution to this problem is to use multiple SKGs; each user could use the SKG they
trust, or even their own. Having multiple SKGs, however, leads to another problem: How are PP
disseminated? In order to solve this problem, we rely on DIDs. Our design assumes a DID registry
that is not part of the ICN network; instead, entities interact with that registry using legacy networking
protocols.

This name roots are treated by our system as DIDs, and they are associated with a DID document
stored in a registry. Each DID document contains the PP required for performing the corresponding
IBE and IB-PRE operations (related to a content name with that root). Therefore, in order for any
third party to reliably learn some PP, it simply has to lookup the registry. A DID document in our
system also contains a public key used for authenticating the root owner when he wants to modify the
document in the registry. As we discuss in Section 5, we implemented the registry functionality using
the Hyperledger Fabric blockchain technology.

Back to our file sharing example, suppose that an entity wants to perform some cryptographic
operations related to the content name “User A/Videos/Graduation”. The root of this name is “User
A”, hence its searching of the registry for the document associated with the DID “User A”: This
document contains the desired PP.

At this point, we should note that even if per-user SKGs are used, the problem of disseminating
PP is not equivalent to the problem of disseminating users’ RSA pubic keys (as in the current Internet).
This is true because even if per-user SKGs are used, the same PP may be used for generating multiple
keys. The security solutions presented in the following section use content names as keys; all these
keys share the same PP, i.e., the PP of the content owner. Therefore, if the PP of a content owner are
known, these solutions can be used without interacting with the DID registry. So, back to our file
sharing example, if a user has retrieved the PP that correspond to “User A/Videos/Graduation”, he
can use them for performing cryptographic operations with the name “User A/Videos/Holidays”.

3.3. Name Versioning

Content names are used in our system as public keys which are associated with a secret key. As in
any crypto system, a secret key may be breached, hence the corresponding public key has to be modified
(we discuss key revocation in more detail in Section 5.3). In order to enable content name modification,
we consider the name “versioning”. A name version is a simple number appended to a content name
when necessary. For instance, and as we discuss in more detail in the following section, when a user
requests a content item by its name, a network node that hosts this item may reply indicating in its
response the version of the name it hosts, e.g., a user may request ‘User A/Videos/Graduation”, and a
network node may reply with “User A/Videos/Graduation:1”. In that case, the latter name will be
used as the public key in all subsequent cryptographic operations. A content owner may include in
the corresponding DID document all deprecated version numbers (akin to a key revocation list).

Similar to this concept, there are scenarios where ephemeral names are required (e.g., a network
entity may be authorized to host a content name for limited time). In these cases, a timestamp can be
appended to a content name. The semantics of this timestamp are that "this name and its corresponding
secret key can be used up until the specified timestamp" .

4. Name-Based Security Solutions

4.1. Content Integrity Protection and Content Authentication

The integrity of a content item is protected by a digital signature generated by the content owner.
Providing that the underlay IBE scheme is chosen-ciphertext attack (CCA) secure, a digital signature is
generated as follows [16] (Figure 3a):
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1. The content owner selects a secure hash function and calculates the item’s hash h.
2. She creates SKcontent_name/h by invoking the Extract algorithm of the SKG, i.e., she creates the

secret key that corresponds to the content name appended with h.

The latter secret key is the (public) digital signature of the item identified by content_name.
A digital signature can be trivially verified by anybody using the following steps (Figure 3b):

1. Calculate the hash h of the item covered by the signature.
2. Select a random number r.
3. Use the IBE Encrypt algorithm to encrypt r using as a key “content_name/h” and as PP the

content owner’s PP.
4. Verify that the ciphertext produced in the previous step can be decrypted using the IBE Decrypt

algorithm and the signature as a key.

It can be observed that SKcontent_name/h is treated as a public information, and this solution does
not require any secret key associated with the content. Hence, keeping track of the current version of
the content name is not required by this solution.

An interesting property of this solution is that it can be used to verify content authenticity. With
this solution, signatures can only be generated by the content owners, since the signature generation
relies on the Extract IBE algorithm that can be executed only by the SKG. Therefore, a signature
provides an unforgeable means of linking content items to their owners. As a result, a user can be sure
that the content item she received is indeed what she asked for.

H

Extract

Content

Data

Name

SKSKG

SKName/h

h

H

Encrypt

Content

Data

Name

CName/h(r)

h

r

DecryptSKName/h Output == r

(a) (b)

Figure 3. Digital signature: (a) creation; (b) verification.

In order to show the significance of this property, we present an authentication attack applicable
to the NDN architecture. Suppose, a user requests the item “User A/Pictures/Picture1” (where “User
A” is a name root owned by the content owner). The header of the corresponding data packet in the
NDN architecture contains (among others) the following fields: the content name, a digital signature
over the packet data and the content name, and a pointer to the public key of “User A”. An attacker
can modify the packet data, compute a new signature using his key, and replace the information in
the header with the new signature and a pointer to the attacker’s public key. The integrity of the new
packet is still preserved, but this is not what the user really asked for. The reason why this attack is
possible is because there is no binding between the public key of “User A” and the content name; in
other words, a user by receiving only a public key (and not for example a digital certificate) cannot
verify that this key indeed belongs to “User A”. In our solution, this binding exists since the word



Future Internet 2019, 11, 232 8 of 13

“User A” is both the root of the content item name and the public key of “User A”. This attack is not
specific to ICN: Recently researchers used a similar attack (and other techniques) to break Apple’s
iMessage messaging system [17].

4.2. Outsourcing Content Storage and Content Provenance Verification

Trust delegation is a typical application of IBE [16]. In the context of ICN, trust delegation is
of significant importance, since a piece of content may be hosted by multiple entities. The solution
presented here provides a secure way for a content owner to authorize an entity to host (i.e., store
and provide on demand) part of the namespace she owns (hence, the content items associated with it).
This is achieved as follows: firstly, the content owner uses her SKG and generates the secret keys that
correspond to the content names (or the portion of the namespace) the authorized entity will store, then,
the content owner distributes these keys to that entity. Back to our file sharing example: Suppose that
“User A” wants to authorize “CDN-A” to store all family photos; he generates SKUserA/Pictures/Family
and securely distributes it to “CDN-A”. This key is then used for proving content provenance (see
next). It should be noted that the rightful owner of these keys is the content owner and that the
authorized entity simply acts on the owner’s behalf, therefore, the fact that the content owner knows
these keys is not considered key escrow. Moreover, key distribution should be secured (however, key
distribution is out of the scope of this paper).

Content provenance verification is usually referred to as the “verification of the identity of
the transmitting entity.” However, in ICN, users should not care who sends a content item, as
long as the content authenticity can be verified. In this work, we refer to content provenance
verification as the process of verifying that a transmitting entity is authorized by the content owner
to host and share the requested item. Therefore, we are not concerned with WHO the transmitting entity
is. Content provenance verification, in this context, is useful in cases where a user wants to receive an
item only from endpoints trusted by the content owner, for example, for accounting reasons, spam
prevention, phishing protection, and so on. Provenance verification can be achieved using a simple
challenge-response protocol and the secret key generated by the content owner. In the following,
we give an example of a challenge-response routine that can be incorporated into a key agreement
protocol (in our description we consider the TLS-like protocol presented in [18]). After all messages
have been exchanged, a user is able to verify that she will receive the desired item from an authorized
endpoint:

• The user sends to the network a Hello message indicating the portion of the namespace in which he
is interested in (for example, in our file sharing example this could be “User A/Pictures/Family”).
This message is forwarded using standard ICN mechanisms.

• A network endpoint, authorized to host (part of) this namespace, responds with a Hello response.
If the endpoint is authorized for a less fine-grained portion of the namespace (for example, “User
A/Pictures”), it indicates that in its response. Similarly, if the endpoint is authorized for a limited
time, or it is authorized for a specific version of the namespace, it includes in its response the
authorization expiration time (in the form of a timestamp) and/or the version number. Multiple
endpoints may reply to a Hello message.

• The user selects a random number r, encrypts it using the IBE Encrypt algorithm, the content
owner’s PP, and an appropriate key (e.g., in our previous example, if an endpoint is authorized
for a limited time, the encryption key would be “User A/Pictures/Family:timestamp”), includes
this ciphertext to the next message of the key agreement protocol, and sends it to the network.

• An appropriate endpoint decrypts the ciphertext and sends the decrypted plaintext back to the
user as part of the key agreement protocol.

If the number that the endpoint sends in the last message is equal to the number the user
generated, then the endpoint is considered authorized. It should be noted that the key agreement
protocol specified in [18] does not require from the user to select a particular endpoint, on the contrary
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it allows users to initiate the key agreement protocol with one endpoint and finalize it with another,
providing that these endpoints share the same secret key.

4.3. Access Control

For this solution, we leverage IB-PRE to provide access control on content items stored in network
endpoints outside the administrative realm of the content owner, as in [19]. We assume that each
content item is encrypted by the content owner using a symmetric encryption algorithm (each item
with a different key) and each item is protected by an access control policy. Our goal is to allow
authorized users to access the corresponding encryption key. Each access control policy is identified by
a name similar to a content name (for example “User A/Friends”) and it may protect multiple items. In
order to achieve our goal, content owners encrypt the symmetric encryption keys with the IBE Encrypt
algorithm using the name of the policy as a key; we refer to the latter ciphertext as Cpolicy_name(key).
Moreover, for each authorized user, the content owner creates an IB-PRE re-encryption key of the
form RKpolicy_name→user_name. Finally, the Cpolicy_name(key) ciphertexts, the re-encryption keys, and a
list of authorized users (and their corresponding PP) are transferred to the content storage network
endpoints. With this information, an endpoint can re-encrypt a Cpolicy_name(key) into Cuser_name(key).

5. Implementation and Evaluation

ICN operations may take place in constrained devices (e.g., smartphones) or in nodes that
experience high volumes of traffic (e.g., CDN nodes). For this reason, in order for a solution to be
realistic and feasible, it should add tolerable storage and computation overhead.

5.1. DID Performance Evaluation

5.1.1. DID Registry Management Overhead

We implemented a proof of concept DID registry using Hyperledger Fabric (henceforth, we will
simply refer to it as Fabric). Fabric is a private, permissioned blockchain technology, i.e., a blockchain
system where membership is controlled. Fabric involves no monetary cost, low computational
complexity, and insignificant delays (as opposed, for example, to public permissionless blockchains,
such as the Ethereum [20]).

From a high-level perspective (For more details about the Fabric architecture, interested users
are referred to [21]), Fabric allows special nodes, referred to as endorsing peers , to store and execute
arbitrary programs, called chaincode. Chaincodes are replicated to many endorsing peers and the state
associated with them is stored in a ledger distributed to a set of committing peers (In reality a peer can
be at the same time both endorsing and committing).A chaincode is executed simultaneously and in
parallel by many endorsing peers, and the final output of the execution is determined based on an
endorsement policy defined by the chaincode owner. An endorsement policy can be, for example, that
n out of m endorsing peers should execute the chaincode and produce the same output, otherwise
the execution is not accepted. If the output of the execution has to be stored in the ledger, then it
is forwarded to a special node referred to as the orderer. The orderer instructs committing peers to
re-validate that the endorsement policy has been respected and to update the state of the chaincode
in the ledger. Any “client application” can invoke a chaincode by interacting with a (single) gateway
using the Fabric API. The gateway is responsible for: instructing all endorsing peers to execute the
chaincode, collecting the final outcome, verifying the endorsement policy, and returning the outcome
to the application.

In order to evaluate the overhead of our solution, we created a network composed of six peers,
and we stored in all peers a chaincode that implements our registry. Our endorsement policy defines
that at least three out six peers should produce the same output in order for that output to be accepted.
The basic operations of our chaincodes are the following: check if a DID exists, retrieve the DID
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document that corresponds to a particular DID, and create a new DID document. Table 1 reports the
amount of time required to perform these operations.

Table 1. Execution time of chaincode operations measured in seconds. DID = Decentralized Identifier.

Operation Time in Seconds

Check if DID exists 0.0426
Retrieve DID document 0.030
Create DID document 2.59

As it can be seen except from the DID document creation operations, which requires ∼ 2.6 s, all
other operations are executed in less than 50 ms. Our registry has been implemented using HashMaps
therefore DID lookup complexity is O(1) no matter the number of entries. Furthermore, the size of
DID document is a few bytes (and less than 1 KB); hence, a DID registry should be able to handle a
very large number of documents (each corresponding to a name root).

5.1.2. DID Cryptographic Operations Overhead

In our DID registry implementation, only DID document owners are allowed to modify a DID
document. In order to achieve this, a DID registry must authenticate a users based on the key included
in the DID document.

W3C’s (draft) DID specification defines that the keys used for user authentication must be
compliant with the authentication cryptographic suites included in the “Linked Data Cryptographic
Suite Registry” [22] . Currently, this registry includes four suites, and for our implementation, we have
selected the “Ed25519 Signature 2018” suite [23]. This suite uses keys derived from the curve25519
elliptic curve and defines that authentication should be implemented using Ed25519 signatures. The
size of the public key is 32 bytes and the size of a signature is 64 bytes.

User authentication is implemented using a simple challenge-response protocol, where the registry
generates a random number and the user responds with the digital signature of that number (All
messages are exchanged over TLS hence man-in-the-middle attacks are prevented).

DIDs require the following cryptographic operations: key-pair generation, signature creation,
and signature verification. We have implemented all these cryptographic using the TweetNaCl
cryptographic library [24]. Table 2 measures the execution speed of each operation in a high-end PC
(3.4 GHz intel-i7 CPU, 16 GB of RAM, running Ubuntu 16.04 Server ), a first-generation Raspberry Pi
(700 MHz BCM2835 CPU, 512 MB of RAM, running Raspbian GNU/Linux 9 distribution), and the
Safari browser of an iPhone 7s (Running iOS 12.3.1) (For this measurement we used the JavaScript
port of the library available here: https://tweetnacl.js.org).

Table 2. Execution time of cryptographic operations measured in ms.

Operation PC RPi Mobile Phone

Key generation 13.6 126 32
Signature creation 13.2 126 18.9
Signature verification 24.1 231 22

As it can be observed, all cryptographic operations are executed very fast even by the constrained
devices.

5.2. Performance Evaluation of the Proposed Security Solutions

In order to evaluate the storage and computation overhead of the proposed solutions,
we implemented the IB-PRE scheme of Green and Ateniese [4] using the Charm cryptographic
library [25]. In our measurements, we considered a setup that provides security equivalent to RSA
with an 1024 bits key. The measurements related to the Encrypt, ReEncrypt, and Decrypt algorithms
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concern the encryption of a 128-bit random number (i.e., the length of the symmetric encryption
key used for encrypting files). Table 3 presents the computation overhead of the IB-PRE algorithms.
Measurements were obtained in an Ubuntu 16.04 machine, running in a single core of an Intel i7-4440
3.1 GHz processor with 16 GB of RAM, using Charm v0.43. Table 4 presents the size of the various
variables used by the IB-PRE algorithms.

Table 3. IB-PRE algorithm computation times.

Algorithm Time (ms)

Extract 4.0
Encrypt 6.2
RKGen 9.8
ReEncrypt 1.0
Decrypt 5.3

Table 4. Size of variables used by the IB-PRE algorithms.

Variable Size (bits)

Public Parameters (PP) 2048
Master Secret Key (master) 160
Secret Key (SK) 1024
Ciphertext (C) 2048
Re-encryption key (RK) 2048

5.3. Security Evaluation

DID registry security is not in the scope of this work. A DID registry implementation should
provide mechanisms that assure: (i) the uniqueness of DIDs, i.e., a user cannot register a DID (i.e., a
name root) that has already been registered, (ii) DID document access control, i.e., only the owner of
a DID document should be able to modify it, and (iii) user account management, i.e., DID owners
should be able to recover/modify a lost/breached secret key (used for authenticating themselves to
the DID registry).

The scheme used in our paper is CCA-secure, and as proved in [16], it can be used for generating
digital signatures using the algorithm presented in Section 4.1. The digital signatures generated by this
algorithm have all the properties of traditional digital signatures, i.e., unforgeability (only the content
owner can generate a valid signature for the associated name), non-re-usability (the signature that
corresponds to a content name cannot be used with another name), and non-repudiation (a content
owner cannot deny having generated a valid signature).

As already discussed, a digital signature can only be generated by the content owner, and it cannot
be generated even by authorized storage endpoints, i.e., network entities that know the secret key
that corresponds to a content name. This has the advantage that users can make sure that they always
receive authentic content, but on the other hand, it has the disadvantage that 3rd parties, including
authorized storage points, cannot sign “dynamic” content (e.g., a live stream).

Our access control solution is secure even in the presence of misbehaving storage endpoint.
A storage endpoint cannot create a Cuser_name(key) for unauthorized users since it cannot create the
re-encryption key required for this process. Moreover, storage endpoints learn no secret information.
For a more thorough security analysis of this solution, interested readers are referred to [19].

Key Revocation

Our solutions rely on the following secret keys: (i) master (i.e., the master secret key of a SKG),
and (ii) the secret key associated with a content name. master is the most important key: any entity that
learns this key can re-generate all the keys that the SKG has extracted. master keys must be securely
stored by SKGs. In case a master key is lost, the corresponding SKG should re-execute the Setup IBE
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algorithm and produce new PP. Accordingly, the affected user(s) should update their DID documents
and re-generate all secret and re-encryption keys. master is the only key that can be used for extracting
other keys. On the contrary, the secret keys that correspond to a name cannot be used for generating
other secret keys, even for names that use the breached name as a prefix. For example, the key that
corresponds to “User A/Pictures” cannot be used for extracting the key that corresponds to “User
A/Pictures/Holidays”, even if these keys share the same PP. On the other hand, the loss of a secret
key means that the corresponding name cannot be used as a public key. For this reason, every time a
key is revoked, the version number of the corresponding name is increased, and a new secret key is
generated.

6. Conclusions

In this paper, we briefly reviewed identity-based encryption and identity-based proxy
re-encryption. We developed solutions for ICN architectures based on these primitives that achieve
outsourcing of content storage, content integrity protection, content authenticity, and provenance
verification, as well as access control. We argued that the use of name-based security contributes to
some unique features of our solutions: It is possible to create ephemeral keys, it is trivial to verify
content authenticity, trust can be easily delegated, and access control can be enforced even by untrusted
network entities.

Named-based security solutions create a convenience-security tradeoff, i.e., a single PKG (or a
small number of PKGs) can be considered (convenient but not secure), or multiple SKGs alongside a
PP lookup system can be implemented (more secure but less convenient): We claim that it is possible
and convenient to use the secure extreme point of this tradeoff by using per-user key generators. To
this end, we proposed a parameter dissemination mechanism using the emerging DID paradigm.
The performance evaluation of the implemented solution demonstrated that it is feasible for many
applications.

Our DID registration approach is based on the “first come, first served” principle. This approach
can further be extended to prevent illegitimate name registrations. Moreover, in this work we
considered the DID registry system and the ICN network as two distinct and decoupled entities.
We believe, however, that ICN architectures have the potential to benefit DID registry implementations.
An integrated ICN-DID architecture seems a very promising future research direction.
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