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Abstract: The codebook-based beamforming for millimeter-wave (mm Wave) communication 
systems is usually used to compensate the severe attenuation of the mm Wave region. The beam 
training process based on pre-specified beam codebooks is considered a global optimization 
problem in 2-D planes formed by the potential beam index. The Rosenbrock algorithm (RA) is 
adopted to implement optimum beam searching whereas the simulated annealing (SA) algorithm 
is used to solve the problem of falling into the local optimum, due to the unavailable gradient 
information of the objective function. However, the RA implements rounding to the integer which 
leads to the problem of repeated search and beam space discontinuity caused by beam index will 
impair the powerful local search ability. Thus, in this paper, an enhanced RA based on tabu search 
and combined with SA algorithm is proposed as an alternative solution for beam search success 
rate. The proposed algorithm reduces the search times by forbidding the repeat search with tabu 
table and design of neighbor region. Moreover, to prevent the search failure, the search candidate 
index is defined to keep the local search ability of the original algorithm and wrap around of beam 
index is applied to maintain continuity of the search direction. Experimental simulations show that 
the proposed technique can improve the search efficiency in terms of reduced steps and increase 
search success rate during the beam training procedure compared to existing techniques. 
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1. Introduction 

In recent years, to meet the higher requirements on transmission rate and signal bandwidth, 
millimeter-wave (mm Wave) has been widely concerned because of its widely available bandwidth, 
strong anti-interference ability and short-wavelength [1]. Although mm Wave wireless 
communication has great application value, it faces many difficulties in practical applications due to 
its serious problems such as small coverage limited by severe path loss, intermittent transmission 
interrupted by human blockage and extra link budget due to absorption of the atmosphere [2]. To 
solve this problem, antenna array can be used to obtain remarkable processing gain, this technology 
can effectively compensate path loss and enhance the signal-noise ratio (SNR) of the receivers [3]. 
Concurrently, it can mitigate interference among users through directional transmission. In addition, 
multiple antennas can be expediently implemented on miniature portable devices, thanks to the 
millimeter wavelength. Usually, on the basis of the usage of the spatial domains, traditional 
multi-antenna technologies can be divided into two types, the spatial multiplexing and 
beamforming (BF). In order to easily implement and effectively improve the link budgets, it is 
widely believed that BF-based directional transmission is more appealing for mm Wave 
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communications [4]. Therefore, BF has been adopted into the mm Wave wireless communications 
related standards. On the other side, to establish and maintain the directional communication link 
between transmitter and receiver, beam search at both ends of the link is required, which always is 
much more time consuming and incurs a big burden on the system in terms of signaling overhead. 

1.1. Related Work and Motivation 

The existing beam search algorithms can be classified into three different categories: (1) 
exhaustive search; (2) hierarchical search [5]; and (3) compressive search [6]. In the exhaustive 
search scheme, both the transmitter and receiver sequentially scan all the beams to decide the best 
beam for transmission and reception. As the name suggests, it causes significant training overhead, 
as the searching times scale linearly with the number of the antenna. As an alternative, the 
hierarchical search scheme employs two search steps, at the first step, the beam is searched with a 
low-resolution codebook, based on the coarse direction fund at the first step, a finer search proceeds 
with a high-resolution codebook. Compared with the exhaustive search scheme, the hierarchical 
scheme saves much overhead at the cost of coverage loss, which due to the usage of a 
low-resolution codebook. In the compressive search scheme, the sparse scattering environments of 
the mm Wave system are considered, and compressive estimation is used to find the best beam. 
However, the compressive estimation requires the phase coherence across subsequent beacon, 
which is always difficult to implement [7]. 

On the contrary to the approaches assumed in the three schemes above, the beam training 
process is described as a limited space searching problem in the numerical optimization framework 
[8]. Modeled a combinatorial optimization of 2-D search space consisting of two pattern indexes 
from the specified beam codebook, a global direct search (GDS) algorithm is proposed to identify 
the best transmitter–receiver (Tx–Rx) beam-pair, using the minimum energy to maximize the 
receiving SNR [9]. In the literature [10], considering that the gradient information of the objective 
function (i.e., the receiving SNR) is practically unavailable, the Rosenbrock algorithm (RA) is used to 
carry out beam searching. By a two-step search implicitly approaching the function gradient, this 
algorithm typically exhibits promising search capabilities. However, when a non-smooth objective 
function containing many local optima is encountered, the Rosenbrock search may easily fall into 
local optima, which will cause the search failures. It is noteworthy that the receiving SNRs may 
exhibit many local optimum values, to overcome the shortcomings of the above classical RA, the 
literature [11] further proposed to combine RA with simulated annealing (SA) algorithm. 

Although being effective in mitigating the problem of falling into local optimum, it is inevitable 
for RA that the intermediate search results are round to the integer to get the beam index, which will 
cause repeated search problems, moreover, considering the clustered structure of beam space 
immanent to mm Wave, both the correct mapping from beam space to search index, and processing 
of the index boundary will have a significant impact on the beam search performance. The tabu 
search (TS) is a kind of heuristic algorithm, which is used in combinatorial optimization problems 
to obtain the optimum solution. TS is required in many applications to solve optimization problems, 
including quadratic assignment problems (QAP) [12], detection problems [13], and GFBM systems 
[14], etc., for their efficiency. The TS algorithm relies on the concept of ‘tabu’, which prohibits the 
search of previous searched results to avoid falling into local maximum solution. The concept of 
‘tabu’ motivates us to enhance the RA by TS algorithm. 

1.2. Paper Contributions 

In order to solve the above repeated search problems, we introduce TS to enhance the RA. 
The main contributions of this paper can be summarized into three aspects: (1) The appropriate 

definitions of neighborhood structure, tabu table, aspiration criterion and stopping criterion 
involved in the TS-based RA are provided; (2) Based on the inherent clustered structure of beam 
space, design schemes of direction boundary and index boundary are developed. The former 
guarantees the continuity of the index at the direction boundary, and the latter guarantees the 
continuity of the search direction at the index boundary; and (3) Inspired by the TS algorithm, an 
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enhanced RA based on the tabu table is developed to solve the problem of repeated search, which is 
caused by rounding to the integer to get the beam index. The enhanced algorithm is proved by both 
theoretical analysis and experimental simulations. The results show that compared with the existing 
popular technologies, the proposed technology can considerably improve search success percentage 
and reduce the energy consumption during the beam search. The simulation results also show that 
this technology can achieve near optimal performance. 

The paper is organized as follows. Section 2 will give a complete BF system model. 
Subsequently, the beam training based on RA is developed in Section 3. Then, the RA based on SA is 
introduced in Section 4. Section 5 is devoted to the enhanced RA based on tabu table. Experimental 
simulation and performance evaluation are given in Section 6. Finally, we conclude this article. 

2. System Model 

We consider the system model with BF as shown in Figure 1. Device 1 (DEV1) has tM transmit 
antennas, while device 2 (DEV2) employs rM receiver antennas. At the transmitter, the signal is 
multiplied by the transmission weight vector w , and is then emitted into wireless channels. 
Accordingly, the received signals at the receiver are multiplied by the received weight vector c , then 
combined together, and finally down-converted for baseband processing [15,16]. 

Considering the high-power consumption and the complicated realizations of RF electrical 
elements, beam training vectors with phase shift and amplitude adjustment seems to be impractical 
for mm Wave compatible devices. Accordingly, adopting a phased antenna array with fixed 
amplitude is a feasible alternative for rapid processing. The beam codebook can be denoted by
M N× matrix W , which is specified by the number of elements M and the required number of 
beams N . For a uniform linear array (ULA), the array response factor of the n th beam can be given 
by [17] 
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M
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−

=
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Where ,  m nw corresponds the antenna weight factor of the m th antenna element of the n th codebook; 
d is the antenna element spacing; and λ is the wavelength, generally set 2d λ= . θ denotes the 
normal direction of the antenna array relative to _x axis . 

 
Figure 1. System model for beamforming (BF). 

The channel impulse response (CIR) can be expressed as [18] 
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Where L denotes the number of clusters; lK denotes the number of sub-paths of the l th cluster; ,  k lα
is the complex channel gain of the k th sub-path of the l th cluster; , k lτ is the time delay; and , k lθ and

, k lφ are the angle of arrival (AoA) and the angle of departure (AoD), respectively [19]. 
Accordingly, the SNR in the receiver can be written as: 
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Where ( )pA θ , ( )qA φ represent the beam array factors of the receiver and transmitter, respectively. 
p and q are the beam numbers selected for the receiver and transmitter, respectively (i.e., n in the 

formula (1)). 2
nσ is the noise power. φΔ denotes the effective spatial receiving range. Here, it is 

approximated that the array response factor ( ),  p k lA θ at the receiver is constant for each path. After 

BF, the transmitted energy will be concentrated. In the case of a direct path between devices, the 
propagation energy of the indirect path can be neglected for simplified analysis. The receiving SNR 
can be expressed as 
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In this paper, the receiving SNR is used as the objective function, with the beam index number 
of the transceiver as 2-D variables [20]. BF aims to obtain the optimum beam-pair ( ),  opt optp q from the 

predefined codebook, to maximize the receiving SNR given by (4), i.e., 

( )
( )

( ) ( ) 2

, 
,  max ,  , ,  opt opt p q

p q SNR p q p q R= ∈  (5)

It is useful to regard the beam training as a global optimization problem in a 2-D plane, which is 
formed by the transceiver and receiver beam-pair, i.e., ( ),  p q . The objective function is the receiving 
SNR, which is expressed as ( ),  snr p q . 

3. Rosenbrock-Algorithm-Based Beam Training 

3.1. Problem Description 

Assume that the total number of beams at the transmitter and receiver are tN and rN , 
respectively. For the most basic traversal search, the beam search will perform the t rN N× training 
sequence to determine the optimal beam-pair, which consumes a lot of energy. 

From the system model analysis, the beam search problem can be transformed into the 
optimization problem of the 2-D discrete integer space, and the optimized objective function is the 
receiving SNR. However, the gradient information on the objective function is unknown in practice. 
The Rosenbrock search is very suitable for the optimization problem where explicit derivatives 
cannot be efficiently computed, but the objective function is not complicated to calculate. In this 
section, based on the RA, we develop an efficient beam training technology with evidently reduced 
overhead. To simplify the analysis, we employ the 1-D antenna array in the following detailed 
descriptions. With the beam index definition, the 1-D antenna array model can be easily extended to 
the 2-D antenna array case. 

3.2. Rosenbrock Search 

Instead of calculating the derivative, only simple evaluations of the objective function are 
required. The function gradient is then approached by a two-step search (i.e., probes and pattern 
move). 

3.2.1. Probe Moving 
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In order to discover a new starting point and search direction, probe moving is performed 
along the n orthogonal directions. In the analysis of this paper, 2n = for the 1-D antenna array. 
Corresponding to two search directions, the initial move steps are denoted by 1ξ and 2ξ , respectively. 

The initial solution during each probe round is given by ( )1x and the solution along the i th (i.e., 
1,  2i = ) direction by ( )1ix + . Given the initial solution ( ) ( ) ( )( )1 1 1,  s p q= , the initial directions ( )1d and ( )2d , 

the magnification factor   1α ≥ , the shrinkage factor [ )1,  0β ∈ − , the probe moving can be elaborated 
as follows. 

Starting from ( )1x , we first probe along ( )1d . In addition, it is noteworthy that the beam indexes 
(i.e., p and q ) are integers. Accordingly, the output beam index used in the next probe moving 

should be rounded to the nearest integer. If we have ( ) ( )( )( ) ( )( )1 1 1
1   snr x round d snr xξ+ ≥ , this probe 

operation is considered successful, and let 

( ) ( ) ( )( )2 1 1
1x x round dξ= +  (6)

Where ( )round x denotes rounding the element x to the nearest integer. The probe step is updated by

1 1ξ αξ= , which leads to a larger movement in the next probe moves. 

Otherwise, if ( ) ( )( )( ) ( )( )1 1 1
1   snr x round d snr xξ+ < , this probe operation is considered a failure, 

we set 
( ) ( )2 1x x=  (7)

In this case, the probe step is updated by 1 1ξ βξ= . Since β is negative, a _back off search is 

employed in the next probe round. After probing along ( )1d , the similar operations will be 
implemented on ( )2d . Finally, the probed solution ( )1nx + can be acquired and one round of probes is 
completed. The initial solution for the next round of probe iterations is set to ( ) ( )1 1nx x += . 

When all the direction moves fail, this probe movement iteration is terminated. Then, after the
k th iteration, the new solution can be expressed as 

( ) ( )1 1k ns x+ +=  (8)

3.2.2. Pattern Moving 

From (8) and (6), we may have 

( ) ( ) ( )( )1
 

1
+

n
k k i

i
i

s s round dλ+

=

=   (9)

Where  iλ represents the cumulative moving step along ( )id . 

It is observed that ( ) ( )1k kp s s
Δ

+= − may get close to the ascent direction, so during the next round 
of probes, the new constructed direction should take this ascent direction into consideration. The 
new constructed search directions can be formed from ( ) ( )1k ks s+ − and further orthogonalized by 
utilizing the Gram-Schmidt orthogonalization procedure. Then, the algorithm alternates between 
the probe round and pattern round, until the relative change in the objective function values is 
below a pre-specified thresholdη , i.e., ( ) ( )1   k ks s η+ − ≤  [21]. 

Based on the above elaborations, the pseudo-code for the Rosenbrock search is provided in 
Algorithm 1. 

3.2.3. Consideration of Limiting Factor 

In practice, after many successful probes, the moving steps of the beam search may be 
unlimitedly amplified. If ( )( ) ( )( )1

10  20 logi isnr x snr x Mκ+ − > × , the moving step will be limited to 1. 
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Here, ( ]0,  1κ ∈ is used to strengthen search efficiency and M is the total number of antenna 
elements. However, the BF gain over different beam pairs exhibits a distinct clustered characteristic, 
so there are many local optimal values in the non-smooth objective function. Therefore, the 
Rosenbrock search may unavoidably fall into the local optimal values and terminate the search by 
eventually returning a non-optimal beam-pair [22]. 

Algorithm 1. Rosenbrock search. 
Input: Initial solution ( )1s , ( )1x , and ( ) ( )1 1s x= ; thresholdη ; initial 
counter 1k = . 
Output: ( ),  opt optp q . 

1: Perform the probe moving process and output the probed solution
( )1nx + (see Algorithm2). 

2: if ( )( ) ( )( )1 1  nsnr x snr x+ ≥ then 

3: ( ) ( )1 1nx x += , and return to step 1. 
4: else 
5: Go to step 7. 
6: end if 
7: if ( )( ) ( )( )1   n ksnr x snr s+ ≥ then 

8: ( ) ( )+1 1k ns x +=  
9: if ( ) ( )1   k ks s η+ − ≤ then 

10: Output ( )+1ks . 
11: else 
12: ( ) ( )1 +1= kx s , perform the pattern moving process. 
13: end if 
14: else 
15: ( ) ( )1 1nx x += , and return to step 1. 
16: end if 
17: Output ( ),  opt optp q . 

4. Simulated-Annealing-Based Beam Training 

4.1. Simulated Annealing 

Simulated annealing (SA) is a generalized probability algorithm derived from the principle of 
solid annealing, which is used to find the optimal solution in a large search space. In traditional SA, 
the search starts at a higher temperature and accepts a solution that is worse than the current 
solution with a certain probability. In this way, the search can gradually jump out of the local 
optimum. The current state of the thermodynamic system is similar to the current solution; the 
energy equation of the thermodynamic system is similar to the objective function (i.e., the receiving 
SNR). Therefore, the basic elements of the SA algorithm in our beam training can be described in 
details as follows. 

Firstly, the objective function that represents the state energy should be defined, i.e.,
( ) ( )( )iE i snr x= . In this paper, the probability of switching from the current solution ( )ix to a new 

candidate solution ( )1ix + is specified by an acceptance probability ( ) ( )( ),  +1 ,  P E i E i T , which depends 

on two energy amplitudes ( ) ( )( )iE i snr x= and ( ) ( )( )11 iE i snr x ++ = and a time-varying parameterT . 

Given the current temperature T , the probability of a decrease in energy amplitude (i.e.,
( ) ( )1 0E E i E iΔ = − + > ) can be defined by 
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( ) ( )( )
( )( ) ( )( ) ( )

exp
,  exp

exp exp 1
E i kT

P E T E kT
E i kT E i kT

−
Δ = ≈ −Δ

− + − +
 (10)

Where k denotes the Boltzmann’s constant. If   0EΔ > , the state transition from ( )ix to ( )1ix + is accepted. 
Otherwise, if  < 0EΔ , the new solution ( )1ix + may be allowed to use the probability returned by (10). 
The state transition happens if the following condition is fulfilled: 

( ),    P E T γΔ ≥  (11)

Where γ denotes a random number between 0 and 1, i.e., ( ]~ 0,  1Uγ . 
In addition to the high initial temperature 0T , a gradual reduction of temperature is also 

required as the search progresses. So, we have: 

( ) 0
kT k T κ= ×  (12)

Here, k is the updating iterator. The decay factorκ satisfies 0    1κ< < . 

4.2. Simulated Annealing-Based Rosenbrock Search 

In order to solve the problem of falling into the local optimum, the SA algorithm is added to the 
Rosenbrock search, which applies the probabilistic acceptance criteria to the probe movement. 
Specifically, two temperature parameters lT and gT are adopted in this method, i.e., the local 
temperature and the global temperature, which correspond to the probe moving and the pattern 
moving, respectively. The temperature parameter gT is updated after the new search directions have 
been constructed, while lT is updated after each probe moving stage. 

Despite the fact that, the combination of the SA algorithm with the RA makes it possible to 
avoid falling into the local optimum because of the probabilistic property of the SA algorithm. It 
should be emphasized that certain problems still remain unsolved due to the intrinsic features of the 
beams search. For example, practical beam indexes are both integers, while the output beam indexes 
for the next probe moving should be rounded to the nearest integer. Simulation analysis found that 
rounding to the nearest integer makes the algorithm suffer the repeat search problems. The repeated 
search problem not only consumes a lot of search steps but also cause unavoidable search failure. 

5. Tabu-Search-Based Enhanced Rosenbrock Algorithm 

Tabu Search (TS) algorithm was proposed by Glover. TS is characterized by the use of tabu 
tables to block access to recently searched solutions [23]. This feature solves the repeated search 
problem found in the previous section. Given that the mm Wave channel is sparse and clustered, the 
beam gain exhibits clustered peaks at distinct local positions in beam index space, which represents 
the directions of the corresponding rays. To make full use of the local search ability of RA when 
combined with TS algorithm, mapping from the beam index to search index for search need to be 
defined. 

5.1. Beam Index Definition 

In this paper, the beam search is performed in a 2-D discrete integer search index space formed 
by the model of the Tx–Rx beam index. Both uniform linear arrays (ULA) and uniform planar arrays 
(UPA) will be considered in the following analysis. In the case of UPA, both the horizontal beam 
direction and the vertical beam direction should be considered for beam transmission and reception. 
In order to implement beam search in the 2-D beam index plane, we need to define mapping from 
the beam index to search index. 

Considering the inherent sparse and clustered structure of the beam space, and assuming that 
the beam is transmitted along the  th th horizontal direction and the tv th vertical direction, the search 
index is denoted by the mapping function of ( ) ,  t t tI index v h= as follows: 
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( ) ( ) ( )( )

( )( ) ( )

1
 

 1
 

1 1 ,
,  

1 1 ,

t

t

v
t t t t

t t t v
t t t t

v H h if v is odd
I index v h

v H h if v is even

−

−

 − ⋅ + − ⋅= = 
⋅ + − ⋅ −

 (13)

The receiver search index rI is defined by this method similarly. 
The definition of the search index is shown as an example in Table 1, where we set the number 

of the horizontal beam directions 32t rH H= = , and the number of the vertical beam directions
4t rV V= = . 

Table 1. Description of the beam index. 

 1 … th  … 32 
1tv =  1 … ( ) ( )( )11 1 tv

t t t tI v H h−= − ⋅ + − ⋅  … 32 

tv = 2  64 … ( )( ) ( )11 1tv
t t t tI v H h−= ⋅ + − ⋅ −  … 33 

tv = 3  65 … ( ) ( )( )11 1 tv
t t t tI v H h−= − ⋅ + − ⋅  … 96 

tv = 4  128 … ( )( ) ( )11 1tv
t t t tI v H h−= ⋅ + − ⋅ −  … 97 

5.2. Tabu Search 

The basic idea of the proposed RA enhanced by the tabu table is described in this section. 
Specifically, the most recent searched solutions of RA is recorded in the tabu table, during the probe 
moving round, if a probed solution is in the tabu table after rounding to the integer operation, the 
tabu search is applied to obtain the solution, which optimally is near the solution before rounding 
operation, but different with the solution after the rounding operation. The proposed algorithm 
proceeds as follows. Firstly, the probed solution ( )1ix + is obtained by exploring the i th direction of the 
probe moving just like in the classical RA. If ( )1ix + is in the tabu table, the best solution among the 
neighborhood of ( )1ix + is selected as the starting point for the next move, and using the special criteria 
to reward some excellent states. In the next section, four important aspects of the RA enhanced by 
tabu table, including neighborhood definition, tabu table, aspiration criterion, and stopping 
criterion, will be elaborated in detail. 
1. Neighborhood definition 

Neighborhood structure and size are vital parameters for the TS algorithm to improve 
performance. A larger neighborhood will reduce the time TS stays in a local optimal state and 
accelerate its movement towards the global optimum. However, if the neighborhood is too large, the 
time complexity will make the TS algorithm infeasible. In this paper, taking the current solution ( )ix
as the center, and the open interval with R as the radius is called the neighborhood of ( )ix , which is 
denoted as ( )( )i

R xυ . The neighborhood radius of 1 as an example is discussed in this paper. In TS, 

defined neighborhoods are not all searched, but can be a part of them. We can increase the scope of 
exploration by increasing the radius of the neighborhood, but the search complexity increases. To 
this end, some methods are adopted to select some neighborhood explorations, such as random 
selection, or steepest descending direction selection. For UPA with 1R = , the horizontal direction 
and vertical direction corresponding to ( )( )i

R xυ satisfies: (1) It has only one column that is different 

from the corresponding column in ( )ix ; (2) The direction difference between the two corresponding 
columns equals one. 

Let ( )ix denotes the current solution of the proposed TS-based beam search, and
( )( ) ( ) ( ) ( ){ }11 1 2 ,  , ,   i i i ix U U Uυυ =  presents the neighborhood of ( )ix , where 1υ is the cardinality of 1υ . 

Based on the neighborhood definition above, it is obvious that 1
1 2 2 2n nυ += ⋅ = . We then define that 

the u th neighbor in ( )( )1
ixυ is different from ( )ix in the 2nu   th column [24]. According to the index 



Future Internet 2019, 11, 214 9 of 16 

 

definition above, it is obvious that ( ) ( ) ( )  ,  ,  ,  i
t t r rx index v h index v h=    , which shows that in the 

current solution, the signal is transmitted along the  th th horizontal direction and the  tv th vertical 
direction, and is received along the  rh th horizontal direction and the  rv th vertical direction. Both  tv

and  rv are odd numbers. Take this case as an example, the neighborhood of ( )ix is: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1   2 1   

3  1  4  1  

5  1  6

,  ,  ,  ,  ,  ,  ,  

,  ,  ,  ,  ,  ,  ,  

,  ,  ,  ,  ,  

i i
t t r r t t r r

i i
t t r r t t r r

i i
t t r r t

U index v h index v h U index v h index v h

U index v h index v h U index v h index v h

U index v h index v h U index v h

− +

− +

−

= =      

= =      

= =   ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

 1  

7   1 8   1

,  ,  

,  ,  ,  ,  ,  ,  ,  
t r r

i i
t t r r t t r r

index v h

U index v h index v h U index v h index v h
+

− +

  

= =      

 (14)

2. Tabu table 
The tabu table ( )T x is a container for storing tabu solutions, so it is not feasible to search for this 

solution placed in the tabu table until the solution is removed. During the tabu search process, the 
first step is to select the best solution among the neighborhood ( )( )i

R xυ as the starting point for the 

next iteration, then, in the second step, the algorithm determines whether the new solution is in
( )T x . The solutions in the tabu table are updated each time when the tabu search iterate once, the 

solutions in the tabu table are updated in a FIFO style, the nearest solution is placed at the blank top 
of the ( )T x , and the earliest solution is released from the ( )T x . 

Let us denote avgl and ( )T x as the average number of iterations before the same solution vector 

reappears, and the length of the tabu table. The size of avgl and ( )T x will affect the performance of 

the algorithm. If the size is too large, the complexity will be increased. If it is too small, the success 
rate will be reduced. avgl and ( )T x will be set to constants through simulation experiments. Let us 

define the tabu period S , a non-negative integer parameter, as follows: (1) The new solution vector 
has not been previously searched. In this case, the value of variable S is not updated. (2) The new 
solution vector has been searched previously. We update the value of variable by comparing with
S . Also, the value of S is updated as follows: 

1,
1,

avg

avg

S S l
S

S S l
+ ≤=  − >

 (15)

When the tabu period S of the tabu object is non-zero, the corresponding tabu object is 
prohibited [14]. 
3. Aspiration criterion 

The aspiration criterion needs to define to be defined based on an aspiration function ( )A x . In 
this paper, the object value of the best solution has been obtained before the current iteration is 
selected as the aspiration function. When aspiration criterion is meet: ( )( ) ( )  isnr x A x> , even if ( )ix is 

in the ( )T x , we still select it as the starting point for the next iteration. 
4. Stopping criterion 

We define iter as a parameter to indicate how long (in terms of the number of iterations) the 
global optimal solution has not been updated. Based on the parameter iter , the algorithm iteration 
will be stopped when the number of iterations reaches the pre-defined maximum number of 
iterations max_ iter , i.e.,   max_iter iter≥ [25]. 

5.3. Boundary Problems 

5.3.1. Neighborhood Boundary Description 
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With the neighborhood definition in (14), the neighborhood may lay beyond the index interval 
near the boundary, i.e., 1   1tv − < or 1  > t tv V+ and 1   1th − < or 1   t th H+ > . To remedy the boundary 
problem of the neighborhood, we suppose the vertical direction in the neighborhood as v∗ and the 
horizontal direction in the neighborhood as h∗ , when   1v∗ < or   v V∗ > , we have 

( )mod ,  v v V∗ ∗=  (16)

When   1h∗ < or   h H∗ > , we have 

( )mod ,  h h H∗ ∗=  (17)

5.3.2. Index Boundary Description 

Since the beam search is performed in the 2-D discrete integer plane, we should ensure that the 
beam index is always within the index range during the probe moving. As shown in Figure 2, the 
beam index exhibits intrinsic structure at the border of the search region. Considering that the RA is 
essentially a local search, in order to solve the boundary problem of the search area, we surround the 
beam indexes when the index range is exceeded. Taking the beam index I as an example, the beam 
index beyond the range (i.e.,   1I < or   I N> ) is given by 

( ) ( )mod ,  ,  mod ,  0
,

I N if I N
I

N otherwise
 ≠= 


 (18)
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Figure 2. Beam diagram. 

Based on the earlier discussions on the four important aspects of TS, we apply the TS algorithm 
to the probe moving of the RA in Algorithm 1. The flow of the probe moving of the proposed beam 
training algorithm is summarized in Algorithm 2. Notice that: (1) Algorithm 2 is corresponding to 
subprogram of Step1 in Algorithm 1; (2) the SA algorithm is combined with Rosenbrock, so 
temperature parameter gT is updated in the pattern moving in Algorithm 1; (3) the complete 
algorithm flow of the suggested beam search scheme which is based on the newly designed 
numerical search has been provided in Algorithm 1 and 2. 

Algorithm 2: The probe moving of the proposed algorithm 
(Subprogram of Step1 in Algorithm1). 
Input: Initial solution ( )1x ; aspiration function ( )A x ; initial move steps

1ξ , 2ξ ; initial search directions ( )1d , ( )2d ; tabu table ( )T x ; initial 
iteration counter iter and the maximum iterations max_ iter . 
Output: The probed solution ( )1nx + . 
1: for 1 2i = − do 
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2: if the beam index beyond the range then 
3: Calculate the beam index according to (18). 
4: end if 

5: if ( ) ( )( )( ) ( )( )  i i i
isnr x round d snr xξ+ > then 

6: ( ) ( ) ( )( )1i i i
ix x round dξ+ = +  

7: if ( ) ( )1   ix A x+ > then 

8: ( ) ( )1  iA x x +=  
9: end if 
10: Update ( )T x . 
11: else 
12: while   max_iter iter< do 
13: Update ( )1ix + and lT according to SA. 
14: Update ( )T x and ( )A x according to TS. 
15: end while 
16: end if 
17: end for 
18: Output ( )1nx + . 

5.3.3. Computational Complexity and Limitation 

The computational complexity and limitation of the proposed algorithm is investigated in this 
section. Compared with the classical RA, extra tabu search is required only when rounding to the 
integer brings the result to a solution searched previously. Moreover, some storage resources are 
also required to memory the tabu table. In the lower bound case, the increased search times are
max_ 1iter × , and in the upper bound case, the increased search times are max_ iter R× . The main 
factor which has much effect on the complexity is the calculation of the object, i.e., the ( ),  snr p q . The 
calculation includes M times multiplication of the signal by the transmission weight vector w at the 
transmitter, and N times multiplication of the signal by the receive weight vector c at the receiver. In 
total, the computation complexity is max_ )iter M N× +（ in terms of complex multiplication in the 
lower bound case, and max_ )iter M N R× + ×（ in the upper bound case. Clearly, the computation 
complexity scale linearly with the number of antenna elements at both the transmitter and receiver. 
However, the cost incurred by the increased computation complexity can make up for the cost saved 
by the decreased computation complexity due to the forbidden repeated search. 

Although the proposed methods are promising for BF in mm Wave, considering that it is 
essentially a kind of direct search optimization algorithm, the proposed algorithm is more beneficial 
when the objective function exhibits some kind of smoothness. In other words, the optimum 
parameters of the method may be influenced by the mm Wave environment, and should be carefully 
designed, we leave this as our future research work. 

6. Experimental and Result Evaluations 

In this section, we will evaluate the performance of our proposed algorithm by simulations. The 
mm Wave channel model by [26] is used. For analysis convenience, the 1-D uniformly spaced 
antenna array is used during the simulation experiments. The antenna array element number M is 
assumed to be 64 (i.e., t rM M M= = ). 

6.1. Beam Training Performance Evaluation 

Figure 3 shows the received SNR of three algorithms based on 100 independent experiments. 
The three algorithms are classical RA, RA based on SA ( RA SA+ ), and enhanced RA based on TS (
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RA SA TS+ + ), respectively. The performance of the proposed algorithm is evaluated by the 
achievable values of receiving SNR. The upper bound values are the optimum SNR by exhausted 
search. According to statistical calculations of the simulation results, the search success probability 
of the classical RA is 36%; the RA based on SA is 60%, and the enhanced RA based on TS is 92%. As 
shown in Figure 3, the searched values are the most consistent with the target when using the 
enhanced RA during beam training. Although the tabu table introduces some complexities due to 
the storage of solutions, the increase in the complexity of the enhanced algorithm is not great 
compared with the existing algorithms, which is of great significance for practical applications. 
Therefore, the enhanced algorithm proposed in this paper is more conducive to the actual 
optimization problem. 

  

(a) (b) 

 

(c) 

Figure 3. Performance of the Rosenbrock search in mm Wave beam training. (a) Classical 
Rosenbrock algorithm; (b) RA SA+ ; (c) +RA SA TS+ algorithm. 

6.2. Boundary Processing 

In order to ensure that the beam search is fast and efficient, the boundary problem described in 
detail in Section 5 is solved by the wrapping around method, including the neighborhood boundary 
and the probe boundary. The wrap around at the neighborhood boundary is applied to ensure the 
continuity of the beam index, and the wrap around at the beam index is applied to ensure the 
continuity of the search direction. In Figure 4, we plot the results of 100 independent 
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implementations in both classical technique (i.e., without wrapping around) and wrapping around. 
From the performance analysis method above, it can be seen that applying the wrap around method 
can greatly improve the performance of the algorithm, so it is necessary to apply the wrap around 
method to solve the problem of the boundary. 

  

(a) (b) 

Figure 4. Performance of the boundary definition method. (a) Classical technique; (b) Wrapping 
around of the boundary. 

6.3. Neighborhood Structure 

In TS, neighborhood structure and size are key factors for a local search algorithm to get 
significant performance. The larger the neighborhood is, the higher the probability of successful 
search, the more energy will be consumed. We compare the search performance of different 
neighborhood sizes (i.e., radius of the neighborhood R ) with the method of neighborhood structure 
as defined in Section 5. As shown in Figure 5, based on the 100 independent realizations, we have 
plotted the cumulative distribution function (CDF) diagram of searched values at different 
neighborhood radius R in order to make the performance comparison more clearly. We get the best 
search performance when 2R = . Moreover, the analysis shows that the complexity of 2R = is lower 
than 3R = . So, in this paper, the neighborhood radius is set to 2. 

 
Figure 5. The cumulative distribution function (CDF) diagram of search results at different 
neighborhood radius. 

6.4. Complexity Analysis 
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In Figure 6, we present the experimental results of the complexity of 100 independent 
implementations of classical RA and enhanced RA. The complexity is in terms of search steps. The 
experimental results show that the proposed scheme brings certain complexity increase compared 
with the traditional scheme, because the proposed scheme evaluates the objective function at the 
solution set in the neighborhood. However, it is emphasized that, such increase in complexity can 
make up for the increased complexity of the repeated search brought by the traditional scheme. The 
proposed algorithm greatly increases the probability of successful searches at the cost of moderate 
complexity increase. With the further increase in the number of elements, the proposed algorithm 
can still be implemented efficiently, which is of great significance for practical applications. 

 
Figure 6. Search performance of the Rosenbrock algorithm (RA) and the new numerical algorithm 
(RA+SA+TS). 

7. Conclusions 

In this paper, we formulate the beam training process as a finite-space search problem. To solve 
the repeated search problem in the previous research caused by round to the near integer, a search 
algorithm based on tabu table is proposed in order to overcome the shortcomings of existing search 
algorithms. In addition, we also discuss the boundary problem of the beam index and the 
neighborhood structure of the tabu algorithm. As the proposed algorithm is a combination of the 
RA and SA, and further enhanced by TS, so it can implicitly approach the function gradient, jump 
out of the local optimum, and avoid the performance of repeated searches. Simulations prove that it 
can improve the probability of successful search. In the future, we will address the impact of the 
initial value on the search performance, which is important to beam training. 
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