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Abstract: The rapid development of distributed technology has made it possible to store and query
massive trajectory data. As a result, a variety of schemes for big trajectory data management have
been proposed. However, the factor of data transmission is not considered in most of these, resulting
in a certain impact on query efficiency. In view of that, we present THBase, a coprocessor-based
scheme for big trajectory data management in HBase. THBase introduces a segment-based data model
and a moving-object-based partition model to solve massive trajectory data storage, and exploits a
hybrid local secondary index structure based on Observer coprocessor to accelerate spatiotemporal
queries. Furthermore, it adopts certain maintenance strategies to ensure the colocation of relevant
data. Based on these, THBase designs node-locality-based parallel query algorithms by Endpoint
coprocessor to reduce the overhead caused by data transmission, thus ensuring efficient query
performance. Experiments on datasets of ship trajectory show that our schemes can significantly
outperform other schemes.
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1. Introduction

In recent years, with the rapid development of mobile networks and sensor technologies, trajectory
data of MO (Moving Object) has exploded, using traditional database in storing and querying the
massive trajectory data cannot meet the requirements already [1]. With the rapid development of
distributed computing, the rise of technologies such as Hadoop [2], Spark [3], and NoSQL [4] has made
it possible to access mass data effectively. Compared with traditional schemes, the distributed solutions
can easily use cluster resources to satisfy the needs of mass data management for computing and
storage, and they have excellent features such as ease of maintenance, manageability, and scalability.
Therefore, it gradually becomes a new tendency that massive trajectory data are managed based on a
distributed solution.

Trajectory data is a type of spatiotemporal data, so the existing schemes for spatial data or
spatiotemporal data management can be applied to it. Recently, some prototype systems have been
proposed for processing such data, e.g., MD-HBase [5], SpatialSpark [6], STEHIX [7], and Simba [8].
However, the time attribute is not considered in the schemes for spatial data management, so a
time-related query may result in unpredictable time requirements [7]. Compared with spatial data
schemes, the schemes for spatiotemporal data management provide support for efficient time-related
query as they encode the time attributes in their indexes. However, they ignore those important
non-spatiotemporal attributes such as MOID (Moving Object Identifier), and it is difficult to perform
efficient non-spatiotemporal-based queries [9]. In addition, there are some differences in query
processing between the trajectory data and the usual spatiotemporal data. For example, when
processing a trajectory-based spatiotemporal range query, in addition to satisfying the query conditions,
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the query results should be output in the form of trajectories rather than points. For another,
when processing a trajectory-based k-NN query, the query results must belong to different MOs. It can
be seen that the trajectory-based queries usually involve MO-based grouping operations, but which
are not supported in the spatiotemporal data management schemes.

On the basis of spatial or spatiotemporal data research, some schemes especially for trajectory data
have also been proposed, such as SPDM [10], Elite [11], TrajSpark [12], UlTraMan [13], HBSTR-tree [14]
et al. These schemes consider both spatiotemporal attributes and important non-spatiotemporal
attributes, enabling support for trajectory-based spatiotemporal queries and non-spatiotemporal
queries. However, most of these schemes do not consider the impact of data transmission on queries,
it is mainly reflected in the following two aspects:

• Some schemes [10,14] treat index and data as independent units and thus, in a distributed setting,
they can reside on different nodes. When processing queries, the isolation of index and data
results in the additional cross-node data transmission for index access.

• Some schemes [10–13] split the trajectory data of the same MO into multiple subtrajectories and
store them in different partitions on different nodes. During query execution, it is often necessary
to obtain subtrajectories from different nodes, and merge or sort them into a whole trajectory for
further process.

With the query data scale increment, the big data transmission will generate notable network
communication, and also includes an abundance of serialization and deserialization operations,
resulting in a large occupation of computing, storage, and network resources, and has an enormous
impact on query efficiency [15].

It can be seen that the data transmission problem is a huge challenge to implement the trajectory
data management system under the distributed environment. To solve the data transmission problem,
we designed and implemented a trajectory data management scheme called THBase (Trajectory on
HBase [16]) through HBase coprocessor. HBase is an open-source, distributed, non-relational database
modeled after Google’s Bigtable, which enables real-time random access support for big data in the
Hadoop environment. HBase uses Region as the basic element of availability and distribution, and can
achieve parallel access to Regions through Observer and Endpoint coprocessors. Compared to other
distributed frameworks, HBase coprocessor can easily achieve the colocation between programs and
data, thus effectively reducing data transmission cost. So we implement our massive trajectory data
management schemes based on Hbase coprocessor.

Based on the consideration of reducing data transmission, and taking into account pruning, sort,
and footprint factors, THBase proposes a segment-based data model and an MO-based partition model
to store trajectories. To accelerate spatiotemporal query processing, it imports a local indexing structure
for each Region through Observer coprocessor. Furthermore, we design certain maintenance strategies
to ensure the colocation between Region and its corresponding index. On this basis, THBase designs
node-locality-based parallel query algorithms by Endpoint coprocessor to reduce the data transmission
overhead when querying. Our main contributions can be summarized as follows:

• We propose a segment-based data model and an MO-based partition model, which provides
effective support for massive trajectory data storage in HBase.

• We introduce an Observer coprocessor-based local indexing framework, which provides efficient
support for the spatiotemporal queries and achieves the colocation for index and the indexed data.

• We propose Endpoint coprocessor-based parallel algorithms for processing spatiotemporal queries
to improve query efficiency.

• We evaluate our scheme with the dataset of ship trajectory, the experimental results verify the
efficiency of THBase.

Section 2 introduces the preliminaries about the trajectory data, the basics in HBase, and the
related work. The overview of THBase is introduced in Section 3. The three main modules, T-table,
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L-index, and Query Processing Module, are described in Section 4, Section 5, and Section 6, respectively.
Section 7 provides an experimental study of our system. Finally, we give a brief conclusion in Section 8.

2. Preliminary

2.1. Related Definition

There are usually two forms of trajectory data: discrete and continuous. In this paper, we use
discrete form to represent trajectory data. The data types of trajectory are defined as follows:

Definition 1. A trajectory point p is a location-based data element, denoted as <moid, l, t, o>, where moid is
the MOID of an MO, l and t are the spatial and timestamp information, and o is the other information which
includes speed, heading, etc.

Definition 2. A trajectory T contains a sequence of ship trajectory points (p1, . . . , pm), orderly by their
timestamps, and all points of T belong to the same MO.

Definition 3. A trajectory segment (TS) contains the trajectory points of an MO sampled in a TI (Time
Interval). Where TI is generated by unified division in time dimension, namely all the TIs are of the same length,
so the start time of a TI can be its identifier. From the definition, it is easy to know that a trajectory segment can
be uniquely identified by MOID and TI attributes.

In Euclidean Space with n dimension, given a coordinate point q = (q1, 2026, qn) and a rectangle E
= (s,r), where s = (s1, . . . , sn) and r = (r1, . . . , rn) are the two vertices on the main diagonal of E, and for
all k = 1 to n, rk ≥ sk. For the distance between E and q, there are the following definitions:

Definition 4. Mindist(E,q) is the shortest distance from E to q [17]; it is computed as below:

Mindist(E, q) = (
n

∑
i=1
|Ei − qi|2)1/2. (1)

where:

Ei =


si if qi < si

ri if qi > ri

qi otherwise

. (2)

Definition 5. MinMaxdist(E, q) is the minimum overall dimensions distance from q to the furthest point of the
closest face of E [17]; it can be expressed as:

MinMaxdist(E, q) = (min( |Emk − qk|2 + ∑
i 6= k

1 ≤ i ≤ n

|Emi − qi|2))1/2. (3)

where:
1 ≤ k ≤ n

Emk =

{
sk if qk ≤ (sk + tk)/2

tk otherwise

Emi =

{
si if qi ≥ (si + ti)/2

ti otherwise

(4)
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2.2. HBase

HBase is an open-source distributed key-value database. The technology is derived from Google’s
Bigtable concept. It dispersedly stores the data of a table over a cluster of nodes, in order to provide
scalable storage to massive data.

Different from traditional relational data model, data in HBase is stored in tables, and each data
cell is indexed by rowkey, column family, column qualifier, and time stamp. Among them, rowkey is
the unique index for directly accessing data, it is closely related to data storage and query efficiency,
and plays a very important role in data processing.

On the physical structure, HBase uses Region as the minimum unit for distributed storage.
An HBase table is usually divided horizontally into multiple Regions scattered in each work node
(named as RegionServer), each Region stores a certain range of data rows. A Region is decided to be
split when store file size goes above threshold or according to defined region split policy, in order to
make the data distribution of Regions more uniform. Split operation takes a row as the split point,
and the rowkey range of the split Region changes after split [18].

In order to leverage the parallelism of HBase clusters, a coprocessor mechanism is introduced
in HBase 0.92, which is similar to a lightweight MapReduce framework, enabling the execution of
custom code in RegionServers. The coprocessor can be divided into two kinds, one is Observer, and the
other is Endpoint. The Observer can be thought of like database triggers, and provides event hooks
of table operation to capture and process certain events, while Endpoint is similar to the storage
process of traditional database. One can invoke an Endpoint at any time from the client, the Endpoint
implementation will then be executed remotely in RegionServers, and results from those executions
will be returned to the client [19].

2.3. Related Work

Distributed Spatial Data Management Schemes: In recent years, many hadoop-based massive
spatial data management schemes have been proposed. MD-HBase [5] is built on top of HBase, and uses
Z-ordering curves algorithms to map spatial objects into single-dimension space separately. EDMI [20]
implements spatial data indexing through a distributed multilevel index structure, and effectively
avoids overlap of Minimum Bounding Rectangles (MBRs) and achieves better query efficiency.
SpatialSpark [6] is implemented on the basis of Spark framework; compared to other schemes,
it specially adds support for spatial joint queries. However, the abovementioned schemes do not
consider time attribute, so they are inefficient to apply directly to spatiotemporal data management.

Distributed Spatiotemporal Data Management Schemes: In order to solve the above problem,
recently, some schemes particularly implemented for big spatiotemporal data management have been
implemented. STEHIX [7] builds a spatiotemporal hybrid index structure based on HBase storage
layer, and provides efficient support for range query, k-NN query, and G-NN query on this basis.
In order to support frequent updates of spatiotemporal stream data and real-time multidimensional
queries, UQE-Index [21] indexes the current data and historical data at different levels of granularity,
respectively, and adopts certain strategies to reduce the maintenance cost of the index. Simba [8] uses
IndexTRDD to compress and store spatiotemporal data on the top of Spark, and combines global
index and local index to implement efficient parallel queries. Since these schemes do not consider the
important non-spatiotemporal attributes such as MOID, they are difficult to implement full support
for trajectory data queries.

Distributed Trajectory Data Management Schemes: On the basis of spatial or spatiotemporal data
research, some schemes especially for trajectory data have also been proposed. Ke et al. [14] propose a
hybrid indexing structure named HBSTR-tree, which combines hash table, B*-tree, and spatiotemporal
R-tree, and implemented a practical storage schema for massive trajectory data based on MongoDB.
Aydin et al. [10] proposed four different table schemas for massive trajectory data storage in No-SQL
database, and implemented two index structures on this basis to achieve full support for spatiotemporal
and non-spatiotemporal queries. Jie Bao et al. [22] designed a trajectory data management system on
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Microsoft Azure, this system optimizes the storage schema, index method and query strategy based
on different functionalities to guarantee the efficient trajectory updates and perform the services in
real time. Trajspark [12] proposes a new abstraction RDD structure to manage trajectories as a set
of trajectory segments, and imports the global and local indexing mechanism to provide support
for real-time query. Some above schemes [10,14] isolate index and data on different nodes. When
processing queries, this data distribution results in the additional cross-node data transmission for
index access. Moreover, most schemes [10,12,22] split the trajectory data of the same MO into multiple
subtrajectories and store them in different partitions on different nodes. During query execution, they
usually require more overhead of data transmission and sort to merge the subtrajectories.

3. Overview

Figure 1 gives a full picture of THBase. It is composed of three modules:
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• T-table: T-table is an HBase table for persisting trajectory data. Considering the pruning and
footprints factors, it organizes the trajectory data based on segment model, and processes data
partitioning by MO-based model to ensure centralized distribution of all data of the same MO.
This module is detailed in Section 4.

• L-index: L-index is an in-memory local secondary index structure for each Region of T-table, and is
built by Observer coprocessor when trajectory data is inserted in Region. It uses a hybrid grid
structure to index the spatiotemporal attribute of all trajectory segments. During query processing,
each L-index generates the candidate rowkey collection for querying the corresponding Region
by pruning and sorting. (Detailed in Section 5).

• Query Processing Module: The Query Processing Module implements efficient support for
three typical queries by calling Endpoint coprocessor in the HBase cluster. We give a detailed
description in Section 6.

4. T-Table

T-table is used to persist trajectory data; we design the schema of T-table by considering factors
such as data transmission, pruning, footprints, and sort, like the following:

• Rowkey: Rowkey design is the key of table schema design. Rowkey not only affects the access
efficiency of HBase table, but also influences the secondary index (The secondary index of HBase
usually maps specific columns or expressions to rowkeys [23]). For trajectory data, the point-based
rowkey model can maximize the predictive accuracy of pruning, but greatly increases the space



Future Internet 2019, 11, 10 6 of 17

overhead of secondary index; conversely, the MO-based rowkey model reduces the space overhead
of secondary index, but it weakens the pruning power. Based on the consideration of space and
pruning, we designed a rowkey structure based on trajectory segment. According to Definition 3,
a T-table rowkey is shown as follows:

rowkey = in(moid) + ti, (5)

where moid is the MOID of an MO, and ti is the identifier of a TI. The in(moid) function is used
to inverse MOID. Because the initial digits of MOID usually have a certain distribution pattern,
it is relatively easier to make data unevenly distributed. The final digits of MOID show a certain
randomness, so in(moid) ensure that the MOID values are randomly distributed in each Region.
Corresponding to the rowkey model, the processing of data insert and index update are performed
based on trajectory segment.

• Column family and column: While HBase does not do well with multiple column families,
one column family named Traj is assigned to store all trajectory data. The column qualifier is
represented by the timestamp information of trajectory point, in order to ensure that trajectory
points are stored in chronological order. Location and other information are stored as data cell.

• Partitioning: In terms of data partitioning, a MO-based data partitioning model is adopted.
During initialization of T-table, we evenly divide the range of the inversing MOID to determine
the rowkey range of each Region, to ensure that all data of the same MO is stored in one Region.
When the store file size of a Region goes above threshold, this Region needs to split to adjust
the load. In order to avoid distributing the data of the same MO to different Regions after split,
we should implement a MO-based split strategy. With the aid of KeyPrefixRegionSplitPolicy [16]
interface of Region split, we can simply implement the MO-based split strategy by specifying the
inversing MOID structure as the prefix of rowkey. Following this strategy, HBase will ensure that
rows with the same prefix locate in the same Region after split, namely all data of the same MO is
still stored in a Region.

Figure 2 displays the storage process of trajectory data in T-table, where trajectories T1 and T2 are
preprocessed as trajectory segments, and then inserted into rows with rowkeys rk11, rk12, rk21, rk22,
respectively. Based on the dictionary order of HBase, the trajectory points of T1 or T2 are stored in
chronological order. Therefore, if the query rowkeys are orderly, there is no need to sort the query
results. In addition, the data of T1 or T2 always locate in the same Region, so when reconstructing the
trajectory points into a trajectory, there is no need to request data from other Regions, thus avoiding
data transmission and ensuring query efficiency. In order to avoid ambiguity, in the following we use
tRegion to refer to the Region of T-table.
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5. L-Index

In HBase, the rowkey provides the only access function as a primary index, and a query for the
attributes which are not rowkey structures means a full table scan. Because the rowkey structure of
T-table does not include spatiotemporal attribute, it is difficult to satisfy the complex spatiotemporal
query requirements by using only rowkey. Therefore, an index structure capable of supporting
spatiotemporal queries is necessary. In addition, for the purpose of reducing communication overhead,
we hope that the tRegion and the corresponding index data are distributed as much as possible on
the same node. Therefore, if a tRegion is split or migrated, the corresponding index data also needs
to be split or migrated. In this regard, with the aid of Observer coprocessor, we built a local index
structure named L-index for indexing the spatiotemporal attribute of trajectory segments to effectively
support complex spatiotemporal query, and implement certain maintenance strategies to ensure that
the L-index is colocated with the corresponding tRegion.

This section first introduces the basic structure of L-index, and then discusses the query, update,
and maintenance of it.

5.1. Structure

L-index is a spatiotemporal local (Region level) index structure, which resides in memory so that
it can respond quickly to queries. As shown in Figure 3, L-index has a two-level structure: The level-1
is a time periods index called T-index, and the level-2 is named as G-index which indexes spatial
attribute by multilevel grid.
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• T-index: For constructing T-index, we divide the time dimension into multiple Time Periods (TPs)
in accordance with time series, where each TP element corresponds to a G-index to index all
trajectory segments over it. Each TP element is obtained by combining several consecutive TI
elements to avoid a single trajectory segment being indexed by multiple T-indexes.

• G-index: For building G-index, we first divide the space evenly with a certain size grid, and each
grid cell should be subdivided by using a quad-tree structure if it overlaps with too many trajectory
segments. Such consideration is more helpful for dealing with the skewed data. Therefore,
a G-index can be divided into multigrade level, and a trajectory segment may intersect with
multiple grid cells of different levels at the same time. In order to reduce the redundancy and
ensure the efficiency of index, a trajectory segment is indexed by the deepest level cell that can
completely enclose its MBR (Minimum Bounding Rectangle). If a trajectory segment MBR cannot
be completely enclosed in any of a grid cell, it is indexed in all of the first-level grid cells that
intersect its MBR. Each G-index grid cell corresponds to a list of index entries, and all of the index
entries (denote the index entry of trajectory segment as SE, and the list as SE-List) in SE-List
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are organized in rowkey value order, which is convenient for querying the G-index grid cell to
directly obtain the orderly rowkey results. We use a tuple <rk, m> to present the data model of SE,
where rk is the rowkey of the trajectory segment, m is the MBR attribute.

Compared to traditional quad-tree, G-index avoids data redundancy inside each first-level cell,
so it requires less storage overhead than the former. In addition, G-index implements the orderly
organization of index entries, so it can effectively reduce the sorting overhead of subsequent processing.

In contrast with CIF quad-tree (Caltech Intermediate Form quad-tree) [24], G-index requires more
storage due to the non-redundancy characteristic of CIF quad-tree. However, in contrast, in addition
to the sorting optimization mentioned above, G-index also has the following advantages: G-index
can quickly use grid structure to locate the more precise spatial range, and CIF quad-tree needs to
recursively query the node and the corresponding index entries from the root node. If the upper nodes
contain too many index entries, the query efficiency of CIF quad-tree will be significantly affected.
Furthermore, in k-NN query processing (detailed in Section 6.3), the incremental iterative strategy
can be applied to G-index to avoid access to duplicate cells, while this strategy is difficult to apply to
CIF quad-tree.

5.2. Query

Given a time range tr and a spatial range sr, we perform the spatiotemporal query in L-index like
the following.

We first use tr to query T-index to obtain the overleaping TP elements. For each of these TP
elements, we query the corresponding G-index by using sr, if a G-index grid cell overleaps with sr,
we treat it as the candidate cell and determine whether its subgrids overleap with sr, finally we can
obtain the candidate cells. Next, in the SE-List corresponding to each candidate cell, each SE is pruned
based on MBR and rowkey attributes (through the TI attribute contained in rowkey) to obtain more
accurate rowkey query results.

In particular, since the rowkey query results of each G-index grid cell are orderly, a quick sorting
and even grouping for all the rowkey results can be achieved by a mergesort operation, the time
complexity of this sort operation is O(n), where n is the total number of rowkeys in the results.
Through the above sorting operation, we can use the sorted rowkeys to access the corresponding
tRegion, thereby avoiding sorting the trajectory point results.

5.3. Update

The update of L-index is performed by Observer coprocessor. After the client inserts trajectory
data through Put API, Observer triggers the update of L-index by capturing the postPut event [16].
Given a trajectory segment TSi, its MBR is mi, and the rowkey is rki = in(moidi) + tii. The update process
of L-index is as follows.

We first use tii to query T-index to obtain the matching TP element, and then query the first-level
grid cells in the corresponding G-index through mi, there are two cases: (1) If mi can be enclosed in a
single first-level grid cell, the subgrid cells of this cell are queried level by level to select the deepest
level grid cell that can enclose mi to index TSi. (2) If mi intersects with multiple first-level grid cells,
all the matching first-level grid cells are used to index TSi.

After TSi is indexed, we count the number of SE in SE-List of each matching G-index grid cell.
If the threshold is exceeded, the grid cell is split based on quad-tree, and the SE-List is divided into
corresponding subsets according to the spatial location. If a SE cannot be enclosed in any of the subgrid
cells, it is still indexed by the current grid cell.

5.4. Maintenance

The maintenance of L-index includes two aspects: one is to synchronously split the corresponding
L-index when a tRegion is split, to ensure one-to-one correspondence between tRegion and L-index.
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The second is to synchronously migrate the corresponding L-index when a tRegion is assigned to
another RegionServer, to ensure that both always coreside on same node. The maintenance of L-index
is also performed by Observer coprocessor.

• TRegion split: After a tRegion is split, Observer captures the postCompleteSplit event to trigger
the split of the corresponding L-index [16]. During split processing, the existing grid structure of
G-index remains unchanged, each SE-List is directly divided into two sublists by the rowkey of
split point, and then each sublist is linked to the corresponding G-index grid cell of new tRegion.
The above split operation of L-index avoids the heavy overhead caused by quad-tree splitting,
thereby ensuring splitting efficiency. Its time complexity is O(n), where n is the total number of
SE in the L-index.

• TRegion assignment: The tRegion assignment usually occurs during load balancing, Observer
triggers the migration of L-index by capturing postBalance event [16]. First, the information of
assigned Regions, source RegionServers and destination RegionServers are obtained by reading
Region Plan parameter [16], and then according to these information, each corresponding L-index
is migrated to the same destination RegionServer.

6. Query Processing Module

On the basis of T-table and L-index, the Query Processing Module supports multiple types of
query, such as single-object query, spatiotemporal range query, k-NN query, and so on. This section
describes above 3 types of query algorithms in detail.

6.1. Single-Object Query

A single-object query retrieves the trajectory Tso by the following parameters: moidso and trso,
where moidso is the MOID of a MO and trso denotes the time range. Since the single-object query does
not contain spatial condition, it can be completed by directly scanning the corresponding rowkey range.
Algorithm 1 introduces the detailed steps. Firstly, we use moidso and trso to construct rowkey query
range rkrso (line 1). Next, we scan T-table through rkrso to get intermediate results irsso (line 2). Finally,
irsso are filtered by trso to get result Tso (it only needs to filter the start and end trajectory segments)
and then return it (line 3 to 4).

Algorithm 1. Single-Object Query

Input: Query MOID moidso, Query time range trso;
Output: Trajectory Tso;

1 rkrso←getRowkeyRange(moidso, trso);
2 irsso←T-table.scan(rkrso);
3 Tso←irsso.filter(trso);
4 return Tso;

6.2. Spatiotemporal Range Query

A spatiotemporal range query retrieves a set of trajectories according to a time range trst and a
spatial range srst.

Because spatiotemporal range query involves multiple trajectories, to improve query efficiency,
we implement the corresponding parallel query algorithm based on Endpoint Coprocessor. Compared
with MapReduce framework, Endpoint is more customizable, with higher query precision, and the
format conversion overhead between Region and MapReduce Partitioner is avoided. According to the
introduction of T-table and L-index, tRegion and its L-index coreside on the same RegionServer, and the
data of the same MO is distributed in the same tRegion. Therefore, when processing a query, each
Endpoint-based task can obtain all the index and trajectory data to be processed from the RegionServer
where it runs on, and has a high locality level. When performing parallelism, except for the node
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where the client is located, there is no need to communicate across nodes, thus effectively controlling
communication overhead and improving execution efficiency.

The implementation of Endpoint includes the steps of extending the CoprocessorProtol
interface, implementing the interface function of Endpoint, extending the abstract class
BaseEndpoint-Coprocessor and specifying the calling mode of the client [25]. Here, the interface
function of Endpoint is mainly introduced.

The processing flow is shown in Algorithm 2, where lines 2 to 5 describe interface functions of
Endpoint in each tRegion. In the query process of each Endpoint, we first query L-index to get an
ordered set of rowkeys orsst by trst and srst (see Section 5.2 for the query process in L-index) (line 2).
Then, we use orsst to access the corresponding tRegion, and filter the query results by trst and srst to
generate trajectory points psst (line 3). After that, psst are merged into complete trajectories Tsst as the
results of tRegion (line 4). Finally, we summarize the results of all tRegions and then return them to
users (line 6).

Algorithm 2. Spatiotemporal Range Query

Input: Query time range trst, Query spatial range srst;
Output: A set of Trajectories;

1 for each tRegion do in parallel
2 orsst←L-index.getRowkeys(trst, srst);
3 psst←tRegion.get(orsst).filter(trst, srst);
4 Tsst←psst. mergeByMOID();
5 end parallel
6 return client.collect(Tsst);

6.3. k-NN Query

The k-NN query is defined as follows: Given a time range trk and a spatial location qk, according
to the selected distance function, the k trajectories are queried which are nearest to qk within trk.
Here, the distance between a trajectory and qk is computed as the distance from qk to the nearest
trajectory point.

Existing k-NN spatial or spatiotemporal query algorithms do not support k-NN trajectory query
very well. Because they do not consider MOID attribute, some candidate elements may belong to the
same MO, and it is time-consuming to merge and count the trajectories across nodes [26].

In THBase, we implement an Endpoint-based parallel k-NN query algorithm, which takes full
advantage of the parallelism of HBase cluster and reduces the overhead caused by data transfer.

Like spatiotemporal range query, we can also divide the k-NN query task into several
independent subtasks, and each subtask can be independently performed through the Endpoint
on the corresponding tRegion without cross-node communication. After the executions of all subtasks,
we complete the global count task by the client. Here, we introduce the steps of a subtask in k-NN
query as follows:

1. Range-based pruning: We first query L-index by trk and an estimated spatial range srk (see
Section 5.2 for query process in L-index). For the obtained candidate SE elements, we group them
according to the MOID attribute, and obtain a set sess = {ses1, ses2, . . . , sesn}, where each sesi =
{sei1, . . . , seim} (1 ≤I ≤n) is a set of candidate SE elements of the same MO.

2. Pruning for the data of the same MO: Since only one point is generated as a result in the trajectory
data of the same MO, we can prune those irrelevant sesij (1 ≤j ≤m) elements in sesi according to
1-NN query to further reduce the query range. On the abovementioned principle, we calculate
the Mindist and MinMaxdist from the MBR of each seij to qk, and then select the minimum
MinMaxdist (named as mMMd) and the minimum Mindist (named as mMd). Based on Lemma 1,
if the Mindist of a seij is above mMMd, it should be removed from sesi.
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3. Pruning for the data of different MOs: We first count the number of elements nk contained in
sess, namely, the number of candidate trajectories. If nk is above k, according to Lemma 1, we can
remove such sesi element whose mMd is greater than the k-th minimum mMMd. Finally, we extract
rowkeys from sess to get the ordered rowkey set orsk for querying the corresponding tRegion.

4. Distance calculation: At first, the tRegion is queried by the interested orsk to obtain trajectory
points psk. After that, this Endpoint calculates the distance from each trajectory point in psk to
qk. For the trajectory points that belong to the same MO, the point with the smallest distance is
selected. Finally the number of the selected trajectory points is counted; if it is above k, only the
first k minimum distances and their corresponding points are returned to the client. Here, we use
lpsk to represent the return results.

Lemma 1. In k-NN query, if the Mindist of a MBR is above the k-th minimum MinMaxdist value, this MBR
must not contain the final result, and it should be pruned [17].

In order to enhance the readability, we use function pruning (qk, trk, k, srk) and distfrom (qk, k, orsk),
to represent the above pruning (steps 1 to 3) and distance calculation process (step 4), respectively.

Algorithm 3 introduces the detailed steps. First of all, we estimate a spatial range srk in line
1, and perform the subtasks in parallel through Endpoint from lines 3 to 6. Next, client collect the
return results lpsk of each tRegion; if the total number is smaller than k, we expand the range of srk
and run subtasks repeatedly until the number is not less than k (lines 2 to 8). Finally, we choose the
k-most-nearest distance and its corresponding trajectory points as the final results (lines 9 to 10).

Algorithm 3. k-NN Query

Input: Trajectory number k, Query time range trk, Query spatial location qk;
Output: the k-nearest neighbor trajectory points kpsk to qk;

1 srk←estimateSpatialRange();
2 repeat
3 for each tRegion do in parallel
4 orsk←pruning (qk, trk, k, srk);
5 lpsk←distfrom(qk, k, orsk);
6 end parallel
7 srk←srk.expand();
8 until client.sum(lpsk.size)≥k
9 kpsk←client.collect(lpsk).top(k);
10 return kpsk;

Incremental iterative: Different from spatiotemporal range query, it is difficult for k-NN query to
ensure that a sufficient number of candidate trajectories are obtained with only one parallel processing,
so numerous iterative processing for query is required. In the iterative process, the generated candidate
trajectories and the enclosed areas do not need to participate in the next iteration, so it can be
considered to reduce the computational scale by incremental iterative computation. In order to
implement the incremental iterative model through Endpoint, and further reduce the communication
and computing cost, we cache the Endpoint calculations by deploying an in-memory database locally
(such as Redis [27]), which is helpful for obtaining parameters directly from the local to process the
following iteration. Here, we cache the parameters cidsk and gcellsk for avoiding repeated processing in
next iteration, where cidsk are the MOIDs of the selected trajectories, and gcellsk are the G-index grid
cells which are enclosed by the previous srk.
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7. Experiment

All experiments were conducted in a cluster consisting of 5 nodes, with one master node and 4
data nodes. Each node runs Ubuntu 16.04 LTS on 6 cores Intel Xeon E5-2620 V2 CPU, 16GB memory
and 2TB disk, nodes are connected through a Gigabit Ethernet switch. THBase is implemented based
on Hadoop 2.7.3, HBase 1.3.0, and Redis 3.0.

The experiment uses the global AIS data (Automatic Identification System) [28] in July 2012 as the
dataset. It contains about 1.66 billion messages sent by more than 200,000 ships and is about 200 GB
in size. The AIS messages in the dataset have been decoded and sorted in ascending order of time,
and each AIS message can be regarded as a trajectory point.

In THBase, we set the lengths of TI and TP to 2 h and 24 h, respectively, and initialize the first-level
grid size of G-index to 1◦. According to the reporting interval of AIS, a single trajectory segment can
contain up to 3600 trajectory points. We split the dataset into multiple chronological sets, each of which
is about 40 GB, and then we insert them into HBase in turn. We test the insert efficiency and query
performance when each set is appended. Since the data in the dataset is sorted in ascending order
of time, the incremental data will only increase the time range and will have little influence on the
density of the inserted data.

We compare to the performance of THBase with CTDM (Column-Fragmented Traditional Data
Model) and SPDM (Segmented-Trajectory Partitioned Data Model) proposed in the literature [10].
CTDM stores the trajectory data of the same MO in one row of an HBase table, and organizes the
in-row data in chronological order. It uses a variant of SETI, a global index structure named G-IT
(Grid-mapped Interval Trees Index), to index the spatiotemporal attributes of all trajectories. SPDM
divides each trajectory into trajectory segments based on a spatiotemporal partitioning mechanism,
and encodes the spatiotemporal attributes of trajectories in the rowkeys to provide spatiotemporal
query support. In addition, it built a reverse-sort index structure to support the MOID-based query.

Compared to THBase, the coprocessor mechanism is not appropriate for CTDM and SPDM.
The reasons are as follows:

• The isolation of index and data. Both CTDM and SPDM treat index and data table as independent
units, and deploy them on different nodes. Therefore, the coprocessor-based query algorithm is
not conducive to the reduction of network overhead.

• The segments of the same MO are distributed on different nodes in SPDM. It is difficult to
implement an efficient coprocessor-based shuffling algorithm to merger subtrajectories into
whole trajectories.

7.1. Performance of Data Insertion

First, we study the performance of data insertion. Figure 4a presents the insertion performance of
different schemes when the dataset size changes from 40 GB to 200 GB. A natural observation is that
the insert latency of the three schemes increases linearly with the increase of the dataset size. For each
scheme, the performance of THBase is between CTDM and SPDM, and CTDM takes the least time.
The main reason is that compared to CTDM, THBase needs to update L-indexes by coprocessor while
inserting the trajectory data, and the frequency of index update (segment-based) is higher than CTDM
(MO-based). Otherwise, SPDM may require multiple serialization and deserialization processes to
complete the data insert of a data cell, resulting in being the most time-consuming.
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Figure 4b,c show the data and index footprint of different schemes. In the aspect of storing data,
CTDM has the lowest storage cost due to the MO-based data model, while THBase which has the
segment-based data model consumes the larger footprint. SPDM needs to insert data into one data cell
multiple times, resulting in multiple versions, so SPDM takes up the most cost. Also, in the aspect
of index, the G-IT index of CTDM takes up the least cost due to its MO-based data granularity and
relatively simple index entry structure. The footprint of index in THBase is larger than that in CTDM,
but it only requires about 2.0% of actual storage, so the index of THBase can be completely stored
in memory.

7.2. Performance of Single-Object Query

In terms of query performance, we first experiment with the single-object query. In the experiment,
we randomly select 100 MOIDs and 50% of the time range as the query conditions, and use the average
latency result as the evaluation criteria, as shown in Figure 5.

The experimental results show that the query latency of the three schemes gradually increases
with the growth of the dataset size. This is due to the increase of the query time range. As expected,
THBase works more efficiently than the two others. Benefitting from MOID and time attributes
contained in rowkey structure, THBase can more accurately locate the query data range. While the
rowkey structure of CTDM does not contain the time attribute, so it needs to filter all the data of the
queried MO to get the final result. Compared with THBase and CTDM, WPDM supports parallel
single-object query, but the data size of a single MO is not large so that the advantages of parallelism
are not reflected. On the other hand, WPDM requires a larger deserialization overhead to restore each
data cell to one or more trajectory points, so the efficiency of WPDM is lower than the former two.
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7.3. Performance of Spatiotemporal Range Query

Subsequently, we tested the spatiotemporal range query. Firstly, we randomly selected 100
spatiotemporal ranges as the query conditions when the amount of dataset are increased from 40 GB
to 200 GB. The spatial range is 1%, and the time range is 24 h, the results of average latency are shown
in Figure 6a. It can be seen that as the dataset size increases, the response time of CTDM increases
gradually, while THBase and SPDM do not change much. This is because CTDM can only perform
pruning and query based on MO, namely, it is impossible to use time conditions to exclude irrelevant
trajectory data before querying HBase, and the filter overhead after accessing HBase increases with
the increase of dataset. While THBase and SPDM can process pruning and query according to time
condition, so the query is less affected when dataset increases and the query time range is unchanged.
Among the three schemes, THBase has the highest query performance due to the following reasons:
(1) all the index entries and trajectory data of the same MO coreside on same node, so the data
transmission overhead in the HBase cluster can be avoided; (2) the distributed indexing scheme
can better utilize the parallelism of cluster compared to the centralized index; (3) the orderly data
organization for index entries and trajectory points effectively reduces the computing overhead for
sorting; (4) the segment-based storage model and index model have a higher pruning precision.
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Figure 6. Performance of spatiotemporal range query: (a) result of changing data size, (b) result of
changing spatiotemporal range.

In addition, we also conducted experiments on our scheme under various spatiotemporal ranges.
Experiments are performed under the condition of 200 GB, the spatial range varies from 0.01% to 10%,
and the time range varies from 10% to 100% (namely, from 3 days to 31 days). The result is shown in
Figure 6b; as the spatiotemporal range increases, the query latency also increases. However, due to the
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nonuniform spatiotemporal distribution of AIS data, the performance is not essentially linear to the
change of spatiotemporal range.

7.4. Performance of k-NN Query

In the k-NN query experiment, we first evaluate the impact of different dataset sizes on the query
performance. We randomly select 10 location points as query reference, and set the value of k and
the query time range to 10 and 24 h, respectively. Figure 7a shows that THBase outperforms CTDM
and SPDM; in addition to the reasons mentioned in Section 7.3, there are two reasons as follows:
(1) For trajectory data belonging to the same object, THBase can use a certain pruning strategy to
filter out more irrelevant data. (2) Incremental iteration strategy further reduces communication and
computing overhead.
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Next, we test the impact of different k values on queries. The dataset size is 200 GB, and the time
range is still 24 h. The experimental results are shown in Figure 7b. In a certain range of k values,
the query delay of the three schemes is not affected by the change of k value, This is because the
candidates obtained when k = 1 already contain a sufficient number of trajectories to cover a sufficiently
large k value. When the k value is large enough, the spatial range required to complete the query
further increases, resulting in a longer query latency.

8. Conclusions

With the rapid development of positioning technology, more and more trajectory data needs
to be processed. Extending the existing distributed framework to support spatiotemporal query
capabilities will benefit the development of moving objects databases. In the paper, we design a
trajectory data management scheme called THBase through HBase coprocessor. THBase proposes
a storage and partition model suitable for trajectory data management in HBase, and implements
L-index structure based on Observer coprocessor to accelerate spatiotemporal queries. Additionally,
it utilizes Observer coprocessor to ensure the reasonable distribution of trajectory data and index data.
On these bases, the node-locality-based parallel algorithms are proposed for processing spatiotemporal
queries through Endpoint coprocessor, to realize the effective control to data transmission overhead,
thus ensuring efficient query performance. We validate the storage and query performance of THBase
by experiments on real dataset. Experimental results show that THBase outperforms CTDM and
SPDM in terms of query. For future work, we plan to support more query types by utilizing THBase.
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