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Abstract: Researchers from different disciplines, such as materials science, computer science, safety
science, mechanical engineering and controlling engineering, have aimed to improve the quality of
manufacturing engineering processes. Considering the requirements of research and development of
advanced materials, reliable manufacturing and collaborative innovation, a multidiscipline integrated
platform framework based on probabilistic analysis for manufacturing engineering processes is
proposed. The proposed platform consists of three logical layers: The requirement layer, the database
layer and the application layer. The platform is intended to be a scalable system to gradually
supplement related data, models and approaches. The main key technologies of the platform,
encapsulation methods, information fusion approaches and the collaborative mechanism are also
discussed. The proposed platform will also be gradually improved in the future. In order to exchange
information for manufacturing engineering processes, scientists and engineers of different institutes
of materials science and manufacturing engineering should strengthen their cooperation.

Keywords: probabilistic analysis; manufacturing engineering process; materials database;
multidiscipline integrated platform; information fusion

1. Introduction

Higher demands of manufacturing engineering processes are expected with the rapid
development of an advanced manufacturing industry. In recent years, increasingly advanced materials,
structures and equipment have enhanced the safety and reliability of manufacturing engineering
processes. In addition, researchers from different disciplines, such as materials science, computer
science, safety science, mechanical engineering and controlling engineering, have aimed to improve
the quality and reliability of manufacturing engineering processes.

However, the “languages” of different disciplines are varied. For instance, the gap between
materials science and manufacturing engineering remains large, requiring that scientists and engineers
attempt to solve this problem. The materials database is a bridge between materials science and
manufacturing engineering, and such materials databases for different industrial fields have been
established [1-3]. However, most databases are built only by scientists and engineers of materials
science or manufacturing engineering. Therefore, how to plan and build a platform that can be widely
applied to the manufacturing process has become a state-of-the-art issue during the past decade.
In 2008, a new and promising engineering approach known as integrated computational materials
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engineering (ICME) emerged [4]. Its goal was to enable the optimization of materials, manufacturing
processes, and component design long before components are fabricated. After ICME, the concept
of integrated computational materials and manufacturing engineering (ICM2E) was also proposed.
Furthermore, in 2011, the materials genome initiative (MGI) was announced by President Obama’s
government in the United States of America. In general, these technologies make full use of data
platforms and numerical simulation, providing new research directions for materials science and
manufacturing engineering.

In recent years, the new era of big data and Industry 4.0 for manufacturing engineer processes has
arrived [5,6]. Therefore, the full integration of various data, models, and knowledge in manufacturing
engineering processes is very important for both theoretical research and engineering application.
Some works now in development in commercial software inspired by Industry 4.0 are [7] and the
linked work in [8], which both provide the whole approach and examples. Based on this, several
works have applied advances, such as [9]. Other ideas are now in practice in Europe, including the
well-known example of the Aeronautics Advanced Manufacturing Centre (CFAA) in Spain [10].

In addition to building a unified integration platform, the corresponding analysis methods and
models also play an important role in the manufacturing process. Due to the development of future
Internet technology, more data can be obtained from the experimental system and the industrial
system. How to use the data in the platform for modeling is an important challenge. Ghahramani
systematically discussed the framework and progress of probabilistic machine learning and artificial
intelligence in [11]. In the current paper, a multidiscipline integrated platform framework based on
probabilistic analysis for manufacturing engineering processes will be proposed. Key technologies
of the proposed platform are also provided in this paper. The platform can be used to develop new
models of probabilistic analysis of manufacturing engineering processes for scientists and engineers
of multi-disciplines.

This paper is organized as follows. Section 2 will summarize the requirements and the challenges
of manufacturing engineering processes. The basic platform framework based on probabilistic analysis
will be introduced in Section 3. Key technologies will be analyzed in Section 4. Section 5 will illustrate
an application case. Finally, conclusions will be drawn at Section 6.

2. Requirements and Challenges of Manufacturing Engineering Processes

2.1. Requirements of Manufacturing Engineering Processes of Advanced Materials

With the development of manufacturing engineering processes with advanced materials, the
traditional pattern of research and development is no longer a requirement [12,13]. Thus, from the
view of academic research and industrial application, the requirements of manufacturing engineering
processes are required to follow four aspects:

(1) Integration of full lifetime cycle data of advanced materials. Currently, new materials are
being developed for manufacturing engineering processes. These new materials have different
properties and are being improved at a declining price. From the materials’ design to their service,
the typical process of an advanced material’s life may be divided into several parts, as shown
in Figure 1. In order to establish a traceability mechanism for advanced materials, all data of
different processes should be integrated and shared with the authorized institutes.
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Figure 1. Typical process diagram of an advanced material’s life.
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Numerical simulation development of materials research. Significant manpower and material
resources used in repeated experiments are wasted. To reduce the development cost and shorten
the development time for advanced materials, the use of numerical simulation experiments is
rising [14], although such experiments are nonetheless based on physical simulation experiments
and digital data. Figure 2 shows a flowchart of a material’s life cycle with experimental tools,
digital data and computational tools.
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Figure 2. Flowchart of a material’s life cycle with experimental tools, digital data and
computational tools.

Opening and sharing services for safety and reliability of manufacturing engineering processes.
As most manufacturing engineering is a process industry system, the failure of one component
may cause the interruption of the whole manufacturing engineering process. However, lack
of prior knowledge of failure modes and probability, limits the improvement of safety and
reliability for manufacturing engineering. Manufacturing engineering directly reflects the level
of a country’s productivity, which is an important factor to distinguish between developing
countries and developed countries [15]. In order to provide opening and sharing services to
public users, the new concept of cloud manufacturing [16,17] also aims to promote manufacturing
with dispersed resources.

Requirement of collaborative innovation for manufacturing engineering processes. In manufacturing
engineering, problems from different disciplines are integrated [18-20]. To achieve novel results,
a multidiscipline platform should be established. From the development trends of modern
science and technology, significant achievements are coming increasingly from multidiscipline
collaborative innovation [21]. Figure 3 demonstrates a logical diagram of a multidiscipline
integrated platform for collaborative innovation. From Figure 3, the experimental resource, the
computational resource, the private storage resource and the public cloud resource are integrated.
The collaborative innovation strategy for manufacturing engineering processes is presented for
researchers of materials science and manufacturing engineering.
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Figure 3. Logical diagram of a multidiscipline platform for collaborative innovation.

2.2. Main Challenges of Manufacturing Engineering Processes

Based on the above review and analysis of manufacturing engineering processes, the present
research still faces the following challenges:

(1) Current materials databases are mostly dispersed, and especially lack life cycle data for materials
science and manufacturing engineering. The quality of existing data is not certain. Materials data
may not be able to be directly applied to actual applications. Users of materials databases may
be confused by the fact that the data are unreliable and incomplete. In addition, data providers
would rather share “bad” data than “good” data with others because of a conflict of interest.
For instance, accessing original materials data to assess the service safety of a gathering pipeline
may not be straightforward. The result of a safety assessment for a pipeline may be questionable.

(2) As the research processes and approaches of different disciplines vary greatly, knowledge of
different disciplines is hardly exchanged or shared without a unified multidiscipline platform. Ina
complex manufacturing engineering process, equipment and products constitute a multidiscipline
system. Current data and models for manufacturing engineering processes are not sufficient to
design and assess. In most institutes or companies, researchers or engineers are separated by
different disciplines, so that a researcher of materials science cannot directly talk to an engineer of
manufacturing engineering processes. In addition, there is also a gap between an IT (information
technology) engineer and a mechanical engineer.

3. Basic Platform Framework Based on Probabilistic Analysis

3.1. Probabilistic Analysis Approaches for Engineering Materials

In manufacturing engineering processes, we use deterministic design approaches and probabilistic
design approaches [22]. Traditional design assumes most input parameters are deterministic. However,
uncertainty exists in different parameters, such as material properties, manufacturing processes and
mechanical loads.

However, manufacturing data can be lacking, and we do not know the input probability distribution.
We can use the best engineering assessments from literature, handbooks and experience. Thus, an
integrated platform with more data and more failure cases is needed. In addition, related approaches
to probabilistic analysis, such as Monte Carlo analysis, the first-order reliability method (FORM), the
second-order reliability method (SORM), response surface methods (RSM), and probabilistic fault tree
analysis (PFTA), should be integrated in the platform. User-defined methods of probabilistic analysis
should also be integrated for future application. The platform should be considered together with the
related knowledge of manufacturing engineering.
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3.2. Framework of Multidiscipline Integrated Platform for Manufacturing Engineering Processes

As can be seen from the previous analysis, more data, information and knowledge should be
integrated into the manufacturing engineering process. Therefore, the architecture of the framework
of a multidiscipline integrated platform is particularly important. The multidiscipline platform can be
divided into three layers—the requirement layer, the database layer and the application layer—for
manufacturing engineering processes, as shown in Figure 4. In this functional figure, we try to mix
human experts with computer systems. The architecture of the proposed framework is similar to the
smart manufacturing system [23,24].

The first layer is the requirement layer. The underlying requirement layer comes from materials
designers, manufacturing engineers and also materials service safety experts. As a “middle man”, an
expert of materials service safety will provide the communication bridge between materials designers
and manufacturing engineers. More data and algorithms of system engineering would also be
used by materials service safety experts. The Internet of Things [25,26] and cloud computing [27]
may also provide a more comprehensive method of data acquisition for condition monitoring of
manufacturing engineering. In this layer we can integrate different requirements for materials
designers, manufacturing engineers and materials service safety experts.

Application Fault diagnosis L|fe.t|n'1e Rellabll'|ty Risk assessment
layer prediction analysis
Database " Basic | |Experimental| | Production | | Knowledge | | Failure case
layer database database database database database
R . Materials Materials service Manufacturing
equirement N h
designers safety experts engineers
layer ~— -

Figure 4. Architecture of a multidiscipline integrated platform for manufacturing engineering processes.

The second layer is the database layer. For the requirement of reliable manufacturing with
advanced materials, the database layer contains the basic database, the experimental database, the
production database, the knowledge database and the failure case database. These databases will
cover the research and development for materials science and manufacturing engineering. Thus, the
challenge of dispersed databases could be overcome.

The third layer is the application layer. Based on the previous two layers, the final application of
the platform will mainly contain four aspects: Fault diagnosis, lifetime prediction, reliability analysis
and risk assessment for manufacturing engineering. In this layer, more quantitative methods have
begun to be studied in depth, replacing qualitative methods [28]. Related application services can also
be acquired by various terminals. In this layer, we try to solve the dilemma of common problems or
personality problems in the multidiscipline platform.

4. Key Technologies of Multidiscipline Integrated Platform

From the requirements of the multidiscipline integrated platform, more issues should be widely
recognized relating to the following key technologies:

(1) Monitoring technology from the industrial processes. Monitoring processes is the key to
improving processes previously optimized by modeling. Monitoring would help to fine-tune

the window parameters in high-added value production. However, if the real recorded values
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are not related to the exact point of the process in which damage, risk or a non-conformity may
happen, useful information would be missed. ANN (artificial neural networks) can correlate any
variable, therefore it is of paramount importance to define the experimental data and to use a
sound method. A good instance is a duo of studies, the first providing the physical results [29],
and the second providing the tool and procedure [30], as it is applied in [31]. As can be seen,
almost 14 years passed from the gathering of experimental values to the current application of Al
(artificial intelligence) tools.

Integration and encapsulation for probabilistic analysis models. The proposed platform includes
related data and models for reliable manufacturing. Models of different disciplines should be
integrated and encapsulated to Web services via XML (extensible markup language). Considering
security, Web services could be shared with remote users with authorization, as shown in Figure 5.

In order to assess the reliability and the risk for engineering materials and manufacturing

engineering, probabilistic analysis models (such as a generative model, a discriminative model, a
hidden Markov model or a maximum entropy model), should be established in the actual system.
A user-defined model can also be integrated into probabilistic analysis models via a standard interface.
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Figure 5. Schematic diagram of model encapsulation and sharing.

¢
5

g

g

If the cloud computing pattern is used in the platform, information sharing will become more

convenient [32]. Remote users are able to use the required services without concern about the services’
providers. Moreover, public cloud services can increasingly be obtained at a low price, or even for free,

at present.

®)

Information fusion approaches [33] for the multisource data. In the platform, significant quantities
of data, including materials data and manufacturing data, are integrated. From the view
of mathematical modeling, data are homogeneous or heterogeneous. Information fusion for
homogeneous data, such as vibration data, acoustic emission data and temperature data, can be
achieved using the Laplacian spectra analysis approach. Information fusion for heterogeneous
data, such as vibration data and images, can be a perspective transformation. Finally, we can
use the D-S (Dempster-Shafer) evidence theory to make decisions for reliable manufacturing.
We should also consider analysis of the data and the problem using the compatible information
approach. Figure 6 shows a multisource information fusion diagram for homogeneous signals
and heterogeneous data. With the trend of big data analysis, more spatiotemporal models using
data mining approaches can be introduced into the proposed platform.
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Information fusion based on D-S evidence
theory
Laplacian spectra Perspective
analysis transformation
Homogeneous data Heterogeneous data

Figure 6. Multisource information fusion diagram for homogeneous signals and heterogeneous data.

(4) Technical description of platform implementation. In the proposed platform in this paper, it is
necessary to integrate basic data, experimental data and industrial data. In order to ensure system
compatibility and scalability, the system should adopt a language supported by cross-platform
technology. The B/S (browser/service) mode is used for the end user, and is mainly used to
support the dynamic expansion of the model. The main development languages of the platform
are recommended as in Table 1.

Table 1. Development languages in proposed multidiscipline integrated platform.

Language Comments
For developer Java Support for cross-platform integration
For end user Python Support for model development

In addition, the scalability of the proposed platform is very important. The scalability of this
platform includes the scalability of functional modules, algorithms and data. In this platform, we
focus on the scalability of algorithms. Each algorithm has its scope of application, and the algorithm
is constantly improving or used in combination with other algorithms. In scalable applications
of algorithms, SOA (service-oriented architecture) is recommended. It allows users to package
and dynamically adjust algorithms of different granularity to support the continuous expansion
of the future platform. By so doing, all the above mentioned probabilistic analysis methods can be
implemented and integrated for future applications.

5. Application Case

In 2007, a national project in China named the Materials Service Safety Assessment Facility (MSAF)
was proposed by the University of Science and Technology Beijing. The purpose of establishing the
MSAF was to understand the key scientific issues in materials service safety (i.e., scientific problems in
scale, environment and time dimensions, as well as methods of service safety assessment). The MSAF
contained six large-scale physical testing facilities, one experimental simulation system and one IT
facility for opening and sharing [34].

During the past 10 years, we have established multiple platforms in the fields of petrochemical
engineering, metallurgy, electric power and urban infrastructure, integrated corresponding basic data
and experimental data, and have successfully applied these in some enterprises. The following is an
application case of petrochemical engineering.
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5.1. Requirement Description

According to the needs of a petrochemical enterprise, the platform is designed to: (1) Collect and
collate the actual working conditions, test and design data from multiple enterprises and research
institutes, and establish a safety assessment system for key materials; (2) complement the tests
(including relevant parameters and conditions); and, (3) integrate the original data and supplement
the test data to lay the foundation for the safety assessment and post-assessment of key materials.
The specific business flowchart of the petrochemical platform is shown in Figure 7.
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Figure 7. Business flowchart of petrochemical platform.

5.2. Platform Application Effect

According to the actual service environment and on-site requirements of petrochemical enterprises,
the service platform of key materials, the post-evaluation criteria and safety assessment model of the
supplementary and accelerated tests, and the safety assessment and risk management system were
carried out. Based on the application framework proposed in this paper, the following functions are
mainly completed in the petrochemical platform:

(1) Established a petrochemical material service that can realize multi-user sub-rights and scalable
network data management through integration of service conditions, test data, production process
data, corrosion monitoring data and literature data.

(2) Constructed a production data management system for petrochemical enterprises that can
realize real-time monitoring of on-site data, and real-time monitoring and analysis of corrosion
monitoring data.

(3) Developed the safety assessment and risk management system of key materials, which realized
the evaluation of the risk of corrosion cracking in petrochemical enterprises, and provided
support for the formulation of risk control strategies.

At present, the research results have been applied to the production of a petrochemical enterprise
to protect the safety of production.

6. Conclusions

In this paper, we review the main requirements and challenges of reliable manufacturing with
advanced materials and propose a multidiscipline integrated platform based on probabilistic analysis
for manufacturing engineering processes.

(1) The multidiscipline integrated platform framework of manufacturing engineering processes
is presented based on the reviewed requirements. The platform is divided into three layers:
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The requirement layer, the database layer and the application layer. The platform is designed as a
scalable system to gradually supplement the related data and models.

(2) The main key technologies of the platform are discussed in this paper. In our view, the technical
problems are integration and encapsulation for probabilistic analysis models, and information
fusion approaches for the multisource data. Cooperation between the related institutes of
materials science and manufacturing should also be strengthened.

(3) We propose the platform framework for manufacturing engineering. An application case of
petrochemical engineering is presented as the implementation of this architecture of a multidiscipline
integrated platform. The research results are applied to the production of a petrochemical enterprise
to protect the safety of production. The platform will be gradually improved.

(4) In the future, the continuous development of future Internet technology means the platform of
the manufacturing process will be more intelligent. Digital twins [35] technology may be an
important research direction in this field. At present, we have engaged research work on key
technologies for wind power and nuclear power related platforms, and we hope to obtain better
theoretical and application results.
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