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Abstract: Work within next generation networks considers additional network convergence
possibilities and the integration of new services to the web. This trend responds to the ongoing growth
of end-user demand for services that can be delivered anytime, anywhere, on any web-capable device,
and of traffic generated by new applications, e.g., the Internet of Things. To support the massive
traffic generated by the enormous user base and number of devices with reliability and high quality,
web services run from redundant servers. As new servers need to be regularly deployed at different
geographical locations, energy costs have become a source of major concern for operators. We propose
a cost aware method for routing web requests across replicated and distributed servers that can exploit
the spatial and temporal variations of both electricity prices and the server network. The method
relies on a learning automaton that makes per-request decisions, which can be computed much faster
than regular global optimization methods. Using simulation and testbed measurements, we show
the cost reductions that are achievable with minimal impact on performance compared to standard
web routing algorithms.
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1. Introduction

The Internet traffic continues increasing driven by multiple factors, including the proliferation
of web of things [1], popularization of wearable computers, business globalization, and new
technologies for machine-to-machine communications, high speed network access, and content
delivery. With the rise of affordable personal gadgets like smart phones, the number of network
devices and connections became 2.3 per-capita in 2016 and it is estimated that it will reach 3.5 per-capita
in 2021, with 58% of the global population gaining access to the Internet [2]. Despite the benefits,
the growth of the network increases global energy consumption and brings many side-effects, such as
green house emissions. Datacenters (DC) have become a mission critical computing infrastructure
for the Information Communication Technology (ICT) sector. It has been estimated that the energy
that will be consumed by DCs in the United States by 2020 will be 140 billion kWh (kilowatts-hour),
which is equivalent to the power generated by 50 power plants. This amount of energy will cause
150 tones of carbon pollution [3]. With varying electricity prices, DC operators seek to reduce their
total cost of ownership to increase the return on investment.

In the U.S., the wholesale electricity market is administered by Regional Transmission
Organizations (RTO) and Independent System Operators (ISO) across 10 regions. Electricity price rates
are spatially different across U.S. electricity markets and are decided based on the generation methods,
availability, demand, and transmission costs over the grid. The RTO/ISO administers the electricity
generation and transmission over the grid. Normally, electricity that is generated with low-cost
generation methods, e.g., using coal or nuclear power, results in low prices. However, when demand is
high, or increase rapidly, the extra demand needs to be fulfilled using higher cost generation methods,
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e.g., using natural gas, that results in higher prices [4,5]. These features make electricity prices to vary
greatly among not only across different regions, but also with time.

In the web industry, service delay is a prime quality factor. Web requests must receive service with
the quality-of-service (QoS) level stated in the service level objective. This is only possible through
the use of redundant server clusters, to provide proper availability, scalability, and fault tolerance.
For example, content servers are commonly replicated at the edge of the network—to be as close as
possible to the end-clients. Servers need to be replicated across geographical locations to cater to more
clients and to reduce service delay. This deployment strategy allows operators to better deal with
the unpredictable nature of the web traffic. A server consumes a minimal amount of energy when
it is powered on, but its energy demand increases proportionally to its workload. Response times
also increase along with the supplied load. It is possible to regulate to some extent the electricity
costs of an organization that operates DCs at different regions through web traffic routing. However,
it is most important to preserve the desired QoS in this operation as the network state and current
servers’ load will affect response times. Therefore, there is a potential tradeoff between response
times and the energy consumption involved in routing web requests to different DCs. The solution to
the problem is not trivial as the network state is normally unpredictable. Both the delay involved in
a network state collection from distributed servers and the computing overhead prevent the use of
a high frequency optimization of web routing by convex optimization or linear methods. We propose
a solution based on learning automata—the Cost Aware S-model Reward Penalty Epsilon (CA-S)
method seeks to reduce the average cost in serving web requests with replicated web servers deployed
on different geographical regions. We formulate a cost objective that includes energy costs and revenue
loss. The latter factor captures the impact that high delay can cause to users and the operator.

The learning automaton makes routing decisions for each incoming request by assessing response
times and energy prices at the different server locations through action selection probabilities. Then,
it probabilistically forwards the request to the server that minimizes the cost. Our contributions are:
(i) a learning automata-based method for routing web requests considering both the differences in
energy prices across locations and the revenue loss potentially produced by high response times;
(ii) a simulation study of the performance impact of learning parameters, and; (iii) an implementation
of the method for Apache Traffic Server and testbed evaluation in CloudLab [6]. We have compared
our results to common baseline methods: minimum cost flow algorithm and round robin algorithm.
Our experimental results show that the total average cost of serving web responses could be reduced
up to 33% when compared to the minimum cost flow dynamic server selection algorithm and up to
49.2% compared to the common round robin method.

2. Literature Review

The problem of datacenter energy optimization has received good attention in the literature.
We review representative works with a focus on energy optimization through request or workload
re-routing with energy consideration.

2.1. Load Balancing by Spatial Pricing

The U.S. electricity market has been analyzed in detail with prices from 30 locations [7] and it has
been proved that 40% savings are possible with dynamic price-aware routing through a simulation
study using Akamai’s content delivery network (CDN) traffic traces. A two-level technique to reduce
the electricity cost in multi location DC has been proposed [8]. The spatial variations in electricity
prices were exploited at the first level and scheduling strategies were proposed at the second level to
distribute the requests among heterogeneous servers available at the selected DC.

The stratus system proposed in [9] used a Voronoi graph partition algorithm to select a DC for
servicing the requests. The service time, cost of the energy consumption and carbon emission were
considered as metrics to be optimized in selecting a DC. A distributed cloud framework to reduce
power consumption in the cloud based on dynamic speed scaling of processors was proposed [10].



Future Internet 2018, 10, 57 3 of 19

Temporal and spatial variations in electricity prices were exploited to balance the load across the
clusters and to reduce the energy consumption.

The total electricity cost reduction is formulated as a constrained mixed-integer problem and
solved using Brenner’s polynomial algorithm [11] with a simulation study using prices from three
locations of Google Internet datacenters. The energy consumption was optimized using a global
load balancing policy and at a server level management by switching on/off using a mathematical
analysis study [12]. A corrective marginal cost algorithm was proposed to solve the total energy cost
by using a nonlinear integer programming optimization model [13]. A Big Data analytic framework
was proposed to minimize the total energy cost and delay for running big data analytic jobs on
geographically distributed big data sets using a stochastic optimization method [14]. A recent work [15],
proposes a solution to the cloud service providers who procure electricity from deregulated electricity
market to optimize total electricity cost and bandwidth cost by dynamically routing the requests to
DCs where electricity is cheaper.

2.2. Routing Work Loads to Renewable Energy Powered DCs

A global load balancing of web requests to DCs where the renewable energy is maximum or the
energy is cheaper was proposed [16]. Renewable energy can be stored using uninterrupted power
supplies (UPS) to be later used during power fluctuations to reduce energy costs. The power stored in
UPS can be also used to reduce the peak power demand cost—known as peak shaving during the peak
utilization hours [17]. Two algorithms were proposed [18] to reduce the use of brown energy to zero
by shifting workloads to the DCs in regions where the energy cost is low and by switching off servers
at lightly loaded DCs. The receding horizon control (RHC) algorithm for homogeneous settings and
the averaging fixed horizon control algorithm (AFHC) for heterogeneous settings were proposed.

A fuzzy logic-based load balancing method was proposed to route the workload among
geographically distributed datacenters to reduce electricity costs by considering renewable energy
availability, brown energy consumption and average electricity cost at DC locations [19]. A reactive
global load balancing and auto scaling of servers were proposed to reduce electricity cost and brown
energy usage by routing requests to sites with higher renewable energy and lower costs [20]. A cost
function that comprises a linear combination of energy cost and lost revenue due to SLA violation is
used to route the job requests. A distributed geographical load balancer was proposed [21], in which
the jobs are routed to DCs using “follow the renewable routing” policy to DCs where the proportion
of brown energy to total energy production is at a minimum.

A two-time-scale load balancing algorithm, TLB-ARMA, was proposed to route web requests to
a DC where the electricity price is minimum and powered by wind energy [22]. The air temperature
was measured at the beginning of scheduling intervals to compute cooling efficiency and to predict
the wind power. A constant number of servers were maintained to avoid power wastage in frequent
on/off of servers. The most recent work [23] proposes a renewable aware load balancing policy using
a combination of Reinforcement Learning and Neural Networks to optimize Big Data Analytic jobs
across geographically distributed datacenters.

An energy-aware pricing in the three-tiered cloud service market was proposed [24] to minimize
the total energy cost of the system by promoting integration of renewable energy in the system.
The square root staffing law policy was used to maintain required number of servers in the on state
to provide better QoS and to increase the revenue to the Infrastructure-as-a-Service (IaaS) providers.
A Global load balancing policy was used to distribute workloads of software-as-a-service providers
(SaaS) to IaaS providers across spatially different electricity markets while reducing the cost incurred
to SaaS providers, eventually to reduce prices of cloud services to end users.

3. Problem Definition

Assume an enterprise that manages multiple datacenters (DC) located at different regions.
Each location operates under the control of a local Regional Transmission Organization (RTO), so that
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electricity pricing varies from location to location and possibly also with time, depending on the
specific policy in use. A total of N servers take part in running a common web application across L
locations. In the notation that follows, we use superscripts to denote location and subscripts to indicate
elements within a location. Each location has ni servers, 1 < i < L. If pi

j(t) is the average power
(in kW) consumed by server j at DC i and obtained at time t since a specific epoch t0, the average
energy cost per hour is:

Ei(t) =
ni

∑
j=1

pi
j(t) γi(t), (1)

where γi(t) is the electricity price (rate) at DC i at t which remains constant during the last evaluation
period (i.e., since the epoch t0 to t). The average power pi

j(t) may include pro rata the contribution
of indirect sources, such as lighting, cooling, and other servers. The average energy cost per server and
per hour related to running the web application and observed at time t is:

x(t) =
1
N

L

∑
i=1

Ei(t). (2)

While the general problem is to minimize the energy cost x(t), it is also crucial to consider that
long request response times can have a detrimental impact on enterprise revenue. A simple example
is an electronic commerce application where a slow system directly impacts transaction rates and,
therefore, revenue. However, a similar rationale could be applied to other services. In addition to
content quality, system responsiveness can affect the user perception of service quality and therefore
impact the size of the user base over time. The exact definition of revenue loss due to response delay
depends on application specifics and the needs of the enterprise. We formulate a basic expression for
the purposes of our study assuming that revenue loss increases linearly with the average response
time observed at each DC i:

Di(t) = δ di(t), (3)

where δ is the revenue loss factor and di(t) is the average response time observed at location i.
The average revenue loss of the system per server between the epoch and t is therefore:

y(t) =
1
N

L

∑
i=1

Di(t). (4)

The combined cost is then described as:

z(t) = x(t) + y(t). (5)

The problem is how to achieve the optimal cost through routing web request to the N servers
available. Iterative or direct methods may not be efficient enough to deal with the highly dynamic
nature of this system where the electricity prices, energy demand and response time are all
variable. We need a rapid decision-making system to make autonomous routing decisions based
on the performance of the previous decisions in a dynamically changing environment. This provides
us motivation to approach the problem with a learning method.

4. Routing with Learning Automata

To better explain the proposed method, we first provide a brief overview of how Learning
Automata can be applied to a routing problem. A Learning Automaton (LA) is an autonomous
decision-making entity that learns to make decisions so as to bring optimal performance in the
environment in which it is operating [25,26]. It implements a specific case of reinforcement learning [27].
An LA makes stochastic selection of an action from the list of available actions and observes its
performance; if it sees favorable performance from the selected action, then it increments the selection
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probability of that action and adjusts the probabilities of other actions; if the selected action produces
unfavorable response, then it penalizes the action by decreasing its selection probability. It starts with
zero knowledge about the environment and learns on its own to select optimal actions. An action
represents a server selection for handling a web request. An automaton is described by a quintuple
{φ, s, X, G, A}, where X is the set of inputs i.e., X ∈ {0, 1}; φ is the set of internal states {φ1, φ2, ..., φm};
s is the output set {s1, s2, ..., sn} with n ≤ m; G : φ → s denoting the output function and A is the
algorithm that computes the state φ(t + 1) from state φ(t) depending on the response X it received
from the environment. Figure 1 depicts the interaction of LA with its environment.

EnvironmentEnvironmentEnvironment

LA 
(computes the cost, updates action 
probabilities and selects a server)

LA 
(computes the cost, updates action 
probabilities and selects a server)

LA 
(computes the cost, updates action 
probabilities and selects a server)

Penalty Probability
           ci  { ci , ci, . . . cr }

Action 
αi ∈  {α1,  α2,... αs} 

Input Xi ∈  [0, 1] 

Delay, Power & 
price

Delay, Power & 
price

Figure 1. Stochastic learning automaton.

The LA are classified as P-model, Q-model and S-model based on the responses it receives from
the environment [25]. In P-model LA, the responses from the environment are mapped into binary
values 0 and 1; in the Q-model, the responses are mapped into a finite number of values in the interval
[0, 1] and in the S-model, they are mapped into continuous values in the interval [0, 1]. The LA are also
classified based on the learning parameters used to update the selection probabilities.

1. Reward Penalty (RP): The learning parameter b = a and the selection probability of the
server is rewarded or penalized equally when the selected server resulted in favorable or
unfavorable performance.

2. Reward Inaction (RI): When b = 0, there will be no penalty for unfavorable response from
the selected server (No action) and the server will be rewarded for favorable response.

3. Reward Penalty-ε (RP-ε): b << a, the selected action is penalized very little for unfavorable response.

The constants a and b are known as reward and penalty parameters, respectively.
The LA are broadly classified into fixed structure stochastic automata (FSSA) and variable

structure stochastic automata (FSSA). In FSSA, the action probabilities are fixed i.e., transition
probabilities are time invariant, whereas, in FSSA, the actions’ probabilities are updated based on the
performance. The LA are classified as ergodic and non-ergodic according to their Markovian property.
The ergodic LA does not lock itself into choosing any one action and it converges with probability
distribution independent of initial distribution [28], whereas the non-ergodic LA has absorbing
states and converges to an action which has minimum penalty probability with probability 1 [29].
The ergodic LA are suitable for non-stationary environments [28,30] and non-ergodic LA are apt
for stationary environments. Both RP and RP-ε have ergodic Markovian properties and RI has
non-ergodic properties. As many works from the literature illustrate the use of ergodic automata
in network and communication applications [31–37], we are inspired to use the S-model Reward
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Penalty-ε, for making routing decisions in web applications. The servers operating in spatio-temporal
electricity market and unpredictable web traffic patterns represent a non-stationary environment and
justify the need for a VSSA with ergodic properties.

5. Cost-Aware S-Model Reward Penalty Epsilon (CA-S) Learning Automaton

A proxy server operates as a front end for a given web service. The service is handled by a set
of origin servers and each server may be deployed at a different DC location. The proxy receives web
requests from the users and forwards them to the origin servers following certain criteria. The reply
from each origin server is sent to the proxy, which forwards the content to the client. The CA-S LA
supporting the proxy’s decisions allows for achieving an adaptive and autonomous selection of servers
based on observed costs that are mapped to selection probabilities.

Servers start with equal probability. When the LA receives a response from an origin server, it notes
the request response time and the origin server’s power level to calculate a combined cost that serves to
either increase (reward) or decrease (penalize) its selection probability. In the S-model LA, the actions
are rewarded or penalized in a proportional amount to the performance. The amount of reward is
larger for a higher favorable response and smaller for a lower favorable response. In the same way,
the amount of penalty is larger for higher unfavorable performance and smaller for lower unfavorable
response. The performance of the server is given by the combined cost of energy and revenue loss.
The LA computes the normalized cost value of the current server to make the reward or penalty
proportional. The calculation of the normalized cost and the reinforcement equations used to update
the selection probabilities are explained next.

The combined cost z(t), as defined by Equation (5), is computed for all of the servers after each
transaction, using the response time (delay) and energy cost as explained in Section 3. Even though the
response is received from the selected server, the costs are updated for all server entries to accommodate
the time varying electricity prices at each location. The exponential average cost prev_cost at an instance
t is calculated from the current cost z(t) as follows:

prev_cost(t) = α ∗ z(t) + (1− α) ∗ prev_cost(t− 1), (6)

where α is the weight given to the most recent value. The cost obtained from the selected server at
a location (index) v at time t is normalized as βv(t):

βv(t) =
(prev_costv(t)−m1(t))

m2(t)−m1(t)
, where

m1(t) = min {prev_cost1(t), prev_cost2(t), · · · , prev_costr(t)} and

m2(t) = max {prev_cost1(t), prev_cost2(t), · · · , prev_costr(t)} .

(7)

The normalized value βv of prev_cost determines the amount of reward or penalty. If the selected
server gives the minimum delay and minimum energy cost among all servers then βv will be zero and
it will receive a larger reward; if the selected server gives the largest prev_cost, it will be penalized
more because βv will be larger. The selection probabilities of the servers are updated as follows:

Pi (t + 1) = Pi (t) + a (1− β) (1− Pi (t))− bβ Pi (t) , f or i = v,

Pi(t + 1) = Pi(t)− a (1− β) Pi(t) + bβ

(
1

N − 1
− Pi(t)

)
, ∀ i 6= v.

(8)

The constants a and b are the learning parameters. The use of βv in reinforcement equations
makes the learning rate adaptive to the servers’ responses. Figure 2 explains the action flow executed
by the LA when making a server selection and the learning flow when a response arrives. Optionally,
automaton decisions can be further modulated with a random walk process, which occurs with
probability Prw, to reduce the risk of reaching a local minima.
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Figure 2. Flow chart of the proposed algorithm for dynamic web request routing with the Cost-Aware
S-Model Reward Penalty Epsilon (CA-S) automaton.

6. Evaluation of Parameter Selection Using Simulation

The performance of the proposed system may be affected by different learning parameters: reward
factor a, penalty factor b, memory weight factor α, and random walk probability Prw. In addition,
operational factors, such as the number of servers N, total traffic intensity λ, electricity rates (price) γi

prevalent at each location i and the selected revenue loss factor δ determine the specific system behavior.
We use simulation to evaluate the impact of these factors. The advantage of the approach is that

it provides a common and repeatable evaluation platform that allows for achieving high statistical
accuracy. The simulation is event-driven and models the request generation as an exponential process
with parameter λ (i.e., the total traffic intensity arriving at the system). The user requests are initially
routed to a server (forward proxy server) that decides the actual origin server to handle each arriving
request. The simulation keeps track of the communication dynamics of both requests and replies.
Requests have a fixed length of 100 bytes. Reply lengths are exponentially distributed with an average
size of 100 Kb.

The proxy is connected to the origin servers through connections of different delay. To simplify the
simulation model, we assumed that a single server was used at each location. Delays from the proxy to
the origin servers were distributed linearly from 10 ms to 1 s. The transmission rate of all the links was
set to 2 Mbps. As a reference, the response time obtained with two or more servers is approximately
1.5 s. Each server has a single core and requests are served according to the first-come-first-serve
model. We further assume that all the servers are of identical characteristics, consuming 100 W while
idle and 150 W while transmitting or receiving data. Electricity prices (γ) were also linearly distributed
among the different sites from 5 c/kWh to 15 c/kWh. The revenue loss factor was fixed at δ = 0.1 to
produce comparable values for energy and delay costs.

6.1. Parameters a and b

Figure 3 depicts the average cost per node and per hour for a 8-node system (8 locations) and
memory factor α = 0.75 for different values of learning parameters a and b. The average cost is



Future Internet 2018, 10, 57 8 of 19

calculated by the simulator by averaging the observed costs of 100 runs each handling 30,000 requests.
The standard deviation of the mean was very small in all cases, so we have opted for not including the
confidence interval in the charts for visual clarity. The three plots on the left part of the figure depict
the case with Prw = 0.1. The three charts on the right correspond to the case Prw = 0.5. We have used
the same scale on the figures to better appreciate the differences. Each of the plot rows in the figure
shows the results of different traffic intensity: low λ = 0.5, medium λ = 2, high λ = 4. The maximum
utilization is in the range 5–6 req/s for the 8-node system that we considered.
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Figure 3. Impact of learning parameters a and b.
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The results show high parameter sensitivity for both a and b. The best values for b depend on the
selected value for a and vice versa. We observed good performance with values for a around 0.01 with
detrimental effects both by using smaller or greater values. With a = 0.01, we observed that b = 0.001
provided reasonable low cost for different values of λ. On the other hand, increasing the chances of
random walk (right-hand side plots) did not produce major improvements. It is interesting to note that
the optimization opportunities reduce with traffic intensity. With the lowest traffic rate, the cost range
was around 8 c, whereas, with the highest traffic rate, the rate was about 2 c. Increasing the chances
of random walk also reduce the cost range. For example, increasing Prw to be near 1 for the low traffic
case removes the optimization opportunities achieving the maximum cost of 0.16 for any value of a
and b.

6.2. Parameter Prw

Figure 4 provides further evidence of the impact of the use of pure random decisions in the
system. We can observe that the cost impact of Prw is minimal for medium traffic. For low traffic,
we observe that the system is better off by not using pure random decisions. However, for high traffic,
small values of Prw may bring some performance improvement. Considering that the automaton
can only be effective by receiving proper feedback, we note that, with the delays caused by high
traffic congestion, the use of pure random actions can provide benefits over a regular automata with
stale information.
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Figure 4. Impact of pure random decisions Prw.

6.3. Parameter α

The memory weight α has little effect under low to medium traffic intensity (see Figure 5). For high
traffic intensity, decisions are better off by using smaller weights, in other words, it is better to consider
the latest cost rather than the cost average to modify the action selection probabilities as the information
contained in the average can quickly become stale under congestion.



Future Internet 2018, 10, 57 10 of 19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

, : memory weight factor

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

av
er

ag
e 

no
de

 c
os

t/h
ou

r 
($

/h
ou

r)

8 nodes, ,=0.75, a=0.01, b=0.001

6=4
6=2
6=1
6=0.5
6=0.1
6=0.01

Figure 5. Impact of memory weight parameter α.

6.4. Number of Servers

Figure 6 depicts the average node cost per hour as a function of the number of servers.
Increasing the number of servers benefits the cost metric because, under the same traffic intensity,
each server handles a lower request rate, therefore requiring less energy for the evaluation period).
Certainly, adding servers does increase the system cost as depicted on the right-hand chart of Figure 6.
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Figure 6. Cost impact of the number of servers; per node hourly cost (left); system hourly cost (right).

7. Testbed Evaluation

We have conducted experiments on CloudLab [6]. The topology consists of six servers of type
220g1 as shown in Figure 7. All servers are equipped with two Intel E5-2630 v3 8-core central processing
units (CPUs) at 2.40 GHz (Haswell EM64T), 128 GB error-correcting code memory (ECC), a dual-port
Intel X520-DA2 10 Gbps network interface card (NIC) and two 1.2 TB disks. All machines run Linux
Ubuntu 16.04. Apache2 web server was installed on the nodes s1, s2, s3, s4 to operate as origin servers.
All of the nodes provide power monitoring capabilities. We have obtained the power usage of origin
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servers using the Intelligent Platform Management Interface Tool (ipmitool). Apache Traffic Server 7.1.2
was installed on the node proxy, which serves as a reverse proxy server between client and the origin
servers. To emulate Internet (wide area network) delays, we introduced the following random artificial
delays to the links connecting origin servers to proxy using Network Emulator (Netem): 10.0± 2.0,
0 (no delay), 20.0± 5.0, and 5.0± 2.0 ms, respectively.

We implemented our method for web request routing (CA-S) as a policy function with the balancer
plug-in of the traffic server. The LA implemented as the policy function will measure the delay
in serving responses, read the power utilization of servers and compute the total cost after each
transaction. It then updates the selection probabilities of the servers and selects a server at random
for the next incoming request. An application (tx_power) written in C++ at each origin server queries
the power usage from ipmitool at one-second intervals and sends the power values in watts to both
proxy and the client node cl using PUB/SUB messaging service of ZeroMQ. An application written
in C++ (rx_power) running on the proxy node subscribes to all the origin nodes and receives the
power values. It then writes these values into a memory shared with the traffic server. The PUB/SUB
messages are transmitted out of band with the HTTP requests. A python application running from
the client node cl sends HTTP requests for static files of various sizes to the origin servers via proxy
node in Poisson distribution. The requests are sent from 20 requests/s to 300 requests/s in steps
of 20 requests/s. Each experiment runs for a duration of 10 min and was repeated several times.
The service times and power utilization are recorded at the client node for plotting the results.
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Figure 7. Experimental topology deployed in CloudLab.

The probabilities are updated after each transaction based on the performance of servers
when each of them has been selected for a transaction. The server which serves the requests with
the minimum combined cost will have the highest probability in the long run. The server having
the highest probability will have the most number of chances to serve the requests. However, once its
performance starts deteriorating, it will not hold the highest probability and the probability of the server
having the next best performance starts increasing. As the LA used in this work possesses ergodic
Markovian properties, it does not lock itself into any one server, and optimal performance could be
achieved in spite of dynamic changes in the electricity prices and with the variations in response times.
To better illustrate the roles of the raw electricity costs and revenue loss due to high response times,
we have introduced an additional parameter k into the objective function: z(t) = kx(t) + (1− k)y(t).
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Depending on the value selected for k, the modified goal function simulates the use of different
electricity rates (keeping γ fixed) or different choices for δ.

8. Results

We have conducted several experiments to test the sensitivity of the algorithm to some of the
parameters used in the algorithm. Unlike the simulation, the CloudLab environment offers realism,
but also some limitations—for example, the current method employed for energy monitoring requires
the implementation of a process that adds overhead to the servers. We have tested the performance
of our proposed approach using two price scenarios, with two values of k (0.2 and 0.9), two values
of α (0.1 and 0.9) and different values for the penalty parameter b.

8.1. Baseline Methods

We consider the round robin (RR) and the minimum cost flow (MC) server selection methods
to produce baseline performance. The RR is a static policy in which servers are selected in turn and
each server handles an equal number of requests. It is a widely used method for load balancing and
request forwarding, in particular, when servers are homogeneous and workload is uniform [38–42].
It is commonly used in the web industry because of its low complexity.

A second baseline method is adopted from [11]. In that work, the optimization of electricity
costs for a distributed DC system in a multi-electricity market was handled by mixed integer linear
programming. The optimization problem was converted into the minimum cost flow problem given
the challenges involved. Brenner’s algorithm was used to find the minimum cost flow for a network
of five front-end web portal servers connected to Google’s data centers in three locations. In that work,
the front-end web servers act as sinks and the DCs act as sources with the links that connect them
carrying the electricity costs. The process consists of the following steps. First, the amount of workload
for each data center is computed based on the link costs (electricity price). Second, the required number
of servers to be provisioned is computed from the assigned workload for each DC by considering
the delay and the number of active servers as constraints. Our MC implementation has no constraints.
We find the minimum cost flow of a network of four data centers connected to one front-end server
(proxy) through links carrying a combined cost of energy and revenue loss (delay). The combined cost
is computed after each transaction as described in Equation (5), and the server having the least cost
among all servers is chosen greedily for the next incoming request.

In the proposed CA-S algorithm, the LA observes the current electricity price rates, power
consumption of all servers, and response time from the selected server (for each transaction).
It then updates the selection probability of the current server proportionally to its performance
by comparing its cost to the costs of other servers through the learning process. To make a new server
selection, it makes a stochastic selection. By updating the selection probabilities based on the observed
performance, it achieves a server selection that is adaptive to the environment. The amount of reward
or penalty to the selected server is based on how far the cost is from the minimum and maximum
observed costs. Thus, by continuously tracking the state of the environment, the LA makes adaptive
decisions and approaches optimally.

Even though the MC method measures the costs in a similar way to CA-S, i.e., after each
transaction, it may continue selecting the same server. For example, at certain time, the best server
may respond with higher delay than usual because of the nature of a given request (e.g., the query
may require the execution of a certain complex computation or a large data transfer). In that case,
MC may move to a non-optimal server and will continue to send requests to that server until the cost
exceeds the cost of the unusual request. In the long run, MC will produce suboptimal performance.
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8.2. Impact of the Offered Load and the Price Scenario

Table 1 shows the electricity price rates for each of the four servers used in our tests under each
of the two scenarios. The rates are given in cents per kWh. The selected values correspond to typical
average electricity rates that are currently in use in different states in the U.S [43].

Table 1. Price scenarios (given in cents per kWh).

Scenario s1 s2 s3 s4

I 4.70 4.8 14.47 13.75
I I 13.75 14.47 4.8 4.7

In price scenario-I, servers s1 and s2 are located in regions with the lowest electricity prices.
As server s2 lack any configured delay, it is commonly the optimal server, at least under low load,
with the selected values. In contrast, in price scenario-II, servers s3 and s4 have lower prices than
the first two servers. Server s4 is configured with lower delay than s3 and hence it is the optimal
server for most requests generated in this scenario. Measurements for the total average electricity
cost and the average delay are plotted in Figures 8 and 9 for k = 0.9 (i.e., revenue losses due to
high response times are given higher importance than raw energy costs). Figure 8a,b shows that the
proposed approach performed similar to the MC method and outperformed RR in both price scenarios
with α = 0.1. Figure 8c,d shows that CA-S has out performed both RR and MC in price scenario-I and
performed similarly to MC and better than RR in price scenario-II for α = 0.9.
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Figure 8. Electricity cost with CA-S tested in CloudLab.
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From Figure 9a–d, it is clear that CA-S has outperformed both RR and MC with lower average
delays for both values of α in price scenario-I and performed similar to MC or better than RR in price
scenario-II. In price scenario-I, as the fastest server also has the lower price, the average delay was
optimal. In price scenario-II, server s4 has the lowest price with a configured delay of 5.0 ms ± 2.0 ms.
The proposed method selects s4 most of the time when attempting to optimize the combined cost,
producing an increase on the average delay. We have verified the number of requests serviced by each
server in both cases using traffic server logs.
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Figure 9. Average delay with CA-S tested in CloudLab.

Figure 10 depicts the combined cost incurred by the different algorithms used in this study under
price scenario-I. The proposed CA-S method performed better than RR for both values of α and both
values of k, except for high values of λ (see Figure 10a). In this price scenario, the CA-S method
performed generally better than MC for λ values up to approximately 200 req/s. When α = 0.9
and k = 0.9, the CA-S method produced better costs than MC. When giving higher importance to
the current cost (i.e., α = 0.9), the most recent variations of both energy and delay costs are better
tracked and the rewards and penalties update the action probabilities faster. Thus, higher values of α

makes the selection better adaptive, which yields lower costs. These results are consistent with our
observations obtained in simulation for low to medium traffic rates. We also observed that a high
value of k in price scenario-I produced lower costs.
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Figure 10. Combined cost with CA-S in price scenario-I.

Figure 11 describes the combined cost incurred by using all of the three algorithms under price
scenario-II. The CA-S method performed better than RR for both values of α and for both values of k.
Again, CA-S performed better than MC for λ values up to 200, but, after that point, performance
decreases as shown in Figure 11a. As indicated by Figure 11b,d, CA-S performed about the same as
the MC method. The high value of k helps the LA to optimize energy costs with more importance
than delay. Server s4 was therefore selected more frequently. As s4 has an artificial delay associated
with it, the combined cost increased and hence performance decreased. As shown in Figure 11c,
it shows superior performance than MC. A small value of k (0.2) reduces the importance given to
energy cost increasing the selection probability of s2 and s4. In addition, a high value of α helps to
update the selection probabilities.

The Minimum Cost flow algorithm (MC) performed better than RR in both price scenarios and
equal to CA-S in price scenario-II for k = 0.9 in both alpha values. This is because MC selects a server
based on the performance similar to CA-S by using the feedback mechanism. However, it does not
have a learning ability and no stochastic selection. When MC finds a server with minimum cost, it tries
to send every request to the same server until the cost of the server becomes larger than the other
server. As the performance of the other servers is unknown, MC tries to compare the cost of the current
server to stale values. The approach works well under stationary conditions, where all servers produce
about the same performance. However, when energy costs and delays can dynamically vary, the MC
method underperforms.

RR is a common baseline method in the literature that, because of its low overhead, is commonly
used for real-time request forwarding. However, we experimentally observed that it produces
suboptimal performance in general due to its lack of dynamism. On the other hand, this method
would work well with stationary assumptions with servers offering similar capabilities.
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Figure 11. Combined cost with CA-S in price scenario-II.

8.3. Parameter b

Figure 12 shows experimental evidence of the performance of CA-S using different choices for the
learning automaton (see Section 4): SRP (b = a = 0.078), SRI (b = 0), and SRP-ε (b << a, a = 0.078,
b = 0.006). The results suggest that SRP is the best choice given its performance compared to the other
two models.
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Figure 12. Influence of penalty parameter b.
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9. Conclusions

We have proposed a dynamic method for web request routing among replicated and
geographically distributed servers that operate under the authority of different electricity markets.
The Cost Aware S-model Reward Penalty Epsilon (CA-S) method effectively exploits the spatial-temporal
price and performance differences of the servers available to reduce the average total cost as compared
to conventional methods. The proposed CA-S method continuously balances energy costs and revenue
losses that are associated with high-latency web responses when routing web requests. We have
reported on the sensitivity of the CA-S to the various parameters used by the algorithm through both
simulation and experimentation in CloudLab. We considered the two test scenarios. In one scenario,
the server with the lowest delay had the lowest electricity cost rate. The opposite case was represented
in the second scenario. Our results indicated that CA-S provides in general better performance than
related methods (round robin and minimum cost flow) regardless of the test scenario. Our future
work explores the issues related to the use of multiple proxies at distributed locations to remove the
possibility of a single point of failure.
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