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Abstract: With the rapid development of cloud computing, the demand for infrastructure resources
in cloud data centers has further increased, which has already led to enormous amounts of energy
costs. Virtual machine (VM) consolidation as one of the important techniques in Infrastructure
as a Service clouds (IaaS) can help resolve energy consumption by reducing the number of active
physical machines (PMs). However, the necessity of considering energy-efficiency and the obligation
of providing high quality of service (QoS) to customers is a trade-off, as aggressive consolidation
may lead to performance degradation. Moreover, most of the existing works of threshold-based VM
consolidation strategy are mainly focused on single CPU utilization, although the resource request on
different VMs are very diverse. This paper proposes a novel self-adaptive VM consolidation strategy
based on dynamic multi-thresholds (DMT) for PM selection, which can be dynamically adjusted by
considering future utilization on multi-dimensional resources of CPU, RAM and Bandwidth. Besides,
the VM selection and placement algorithm of VM consolidation are also improved by utilizing
each multi-dimensional parameter in DMT. The experiments show that our proposed strategy has
a better performance than other strategies, not only in high QoS but also in less energy consumption.
In addition, the advantage of its reduction on the number of active hosts is much more obvious,
especially when it is under extreme workloads.

Keywords: self-adaptive VM consolidation; dynamic multi-thresholds; energy consumption; QoS;
IaaS clouds

1. Introduction

Infrastructure as a Service (IaaS) has been very popular in the cloud computing area over the
past few years. Popular IaaS cloud providers, such as Rackspace and Amazon EC2, are delivering
these virtual resources to customers in different data centers over the Internet. However, due to the
huge demand for cloud computing, thousands of large-scale cloud computing centers have been
established, which leads to a great deal of power consumption [1]. The main reason of such high
energy consumption is not the power consumption by large quantities of hardware, but the inefficient
usage of these cloud resources. Therefore, trying to develop adaptive strategies to dynamically adjust
each resource in cloud data centers is very important from an energy-efficiency perspective.

One of the solutions for improving energy efficiency is to leverage the capabilities of virtualization
technology [2], which improves the efficiency of resource utilization by sharing a physical machine(PM)
among multiple virtual machines (VMs). The live migration [3] of virtual machine to dynamically
scheduled resource can transfer VMs from one PM to another, while keeping the services provided by
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the corresponding VM still available. This technique makes it possible to dynamically optimize the
placement of VMs in the different purpose of energy efficiency [4] or load balance [5], according to the
resource usage at any time.

The key mechanism to improve energy efficiency in cloud data centers is called VM
consolidation [6], which aims at migrating VMs into a lower number of PMs to increase the utilization
of resources in cloud data centers. However, in some scenarios, packing too many VMs into one
single PM may lead to poor Quality-of-service (QoS); since VMs on one PM always share the same
underlying physical resources. Therefore, VM consolidation strategies, designed to dynamically adjust
VMs’ placement, should comprehensively ensure reliable QoS, which is often defined via Service Level
Agreements (SLAs) [7]. Besides, energy consumption [8] and VM migration costs [1] during each VM
consolidation step should also be taken into consideration.

Threshold-based strategy [6] uses upper and lower threshold to select proper source PM, which is
often considered as the first step of VM consolidation. The key point of these threshold-based strategies
can be concluded as comparing each PM’s current status with the defined threshold that is either static
or adaptive [1]. Although researches on static threshold [9] show that set 0.6 as the upper threshold
of CPU utilization could achieve a better performance in energy consumption and VM migrations,
it still cannot achieve good performance in SLA violation, due to the dynamic resource usage in
an IaaS environment.

Different from static method, adaptive threshold strategy can leverage the real-time usage of
different resource to dynamically adjust its threshold. Most of the existing studies [1,4,9,10] only
consider one resource demand such as CPU utilization while ignoring other infrastructure resource
requests like memory or bandwidth, etc. However, the resource requirement of different workloads,
like computing-intensive, input and output (I/O)-intensive or hybrid-intensive, are very diverse [5],
as computing-intensive workloads usually call for more CPU/RAM resources, while I/O-intensive
workloads prefer consuming more network bandwidth. Besides, selecting a VM only based on one
resource will cause saturation in terms of this resource and can lead towards no further improvement
in utilization with other types of resources underutilized [11].

Based on that, we propose a novel self-adaptive VM consolidation strategy based on the dynamic
multi-thresholds adjustment mechanism, which is conducted by comparing the predicted future
requests of each multi-dimensional infrastructure resources with their current environment status.
The dynamic multi-thresholds are used for PM selection, as the first step in VM consolidation.
In addition, an improved VM selection algorithm and a modified VM allocation algorithm are proposed,
each of which belongs to the next two steps of VM consolidation. Our contributions of this work are
as follows:

(1) We define each parameter of our proposed multi-thresholds, as well as a dynamic adjustment
mechanism for these parameters. The selection of each overload or underload PM (source PM)
based on the multi-thresholds strategy can perfectly meet different VM consolidation requests.

(2) We improve the VM selection algorithm MW-MVM (multi-weight VM migration) by utilizing
the multi-dimensional parameters of our proposed multi-dynamic threshold. The selection
of target VM based on this algorithm can get a better performance in migration costs and
energy consumption.

(3) We modify the VM placement algorithm MW-BF (multi-weight Best Fit) for the allocation of
target migration VMs and new VMs requested by users on physical nodes. The experiments
show that our modified algorithm can efficiently reduce SLA violation, as well as the number of
active hosts.
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2. Preliminaries

2.1. Virtual Machine Consolidation

The procedure of VM consolidation can be comprised of three core components: (1) Source PM
selection, (2) Target VM selection and (3) VM placement. In (1), a set of PMs are selected for VMs to
migrate out. This component takes all the PMs and VMs as input and selects one or more PMs as the
source PM. In (2), one or more VM(s) are selected from a source PM for migration. This component
takes the source PM as input which has been selected by step (1) and is going to select one or more
VMs from this PM to a different PM. In (3), a PM is selected to hold the VM selected from (2) or the
new VM requests.

As portrayed in Figure 1, VMs are scattered in multiple PMs before VM consolidation is applied,
with PM 2 only holding one VM while PM 1 holds 5 VMs at high overload. On one side, PMs at
overload status can easily cause high SLA violation. On the other side, underloaded PM 2 with only
one VM in it still needs to remain alive, which increases unnecessary energy costs. Therefore, if no VM
consolidation strategy is interposed to the inefficient usage of computing resources, much extra energy
will be wasted, as well as lower QoS.
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Figure 1. Virtual machine (VM) consolidation.

Based on different threshold strategies of VM consolidation, the status of each PM can be divided
as overload, moderate or underload. If a PM is defined as underload, then all VMs within it would
be migrated out and it will then be set to the sleep mode or shut down to reduce energy costs (PM 2).
While VMs in the moderate PM will not be migrated, this PM would become one of the target PMs
for some VMs to migrate in (PM 3). Besides, in order to prevent a potential high SLA violation,
an overload PM would migrate some selected VMs to others (PM 1). Therefore, after adding
VM consolidation strategy, there are only two servers alive in the system an both of them are at
moderate status. In addition, the underload server (PM 2) is shut down, which further decreases the
energy consumption.

2.2. System Architecture

We consider that the cloud data center in this paper contains m heterogeneous PMs,
PM = 〈PM(1), PM(2), . . . , PM(m)〉. Each PM consists of a local manager, a Virtual Machine
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Monitor (VMM), some virtual machines and their physical resources, such as CPU, RAM and Network
bandwidth. The VMM in every local host (Figure 2) are used to supervise their real-time status,
as different VM consolidation strategies can be operated within each VMM by the contact of global
manager and local manager, yet without any manual adjustment.Future Internet 2018, 10, x FOR PEER REVIEW  4 of 17 

 

Host nHost 2Host 1

request

SaaS

PaaS

IaaS

Cloud

Services

1

Global manager

...

2 2 23 3 3

Local 

Manager
VMM

VM 1 VM 2 VM n

4

5 5 5

Local 

Manager
VMM

VM 1 VM 2 VM n

4
5 5 5

Local 

Manager
VMM

VM 1 VM 2 VM n

4

5 5 5

Physical resources Physical resources Physical resources

 

Figure 2. Centralized model of cloud resource management. 

1. User submit request of the Infrastructure resource on the cloud, including CPU, RAM, etc. 

2. The global manager collects information from local ones to maintain the whole system resource 

utilization. 

3. The global manager optimizes of the placement of VM in reference of VM consolidation strategy, 

as well as the whole system status. 

4. The local managers resize VMs according to their resource needs and decide when and which 

of the selected VMs should be migrated out. 

5. VMMs in each node execute the operation of resizing and migrating to VMs, as well as the 

adjustment of their power states. 

After repeating these steps, all nodes in this cloud data center can be optimized by different user-

defined consolidation strategies. Most of the idle nodes are then kept switched off, whereas some 

temporary nodes are kept in sleep mode (or shut down) to allow the system to rapidly respond to 

load peaks. 

2.3. Formulations and Assumptions 

Let us consider that a large cloud data center provides cloud resources in the form of virtual 

machine instances. Usually, there are three main steps for VM consolidation: Source PM selection, 

Target VM selection and Target PM selection. For the first step of selecting Source PM, threshold-

based method is used to determine whether a PM is overloaded or underloaded. If a PM is considered 

to be overloaded, which means its resource utilization is over the corresponding upper threshold, 

then it will be selected as the Source PM and some potential VMs in it will be migrated out to maintain 

the QoS; if a PM is determined to be underloaded based on the comparation of lower threshold, then 

all VMs in this PM will be migrated out to minimize energy consumption. 

To formulate the problem (Table 1), a physical server can be uniquely identified in the form of 

𝑃𝑀(𝑗) = < 𝑉𝑀𝐿𝑖𝑠𝑡 , 𝑃𝑗 , 𝑆𝑡𝑎𝑡𝑢𝑠 > , where: 𝑉𝑀𝐿𝑖𝑠𝑡  is the list of all VMs on 𝑃𝑀(𝑗) ; 𝑃𝑗  represents all 

resource utilization ratio on 𝑃𝑀(𝑗) and can be divided into different kinds of resources of CPU, 

RAM and network bandwidth in the form of  < 𝑃𝑗
𝑐 , 𝑃𝑗

𝑟 , 𝑃𝑗
𝑏 >; Status shows the current workload of 

this PM, such as overloaded, moderate or underloaded; and j the unique identifier of a server which 

arrange from 1 to 𝑛 . Thus, we can denote 𝑚  active servers in a cloud center as 𝑃𝑀 = <

𝑃𝑀(1), 𝑃𝑀(2), … , 𝑃𝑀(𝑚) > . Similarly, the VM instance is represented in the form of 𝑉𝑀(𝑖) =<

𝑃𝑀(𝑗), 𝑉𝑗  >, where 𝑃𝑀(𝑗) shows the PM where this VM belongs to, 𝑉𝑗  represents each resource 

utilization on it, and i is the unique id of a VM which arrange from 1 to 𝑚. 

Figure 2. Centralized model of cloud resource management.

1. User submit request of the Infrastructure resource on the cloud, including CPU, RAM, etc.
2. The global manager collects information from local ones to maintain the whole system

resource utilization.
3. The global manager optimizes of the placement of VM in reference of VM consolidation strategy,

as well as the whole system status.
4. The local managers resize VMs according to their resource needs and decide when and which of

the selected VMs should be migrated out.
5. VMMs in each node execute the operation of resizing and migrating to VMs, as well as the

adjustment of their power states.

After repeating these steps, all nodes in this cloud data center can be optimized by different
user-defined consolidation strategies. Most of the idle nodes are then kept switched off, whereas some
temporary nodes are kept in sleep mode (or shut down) to allow the system to rapidly respond to
load peaks.

2.3. Formulations and Assumptions

Let us consider that a large cloud data center provides cloud resources in the form of virtual
machine instances. Usually, there are three main steps for VM consolidation: Source PM selection,
Target VM selection and Target PM selection. For the first step of selecting Source PM, threshold-based
method is used to determine whether a PM is overloaded or underloaded. If a PM is considered to be
overloaded, which means its resource utilization is over the corresponding upper threshold, then it will
be selected as the Source PM and some potential VMs in it will be migrated out to maintain the QoS;
if a PM is determined to be underloaded based on the comparation of lower threshold, then all VMs in
this PM will be migrated out to minimize energy consumption.

To formulate the problem (Table 1), a physical server can be uniquely identified in the form of
PM(j) = 〈VMList, Pj, Status〉, where: VMList is the list of all VMs on PM(j); Pj represents all resource
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utilization ratio on PM(j) and can be divided into different kinds of resources of CPU, RAM and
network bandwidth in the form of 〈Pc

j , Pr
j , Pb

j 〉; Status shows the current workload of this PM, such as
overloaded, moderate or underloaded; and j the unique identifier of a server which arrange from 1
to n. Thus, we can denote m active servers in a cloud center as PM = 〈PM(1), PM(2), . . . , PM(m)〉.
Similarly, the VM instance is represented in the form of VM(i) = 〈PM(j), Vj 〉, where PM(j) shows
the PM where this VM belongs to, Vj represents each resource utilization on it, and i is the unique id of
a VM which arrange from 1 to m.

Table 1. Notations and descriptions.

Notations Descriptions

VM(i) The ith VM (virtual machine), i ∈ [1, m]
PM(j) The jth PM (physical machine), j ∈ [1, n]
PMList list of all PMs
VMList list of all VMs on PM(j)

P∗j utilization ratio on PM(j) of parameter *
V∗i utilization ratio on VM(i) of parameter *
t∗ current lower threshold on parameter *
T∗ current upper threshold of parameter *

U∗pmj allocated resource * on PM(j)
C∗pmj total capacity of resource * on PM(j)
U∗pjvi allocated resource * on VM(i) of PM(j)
R∗pjvi request resource * on VM(i) of PM(j)

Pj all resource utilization ratio on PM(j)
WVM migrate weights of all VMs on PM(j)
WPM allocate weights of all PMs

SourcePM PMs need to execute migration
SelectVM list of selected VMs to migrate out
TargetPM list of target PMs to migrate in

* can represent CPU(c), RAM(r) or Bandwidth(b).

In this paper, what we mainly focus on is to propose a novel strategy for VM consolidation, aiming
at saving much energy consumption and reaching high QoS. While in the process of virtual machine
integration, a frequent and indispensable step is VM migration, which will affect the actual computing
of resource utilization in each PM to some extent. Thus, we made the following assumptions of VM
migration in the process of our consolidation strategy:

Assumption 1: The VM selected to execute migration does not cause significant resource
consumption during its migration process.

Assumption 2: The time for the dynamic migration of VMs is not counted to compare the efficiency
of different strategies.

For Assumption 1, in view of the numerous details in the process of VM migration, many scholars
specialize in this area to research efficient strategy for dynamic VM migration. Yet this article
does not consider too much detail of it and we mainly focus on the VM consolidation strategies.
For Assumption 2, the length of the migration time of the each VM is not used as the standard for
comparing the advantages or disadvantages of different strategies, as there is no correlation between
migration time and consolidation strategies. Based on that, when we calculate the cost of VM migration,
we mainly consider the number of VM migrations as an important basis to measure the merits of
different consolidation strategies, and the following section will describe more details of our proposed
VM consolidation strategy.
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3. Novel Self-Adaptive VM Consolidation Strategy

3.1. Dynamic Multi-Thresholds (DMT)

As mentioned earlier, different types of applications may share one physical resources, fixed
thresholds are not suitable for environments with dynamic workloads. Thus, the system should
adaptively adjust its behavior by considering different system workloads. Based on that, we propose
a novel adjustment mechanism for threshold-based VM consolidation by comparing the current
threshold of each defined parameter with their future value, which is predicted by forecasting each
VM’s future utilization on CPU, RAM and Network bandwidth. To further efficiently minimize the
consumption of energy during each consolidation, two other parameters of SLA and VM migration
costs are taken into consideration. Thus, our proposed dynamic multi-thresholds can be represented
as follows:

T = 〈Tl , Tu, TSLA, Tm〉 (1)

The multi-thresholds T is defined by a combination threshold of lower utilization Tl ,
upper utilization Tu, SLA violation ratio TSLA and the number of VM migration Tm. Below tc, tr, tb
represents the lower thresholds of CPU utilization ratio, RAM utilization ratio and Network bandwidth
consumption, respectively, while Tc, Tr, Tb represents the upper ones.

Tl = 〈tc, tr, tb〉, Tu = 〈Tc, Tr, Tb〉 (2)

The adjustment of dynamic multi-thresholds to timely fit the whole cloud resources can be
simplified into two main parameters, including Tl and Tu. These two thresholds can be efficiently
calculated by forecasting each future utilization ratio based on Linear Regression (Section 3.1.1).
While the parameter of TSLA can be viewed as a limitation factor of dynamic threshold by deciding
whether to change current threshold or not (Section 3.1.2). Tm will be discussed to further improve the
selection of VM in Section 3.2.

3.1.1. Predict Future Utilization on Linear Regression

Since the nonlinear regression has larger time and computational overhead than linear regression,
which affects the overall system load to a certain extent, the value obtained by the prediction algorithm
is only used as a reference for the threshold adjustment. If too much computational overhead is spent
on the prediction while the subsequent adjustment mechanism is ignored, this is not conducive to
the dynamic adjustment of the threshold. Based on the above concern and the experiment results,
we select linear regression as our prediction algorithm and the next section will give the details of
mechanism for the dynamic adjustment of the specific threshold.

As Linear Regression [12] is a popular approach to statistically estimate the relationship between
different inputs and outputs, it can approximate a regression function by modeling the relationship
between input and output variables in a straight line, where α1 and α2 are regression coefficients.

y = α1x + α2 (3)

To measure the goodness of a regression function is to compare the predicted output variable (ŷ)
with the real one (y) in data point i, as their difference εi can be considered as the magnitude of the
residual at each of the n data points.

εi = yi − ŷi (4)

The proposed LR algorithm approximates a prediction function based on the linear
regression method. The function shows the linear relationship between the future and current CPU
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utilization in all hosts as follows: where α1 and α2 are regression coefficient parameters, while p̂c and
pc are the expected and current total CPU utilization values of all hosts, respectively.

p̂c = α1 pc + α2 (5)

Here α1 and α2 are calculated by estimating the k last CPU utilization in all hosts. In our
experiment, the value of k is set to 15 in our simulation, because the interval of utilization measurements
is eight minutes. The history value of each resource utilization over two hours ago is significant to
forecast its short-time future utilization.

Moreover, the value obtained by the prediction algorithm is only used as a reference for the
threshold adjustment, and the predicted value is not completely used as a future threshold value.
Therefore, the following adjustment mechanism can be seen as a secondary selection and adjustment
of the predicted value. That is to say, the dynamic adjustment mechanism of the thresholds shown
in Section 3.1.2 not only considers the value predicted by linear regression obtained in this section,
but also compares the current overall workload of the system.

3.1.2. DMT Adjustment Mechanism

To efficiently balance the consumption of energy cost and SLA violation, the rules of dynamically
adjusting parameter tc and Tc within Tl and Tu are restricted to SLA violation threshold TSLA.
We divided the problem into the following two situations, where the CurrentSLA can be calculated by
statistic Interquartile range of SLA violation on all hosts.

• Situation 1: CurrentSLA < TSLA

Since the CurrentSLA is below the threshold of SLA violation (Table 2), our purpose of this
situation can mainly focus on energy saving. When the predicted utilization p̂c of all hosts is greater
than the current threshold Tc in the case of the parameter of CPU, this means that there will be many
CPU requests by VMs in the future. In such a case, we choose to replace Tc by p̂c, since the higher the
upper threshold, the less VM migration will take place and the more the energy will be saved. At the
same time, when p̂c is below Tc, keep the previous value of Tc instead of replacing. If p̂c is below the
current lower threshold Tl in CPU parameter tc, this means that there will be fewer requests of CPU
resources in the future. In such a case, we choose to replace tc by p̂c, since the lower the Tl , the more
the hosts will be switched to sleep mode to eliminate the idle power consumption, and all VMs that
are on low resource utilization host will be migrated to other suitable hosts. Otherwise, keep tc as its
previous value.

Table 2. DMT adjustment when CurrentSLA < TSLA.

Predicted Utilization (if) Threshold Adjustment (then)

p̂c > Tc Tc = p̂c
p̂c < Tc Tc
p̂c < tc tc = p̂c
p̂c > tc tc

• Situation 2: CurrentSLA > TSLA

Unlike situation 1, when CurrentSLA is higher than TSLA, this means that situation 2 has already
caused much SLA violation in the current stage (Table 3). Since too much SLA violation will lead to
a lower QoS, the key to dealing with this problem is to reduce the workload of high load hosts. Based
on the goal of dropping SLA violation, we choose to keep the previous upper value Tc when p̂c is
higher than Tc and replace the Tc of p̂c when p̂c is lower than Tc because the higher upper threshold
may easily lead to high SLA violation. On the other hand, when p̂c is lower than tc, keeping the
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precious lower threshold will help prevent low load hosts from migrating all VMs to other hosts which
will help reduce SLA violation. Similarly, when p̂c is higher than tc, replacing tc of p̂c could drop the
SLA violation and thus help improve the QoS.

Table 3. DMT adjustment when CurrentSLA > TSLA.

Predicted Utilization (if) Threshold Adjustment (then)

p̂c > Tc Tc
p̂c < Tc Tc = p̂c
p̂c < tc tc
p̂c > tc tc = p̂c

For a brief description, we only take the threshold of CPU utilization (tc, Tc) of all hosts as
an example, showing how it dynamically adjusts its current thresholds by comparing its current value
with the predicted one. Similarly, the procedure of adjusting the other two parameters of RAM (tr, Tr)
and Bandwidth (tb, Tb) can also following these steps. Many details for selecting source PM based on
this DMT are shown below.

3.1.3. Source PM Selection Based on DMT

To select a proper source PM, the first step is to detect their workload based on the comparation
of each parameter in DMT (Algorithm 1).

Algorithm 1 Load Detection (LD)

1 Input: PM(j)
2 Output: load_status
3 foreach PM(j) in PMList

4 if (some parameter * in PM(j) fit P∗j > T∗)

5 load_status = 1
6 else if (all parameter * in PM(j) fit P∗j < T∗ )

7 load_status = 2
8 else
9 load_status = 0
10 return load_status

Here we take three parameters (CPU, RAM, Bandwidth) of the whole system to reflect its total
resource utilization by each PM with different numbers of virtual machines in it (Algorithm 2).
For each host, if one of its parameters is over the upper threshold or all of them are below the lower
threshold, it will be selected as one of the target physical machines in SourcePM which contains the
migration list of all target hosts (Table 1). At the same time, PMs with higher SLA violation than the
threshold TSLA will first be selected to SourcePM, and will be set to higher priority.
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Algorithm 2 Source PM Selection

1 Input: PMList

2 Output: SourcePM

3 foreach PM(j) in PMList

4 if (PM(j)SLA > TSLA) then
5 SourcePM ← PM(j)
6 else
7 if (LD (PM(j)) == 1) then
8 SourcePM ← PM(j)
9 SelectVM ← select VMs on VM selection policy
10 if (LD (PM(j)) == 2) then
11 SourcePM ← PM(j)
12 SelectVM ← all VMs in PM(j)
13 set PM(j) to sleep mode or switch off
14 return selected source PMs

To avoid too much energy consumption caused by the frequent migration of VMs and the low QoS
caused by the short shut down during each migration, we decided to prioritize the implementation
order of VM consolidation. That is, first migrate some VMs from overload hosts to lower load hosts,
and then set all VMs on hosts with low load to migrated out and switch these hosts to sleep mode or
shut down.

Thus, DMT has been set to adaptively fit the cloud environment of source PM selection until now,
while the parameter of Tm in multi-thresholds will later be taken into consideration in Section 3.2 for
helping the selection of target VM during VM consolidation. Once a PM is detected to be overloaded or
low load by our defined dynamic multi-thresholds, the next step is to select proper VMs to migrate from
this host and we will further discuss the adaptive VM consolidation strategies on the improvement of
VM selection and placement based on the dynamic multi-thresholds in Sections 3.2 and 3.3.

3.2. The Improved MW-MVM Algorithm for VM Selection

To efficiently choose proper target VMs on each selected SourcePM with fewer VM migrations, [11]
first proposed MVM (Minimization of VM Migration) algorithm. The main idea of this method is to
sort the CPU utilization of each VM in descending order, and then select the targeted VM to migrated
out in two criterions. One of the criterion is that the VM’s CPU utilization should be higher than
the difference between the upper threshold and each PM’s present overall CPU utilization. Another
criterion is that, compared to values on all VMs, the difference between the new utilization and the
upper threshold on each selected VM is the minimum. If there is no suitable VM that satisfied these
two criteria, the VM in SourcePM that has the highest resource utilization will be selected. Unless the
new utilization of this source PM is under the upper threshold, all of the above processes will not be
repeated any more.

The inadequacy of this method is that it only takes one parameter (CPU utilization) into
consideration, while different overload PMs usually have different requests on other resources.
Based on that, we try to improve this method within our multi-thresholds by using different weights
to efficiently allocate VMs. Below is an example showing the detail of our improved method.
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Assume that the current multi-thresholds are T = 〈Tl , Tu, TSLA, Tm〉, and the load thresholds
are Tl = 〈tc, tr, tb〉, Tu = 〈Tc, Tr, Tb〉. The utilization ratio of resource * on PM(j) can be calculated as

P∗j =
U∗pmj

C∗pmj
=

∑m
i=1 U∗pjvi

C∗pmj
(6)

where * represents CPU in c, RAM in r, Bandwidth in b, respectively. Thus, resource utilization ratio
on PM(j) can be expressed as Pj =

[
Pc

j , Pr
j , Pb

j

]
.

We define the formula for the relative difference Q∗j between upper threshold and actual utilization
of resource * on PM(j) as

Q∗j =

{
P∗j − T∗, i f (P∗j > T∗)

0, else
(7)

Thus, the relative different of PM(j) is Qj =
[

Qc
j , Qr

j , Qb
j

]
, which can then be used as the

weights for choosing minimum number VMs since the weights showing the maximize corresponding
overload of each resource on PM(j). The weights of all VMs on PM(j) can then be calculated as

WVM = U∗pjvi
·Qj

T

=
[

Uc
pjvi

Ur
pjvi

Ub
pjvi

]
·

 Qc
j

Qr
j

Qb
j



=


Wpjv1

Wpjv2
...

Wpjvm


(8)

Here U∗pjvi
represents the allocated resource in each VM, which indicates the number of various

resources that the virtual machine has occupied and Qj
T calculated by (7) shows the difference of each

threshold, as the higher value of each resource means the more corresponding of migration requests.
Thus, by multiplying U∗pjvi

and Qj
T , the weight of all VMs in PM(j) can be calculated. For VM(i) in

PM(j), its weight is represented as Wpjvi , which is used to decide the selection of target VM, as well as
the number of VMs that need to be migrated out.

To minimize VM migration times, all weights are sorted in descending order. As the higher the
weight is, the higher the corresponding request is, the lower the migration times will be. The host
(PM(j)) first select the VM with the highest weights and add it to the waiting list, then it will be
checked again for being overload (Algorithm 3). If it is still considered as being overloaded, the VM
selection policy is applied again to select another VM to migrate from the host. This will be repeated
until the host is considered as being not overloaded. The last step is to check the migration number of
these selected VMs in the waiting list. If the migration number of some selected VMs has gone over
the set threshold Tm, it will not be added, otherwise, VMs in the waiting list will be added to SelectVM
which contains all VMs that need to be migrated.
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Algorithm 3 Improved Multi-weights MVM policy (MW-MVM)

1 Input: SourcePM, VMList

2 Output: SelectVM

3 foreach PM(j) in SourcePM

4 SelectVM = NULL
5 calculate WVM using formula (8)
6 order = WVM. sortDescendingOrder()
7 foreach VM(i) in PM(j)
8 waitingList← VM(i) with highest value in order
9 PM(j)← PM(j)−VM(i)
10 update P∗j of PM(j)

11 if (LD (PM(j)) = 0) then
12 Break
13 foreach VM(i) in waitingList
14 if (migration_num(VM(i) < Tm)) then
15 SelectVM ← VM(i)
16 if (SelectVM 6= NULL)
17 return SelectVM

Without loss of generality, all overload hosts can follow these steps to select the minimum number
of VMs. While for low load hosts, all VMs within it will be migrated out and there is no need to execute
this VM selection policy before VM allocation and the placement of these selected VMs in the waiting
list to which PM is discussed in the next section.

3.3. VM Placement Using Modified MW-BF Algorithm

The VM placement is similar to a bin packing problem on variable bin sizes and prices, where bins
represent the physical nodes; items are the VMs that had to be allocated; bin sizes are the available
resource capacities (CPU, RAM, Bandwidth, etc.) of the nodes; and prices correspond to the power
consumption by the nodes. As the bin packing problem is NP-hard, to solve it we apply a modification
of the Best Fit (BF) algorithm by considering the multi-weight of the VM that needs to be allocated.
In our modification (MW-BF), we sort all the PMs in the ascending of its resource utilization ratio,
multiplied by the weights of the allocating VM. This allocates each VM to a host that provides the
least increase of the power consumption and chooses the most power-efficient one by leveraging the
heterogeneity of each node.

Use matrix P∗ to represent each resource utilization ratio of all PMs, defined as:

P∗ =


P∗1
P∗2
...

P∗m

 =


Pc

1 Pb
1 Pr

1
Pc

2
...

Pb
2
...

Pr
2
...

Pc
m Pb

m Pr
m

 (9)

The product of multi-weights and resource utilization of each PM for allocating VM selected from
PM(j) can be calculated as:

WPM = P∗· Qj
T =


Pc

1 Pb
1 Pr

1
Pc

2
...

Pb
2
...

Pr
2
...

Pc
m Pb

m Pr
m

·
 Qc

j
Qr

j
Qb

j

 (10)
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The pseudo-code for the algorithm is presented in Algorithm 4. The complexity of the algorithm
is n·m, where n is the number of nodes and m is the number of VMs that have to be allocated.
After these steps, the waiting list TargetPM then contains PMs that need to be migrated in.

Algorithm 4 Modified Multi-weights Best fit (MW-BF)

1 Input: PMList, SelectVM

2 Output: placement of VMs
3 SelectVM. sortDescendingUtilization()
4 foreach VM in SelectVM do
5 calculate each WPM using Formula (10)
6 WPM. sortAscendingUtilization()
7 if PM has enough resource for VM then
8 TargetPM ← PM
9 minEnergy←MAX
10 allocatedPM← NULL
11 foreach PM in TargetPM do
12 energy← estimateEnergy (PM, VM) in (13)
13 if energy < minEnergy then
14 allocatedPM← PM
15 minEnergyr← energy
16 if allocatedPM 6= NULL then
17 allocate VM to allocatedPM
18 return placement of VMs

The VM first selects the PM with least WPM and adds it to the waiting list (TargetPM), then it
will be checked for being overload. To maximize the utilization of the remaining resource on these
destination PMs, all product WPM are sorted in descending order. In general, the least the product of
resource utilization and weights is, the more the corresponding resource it will leave, which means
that the VM would have enough remaining resources to use and thus it could efficiently decrease the
cost of the frequent migration of VMs.

4. Experiments and Results

4.1. Experiment Setup

It is essential to evaluate the proposed VM consolidation strategy on a large-scale experiment
environment with a real infrastructure since the target system is an IaaS Cloud. Yet to conduct
repeatable experiments on a real infrastructure is extremely difficult due to the requirements of
evaluating and comparing the proposed algorithm. In contrast to alternative simulation toolkits
(SimGrid or GangSim), CloudSim [13] allows the modeling of virtualized environments, supporting
on-demand resource management and configuration.

Therefore, we choose the CloudSim toolkit 4.0 to simulate our proposed strategy, as it is
a modern simulation framework aimed at Cloud computing environments. The experiments selected
50 heterogeneous physical hosts. Each physical node is allocated with 3 to 5 virtual machines
initially. When a node is determined as overload or underload compared to our defined dynamic
multi-thresholds, the proposed self-adaptive VM consolidation strategy will be triggered. The CPU
MIPS (millions instrument per seconds) ratings are equivalent to Amazon EC2 instance types. The users
submit requests for provisioning of 200 heterogeneous VMs. Each VM is randomly assigned a workload
trace from one of the servers from the workload data. Initially, VMs are allocated according to their
parameters assuming 100% utilization. The configuration is shown in Table 4.
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Our proposed dynamic multi-thresholds strategy (DMT) is compared with four threshold
adjustment strategies. The first strategy uses a static threshold (ST) in which the threshold never
changes during the consolidation. The threshold sets to 70% for detecting an over-loaded host and 30%
for detecting a low-loaded one. The next two strategies adjust the utilization threshold dynamically
based on the statistic method by the median absolute deviation (MAD) and the interquartile range
(IQR) while the fourth method (LiRCUP) considers the prediction of CPU utilization on each PM, as it
selects the higher one to be the next source PMs instead of adjusting the threshold [14]. Among this
strategy, the first three are the benchmark algorithms presented in CloudSim (ST, MAD, IQR) [1] and
the last one (LiRCUP) is an improved single-parameter prediction algorithm.

To compare the performance of the proposed dynamic multi-thresholds strategy, the algorithm
on VM selection and placement of the above five strategies (ST, MAD, IQR, LiCUP, DMT) are the same,
with Minimum VM Migration algorithm (MVM) for VM selection and Best Fit algorithm (BF) for
VM placement. For the sixth strategy DMT (MW) in our experiment, its VM selection algorithm is
MW-MWM, a modified algorithm of MVM shown in Section 3.2, and its VM placement algorithm is
MW-BF shown in Section 3.3. The DMT (MW) strategy is added to further compare the performance
with DMT, in terms of the improved VM selection algorithm (MW-MWM) and placement algorithm
(MW-BF).

Table 4. Experiment configuration table.

Parameter Unit Value

Number of PMs 50
Number of VMs 200

CPU core performance of PMs MIPS {2000, 2500, 3000, 4000}
Memory of each PM G {1, 2, 4, 8}

Bandwidth of each PM Mbps {500, 800, 1000}
CPU core performance of VMs MIPS {1000, 1500, 2000, 3000}

Memory of each VM G {0.5, 1, 2, 4}
Bandwidth of each VM Mbps {100, 200, 400}
initial threshold of Tl < tc, tr, tb > < 0.3, 0.2, 0.2 >
initial threshold of Tu < Tc, Tr, Tb > < 0.7, 0.8, 0.8 >

initial threshold of TSLA 4%
initial threshold of Tm 10

4.2. Evaluation Metrics

• SLA violation

In our experiment, the QoS is defined via SLA violation, as the ratio of unallocated resources
demanded by applications and the total requested resources. The unallocated resource can be
calculated as the difference between the requested resource (R∗pjvi

) of all VMs and the actual allocated
resources (U∗pmj) of all PMs (1). Here * can be represented as CPU, RAM and Bandwidth, respectively
and each parameter of this metrics considers the whole life time on each VM.

SLA =
∑N

j=1
∫ T

t (U∗pmj(t)−∑M
i=1 R∗pjvi

)dt

∑N
j=1

∫ T
t U∗pmj(t)dt

(11)

where M is the number of VMs in PM(j), N is the number of PMs.

• Energy consumption

Our method will take CPU utilization in priority when considering energy-efficiency, compared
to the RAM and Bandwidth. Research on [15] shows that an idle host consumes approximately 70%
power of a fully utilized one and the energy costs of each server can be described on both of the
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power cost and the CPU cost, which can be calculated within a linear relationship. Based on that,
we defined our power consumption metrics as follows (2), where Pmax is set to 250 W and c represents
CPU utilization.

P(c) = 0.7·Pmax + 0.3·Pmax·c = Pmax·(0.7 + 0.3·c) (12)

Furthermore, according to each different workload, the changing utilization of CPU can be
represented as a function of time: c(t), Therefore, E in (3) is used to define the total energy consumption
by a host.

E =

T∫
t

P(c(t))dt (13)

4.3. Experiment Results and Analysis

The simulations have been run on 10 h of each workload category to determine the algorithm
that delivers the best energy consumption, SLA violation and number of VM migrations over different
workload types. The optimization algorithms have been run on each iteration of the simulation time.
The results are shown in Figure 3 as below:
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Figure 3. Three aspects of performance on each VM consolidation strategy over different
workload types. (a) energy consumption. (b) SLA violation. (c) number of VM migrations.

From the simulation results in Figure 3, we can see that when the entire system is under low
workload or high workload, our proposed algorithm is superior to the other four algorithms in energy
consumption, SLA violation rate, and VM migrations. When the overall system load is medium
workload, the consumption of energy and VM migrations of this algorithm are not much different
from that of other algorithms, but the rate of SLA violation is obviously lower.

In terms of energy saving, when the system is under a low workload, the DMT strategy improves
the energy saving on about 41.9% (3.1 KWh) over the MAD algorithm and improves 25.8% (4.5 KWh)
over the LiRCUP when the system is at a high load. For SLA violation rate, when the system is at
a high load, DMT algorithm and DMT (MW) algorithm both effectively reduce the violation rate of
the overall system in almost 2%. While for VM migration costs, the strategy of this article results in
fewer VM migrations, and the DMT (MW) strategy further reduces the number of virtual machine
migrations and thus reduces migration costs.

Figure 4 shows the number of active hosts at each moment (that is, the number of PMs that
still service VM tasks). When VMs are consolidated by using different strategies, the original hosts
with low loads will migrate out of all VMs they own and will be set to sleep mode or shutdown.
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Thus, counting the current number of active hosts can effectively reflect the effectiveness of the VM
consolidation strategy.

It can be clearly seen from Figure 4 that when the whole system is under low workload (a),
our proposed VM consolidation strategy can shut down a larger number of hosts and can reach a steady
state faster than any other strategies within less than 5 h; when the system workload is moderate (b),
the number of shut-down hosts among these six strategies is not much different, with LiRCUP having
the lowest number of active hosts; when the overall system is at high load (c), all these algorithms can
only shut down a few hosts. Although our proposed algorithm cannot reach a stable state quickly
in this situation, it still has the least number of active hosts, which effectively reduces the energy
consumption of the system.

Therefore, our proposed VM consolidation strategy based on DMT has more obvious advantages
in case of high workload and low workload, especially when it is combined with MW-MVM and
MW-BF algorithm on MW-DMT. This result is also consistent with the conclusion in Figure 1,
which further demonstrates the superiority of our proposed VM consolidation strategy based on
the dynamic multi-thresholds.
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Figure 4. The number of active hosts when adapting each consolidation strategy during 10 h. (a) when
under low workload. (b) when under medium workload. (c) when under high workload

5. Related Work

Virtual machine consolidation [6] is one of the techniques in a cloud resource management system
to increase the energy-efficiency of IaaS Cloud, since the failure of existing PMs or the addition of new
PMs are continuous events happening in cloud data centers. Nathuji and Schwan [16] first proposed
an architecture of energy management system for virtualized data centers where resource management
is divided into local and global policies. Srikantaiah et al. [17] then proposed a heuristic method to
handle the optimization over multiple resources, as they considered the VM consolidation as a bin
packing problem. Cardosa et al. [18] have leveraged the min, max and shares parameters of Xen’s
VMM to represent minimum, maximum and proportion of the CPU allocated to VMs sharing the
same resource.

Threshold-based VM consolidation strategy use upper and lower threshold values to identify
a PM as overloaded or underloaded, respectively. Secron [19] considers an upper threshold to
prevent PM from reaching 100% utilization with performance degradation. To select the proper
PMs for consolidation, Feller et al. [10] propose a static CPU threshold to detect under-loaded and
over-loaded PMs. However, although setting static thresholds is simple and appealing, it is not efficient
for an environment with dynamic workloads, since different types of application may be running on
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one single PM. Therefore, threshold values should be adjusted to each workload type and level, which
will help optimize the performance VM consolidation efficiently.

To dynamically consolidate the virtual machines in the procedure of selecting source PM,
Beloglazov [1] proposed adaptive upper and lower thresholds based on the statistical analysis of
the historical data while Farahnakian [14] propose a regression-based prediction model to forecast
resource utilization of both PMs and VMs. Recent research on adaptive threshold-based dynamic VM
consolidation algorithms [20,21] is using a similar solution, in which the threshold value adapts with
the change of different resource utilization. However, the above methods only consider single-resource
utilization of the infrastructure, yet do not consider other corresponding sources.

To try to consider other multiple resources, Lu Liu [22] researched the load balance of each
application among different virtual machines, but he did not consider the placement of each VM.
The research of Xu Jing [23] is consistent with ours; they use multi-resource to optimize the placement of
virtual machine but in order to realize the goals of the performance on power and temperature, they do
not focus on the study of thresholds as it gives only two sets of thresholds of each parameter, but each
threshold is set in static value. In general, although the above researches all consider multi-resources,
they do not focus on the optimization of threshold-based VM consolidation in the step for PM selection.

While in the second step of VM consolidation of VM selection, different algorithms are proposed.
VMs that have the highest correlation of the resource utilization with other VMs are selected, which
is called MC algorithm [4]. Another algorithm called MVM proposed in [24] shows that, it first sorts
the VMs in descending order with respect to CPU demand and then selects the VM that satisfies the
two author-defined criterions. HPG algorithm was also discussed by the same author, that is selecting
the VM with lowest ratio of actual resource usage to its initial claimed resource demand. The VM
which requires minimum time to complete the migration is selected for migration called MMT in [1],
while the migration time is estimated as the amount of RAM utilized by a VM divided by the spare
network bandwidth available for the PM.

However, apart from MMT, the rest of the VM selection algorithms only consider CPU demand
of VMs but ignore the memory or network bandwidth requirement of VMs. As argued by [11],
selecting a VM only based on CPU will cause saturation in terms of CPU and can lead towards no
further improvement in utilization while leaving other types of resources underutilized. It is highly
challenging to determine a single converging point representing the equivalent total resource demand
of a multitude of resource types, while different types of resources represent different dimensions [9].

6. Conclusions and Future Work

In this paper, we present a novel self-adaptive VM consolidation strategy based on dynamic
multi-thresholds (DMT) in IaaS Clouds. First, we define each parameter of the multi-thresholds,
including CPU, RAM, Bandwidth, SLA, VM migrations, as well as a dynamic adjustment mechanism
for these parameters of the threshold. After that, we improve the VM selection algorithm (MW-MVM)
based on this dynamic multi-threshold, which fully utilizes the multi-dimensional parameters of our
proposed dynamic threshold by predicting their future values. To further reduce the cost of VM
migration and improve the efficiency of VM consolidation, a modified VM placement algorithm is then
discussed (MW-BF). Finally, the experiments of the proposed strategy are performed on CloudSim,
compared with the three benchmark strategies and one prediction strategy. The simulation results show
that our proposed dynamic multi-thresholds strategy (DMT and DMT (MW)) for VM migration has
a good performance, not only in lower SLA violation, but also in less energy cost and VM migrations.
Particularly, these advantages of our proposed VM consolidation strategy are much superior than
other strategies when the whole cloud system is at high or low workload, as well as the reduction in
number of active hosts.

Furthermore, since the experimental objects in this paper are only 50 heterogeneous servers,
the number of PMs in the real cloud system is often as high as the tens of thousands. Thus, the effect
of energy-efficiency and QoS for VM consideration using our proposed strategy will be much more
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obvious, which will help further decrease carbon dioxide and overall energy consumption in IaaS
clouds. In the future, we plan to consider other different parameters in the multi-thresholds strategy
and will further explore the impact weights of each parameter. At the same time, we will also
focus on the modification of other VM selection and placement algorithms to further improve the
migration-efficiency and energy-efficiency of VM consolidation in IaaS clouds.
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