
future internet

Article

A Method for Filtering Pages by Similarity Degree
based on Dynamic Programming

Ziyun Deng 1,2,* and Tingqin He 2

1 College of Economics and Trade, Changsha Commerce & Tourism College, Changsha 410116, China
2 National Supercomputing Center in Changsha, Hunan University, Changsha 410116, China;

hetingqin@hnu.edu.cn
* Correspondence: dengziyun@126.com; Tel.: +86-138-7492-1889

Received: 20 October 2018; Accepted: 11 December 2018; Published: 13 December 2018
����������
�������

Abstract: To obtain the target webpages from many webpages, we proposed a Method for Filtering
Pages by Similarity Degree based on Dynamic Programming (MFPSDDP). The method needs to
use one of three same relationships proposed between two nodes, so we give the definition of the
three same relationships. The biggest innovation of MFPSDDP is that it does not need to know
the structures of webpages in advance. First, we address the design ideas with queue and double
threads. Then, a dynamic programming algorithm for calculating the length of the longest common
subsequence and a formula for calculating similarity are proposed. Further, for obtaining detailed
information webpages from 200,000 webpages downloaded from the famous website “www.jd.com”,
we choose the same relationship Completely Same Relationship (CSR) and set the similarity threshold
to 0.2. The Recall Ratio (RR) of MFPSDDP is in the middle in the four filtering methods compared.
When the number of webpages filtered is nearly 200,000, the PR of MFPSDDP is highest in the four
filtering methods compared, which can reach 85.1%. The PR of MFPSDDP is 13.3 percentage points
higher than the PR of a Method for Filtering Pages by Containing Strings (MFPCS).

Keywords: method for filtering pages; similarity degree; dynamic programming;
combination method

1. Introduction

The purpose of filtering webpages is to obtain target webpages in many webpages. The filtered
webpages are non-targeted webpages, pornographic webpages, etc. Filtering methods need to be
proposed and developed. Some existing studies have proposed many methods to filter webpages [1,2].
Among the existing filtering methods, some are based on structure [1,2]. If programmers use filtering
methods based on structure, then programmers should know part of structures of webpages in advance.
The structure of webpages must be included in the target webpages, such as a specified node or a
specified subtree.

Therefore, we propose a new filtering method based on structure, called a Method for Filtering
Pages by Similarity Degree based on Dynamic Programming (MFPSDDP). Compared with other
filtering methods based on structure, the biggest innovation of MFPSDDP is that it does not need to
know the structures of webpages in advance. MFPSDDP has better accuracy and classifies webpages
according to the similarity degree of the structures between two webpages. MFPSDDP considers that
the webpage belongs to a specified category in a certain threshold range of similarity. We calculate the
similarity of the structures between two webpages, by calculating the node proportion of the same
relationship between two nodes. So we propose three definitions of the same relationships between
two nodes. Programmers should choose a same relationship among the three relationships that the

Future Internet 2018, 10, 124; doi:10.3390/fi10120124 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
https://orcid.org/0000-0001-7890-7567
http://www.mdpi.com/1999-5903/10/12/124?type=check_update&version=1
www.jd.com
http://dx.doi.org/10.3390/fi10120124
http://www.mdpi.com/journal/futureinternet

Future Internet 2018, 10, 124 2 of 12

same relationship leads to the highest accuracy of filtering methods, without concern for the specific
structure of webpages.

2. Related Works

The filtering methods of webpages proposed by existing studies can be divided into four
types [3–5]. The first type is the filtering methods based on Uniform Resource Identifier (URI).
The second type is the filtering methods based on contents [6]. The third type is the filtering methods
based on structure. The fourth type is the filtering methods based on autonomous learning. Next, we
assume that the target pages to be found are the detailed information webpages.

2.1. Filtering Methods Based on URI

This type of filtering method judges the classification of webpages based on the URI [7].
Suppose we want to find out the detailed information pages in many webpages. For example,
the URI “https://www.jd.com/book/computer/12343.html” can be judged by “book”, “computer”,
and “12343.html” in the URI. The judgement result is that the webpage is a detailed information
webpage in the computer book class of the book class. These methods are simple and easy to
implement, but they are not suitable for the new mechanism of URI generation and mapping in
many websites. To make the URI shorter, many websites map the URI to shorter URI. According to the
shorter URI, these methods cannot judge whether the webpage is a detailed information page [8].

2.2. Filtering Methods Based on Contents

This type of filtering method based on contents uses some essential contents as the filtering
conditions including specific strings, link ratios of webpages, etc. [8]. For example, the classified
navigation bar and the price information must appear in a detailed information page. These methods
are applicable to specific websites that require programmers to have a prior understanding of the
website contents [9,10].

2.3. Filtering Methods Based on Structure

This type of filtering method uses the tree structures of webpages as the filtering condition
including specific tags, specific tree nodes, and specific tree structures in webpages. These methods
use the Document Object Model (DOM) model to convert the HyperText Markup Language (HTML)
to the eXtensible Markup Language (XML). Some studies calculate the similarity according to the node
name in two trees, and give certain weight values to the nodes for the calculation according to the node
layer in two trees [11,12]. Some studies traverse the XML tree to get the sequence according to Depth
First Search (DFS) or Breadth First Search (BFS), and covert the similarity calculation of two trees to
calculate the longest length of the common subsequence of the two sequences [13–15]. But many large
commercial websites currently use the tags <div>, and the attributes “class” of these tags to
improve their development efficiency, so it is difficult to get an ideal similarity threshold.

2.4. Filtering Methods Based on Autonomous Learning

This type of method needs to get some data including the link graphs of webpages, the structure
similarity of webpages, etc. These methods train by using a certain training sets of webpages, then uses
some learning algorithms to cluster the webpages including K-Means, neural network, etc. [16–18].
These methods need not to know the structures of webpages in advance, but it usually takes a large
amount of computations, and needs a certain amount of training set [19–22].

The above four types of filtering methods have been carried out by some researchers in engineering
implementation and experimental analysis. In view of the above discussion, we will not consider
using the filtering methods based on URI and the filtering methods based on autonomous learning.
MFPSDDP proposed by us belongs to the filtering methods of based on structure. According to the

https://www.jd.com/book/computer/12343.html

Future Internet 2018, 10, 124 3 of 12

tags and <div>, MFPSDDP uses dynamic programming to get the length of longest common
subsequence between two XML trees of two webpages, and then calculates the similarity. MFPSDDP
needs not to know the structure of webpages in advance, and does not need the training dataset.
MFPSDDP sets a similarity threshold, and uses the threshold as the filtering condition [23,24]. We will
discuss MFPSDDP in detail, and design the software to realize this method. We make the experiment
for comparing MFPSDDP with other filtering methods.

3. Algorithm of MFPSDDP

The key of MFPSDDP is to calculate the similarity between two webpages. Here we propose a
method of similarity calculation based on the longest common subsequence. This method obtains
the two sequence arrays by traversing two trees of two webpages. Then the dynamic programming
method is used to calculate the length of the longest common subsequence. Finally, we obtain the
similarity that the length of the longest common subsequence divides to the average of the two arrays.

To get the traversal sequences of two trees of two webpages, we should use the same traversal
method, such as BFS. We can use recursive ideas to traverse the trees.

3.1. Same Relationship between Two Nodes

To calculate the length of the longest common subsequence, the same relationship between two
nodes is used to judge. We propose the definitions of the same relationships between two nodes.

The same relationship between two nodes of webpages is different from the same relationship
between two nodes of common trees. We need to consider the situation that many tags in the tree have
the same names. For example, large number of <text> tags and <td> tags exist in the trees of webpages.
We should distinguish the types of the same relationships. The types of the same relationships between
the node node1 and the node node2 have three types including the Relationship with Same Name (RSN),
the Relationship with Partial Same Attributes (RPSA), and the Completely Same Relationship (CSR).
The definitions of the three types are followed.

Definition 1. RSN. If node1 and node2 have the same name, then it indicates RSN is established between
node1 and node2. RSN is denoted as,

node1 ∼= node2

Definition 2. RPSA. The establishment of RPSA needs to satisfy two conditions as follows,
Condition 1: node1 ∼= node2.
Condition 2:

∃
{

Attribute1
1, . . . , Attribute1

k

}
=
{

Attribute2
1, . . . , Attribute2

k

}
,

{
Attribute1

1, . . . , Attribute1
k

}
∈ Attribute1 ,{

Attribute2
1, . . . , Attribute2

k

}
∈ Attribute2 ,

k ≥ 1, k ≤ m, k ≤ n, m =
∣∣∣Attribute1

∣∣∣, n =
∣∣∣Attribute2

∣∣∣
In condition 2, Attribute1 is the attribute set of node1, Attribute2 is the attribute set of node2.

The equality relationship between the two attributes indicates that they have the same name and value. RPSA is
denoted as,

node1 ≈ node2
{

Attribute1
1, . . . , Attribute1

k

}
In condition 2,

{
Attribute1

1, . . . , Attribute1
k
}

is called the common attribute set between the two nodes.

Future Internet 2018, 10, 124 4 of 12

Definition 3. CSR. The establishment of CSR needs to satisfy two conditions as follows,
Condition 1: node1 ∼= node2.
Condition 2: Attribute1 = Attribute2,

m = n, m =
∣∣∣Attribute1

∣∣∣, n =
∣∣∣Attribute2

∣∣∣
CSR is denoted as,

node1 = node2

3.2. Algorithm of MFPSDDP

We suppose that the traversal sequences of two trees of two webpages are respectively the
array nodeArray1[] and the array nodeArray2[]. We regard the similarity of these two arrays as the
similarity of these two webpages. The array indexes start at 0. The following Algorithm 1 is used to
calculate the length of the longest common subsequence.

Algorithm 1: caculateMaxSubSequenceLength (nodeArray1[],nodeArray2[])
Function: This algorithm calculates the length of the longest common subsequence between nodeArray1[] and
nodeArray2[].
Parameter descriptions: The parameter nodeArray1 is the first node array. The parameter nodeArray2 is the
second node array.
Return value: This algorithm returns the length of the longest common subsequence between nodeArray1[]
and nodeArray2[].

/*Declare a two-dimensional array for recording the length of the longest common subsequence. The initial
value of each element in the array is 0.*/
int lengthArray[][] = new int[nodeArray1.length + 1][nodeArray2.length + 1]
For i = 1 to nodeArray1.length step
For j = 1 to nodeArray2.length step 1
//Use CSR to judge the relationship between two nodes
If nodeArray1[i] = nodeArray2[j] Then
lengthArray[i][j] = lengthArray[i − 1][j − 1] + 1
Else
lengthArray[i][j] = max(lengthArray[i][j − 1],lengthArray[i − 1][j])
End If
End For
End For
return lengthArray[nodeArray1.length][nodeArray2.length]

Algorithm 1 first declares a two-dimensional array for recording the length of the longest common
subsequence. Algorithm 1 uses a double loop “For” to calculate the length of the longest common
subsequence according to the dynamic programming method. The same relationship of two nodes is
judged by CSR.

If CSR between the node nodeArray1[i] and the node nodeArray2[j] is established, then the value
of lengthArray[i][j] is lengthArray[i− 1][j− 1] + 1, else the value of lengthArray[i][j] is the maximum
value between lengthArray[i] and lengthArray[i− 1][j]). Finally, Algorithm 1 returns the last element
of the array lengthArray[][]. The last element is lengthArray[nodeArray1.length][nodeArray2.length].
When Algorithm 1 is finished, the last element of lengthArray[][] is the length of the longest
common subsequence.

The calculation method of similarity is shown in Formula (1). In Formula (1), the molecule
represents the length of the longest common subsequence calculated by Algorithm 1; the denominator
represents the average of nodeArray1.length and nodeArray2.length. Because we adopt the average

Future Internet 2018, 10, 124 5 of 12

of nodeArray1.length and nodeArray2.length as the denominator, Formula (1) can prevent the
phenomenon of high similarity caused by the short length of one of the two arrays.

similarity =
caculateMaxSubSequenceLength(nodeArray1, nodeArray2)

(nodeArray1.length + nodeArray2.length)/2
× 100% (1)

An example of the similarity analysis between two trees showed in Figure 1. Figure 1a,b are
two trees compared. The array nodeArray1[] and the array nodeArray2[] are showed in Figure 1c.
The array nodeArray1[] is the node array obtained after traversing the tree showed in Figure 1a by
using the traversal method BFS. The array nodeArray2[] is the node array obtained after traversing
the tree showed in Figure 1b by using the traversal method BFS.

Future Internet 2018, 10, x FOR PEER REVIEW 5 of 12

1c. The array 𝑛𝑜𝑑𝑒𝐴𝑟𝑟𝑎𝑦1ሾ ሿ is the node array obtained after traversing the tree showed in Figure
1a by using the traversal method BFS. The array 𝑛𝑜𝑑𝑒𝐴𝑟𝑟𝑎𝑦2ሾ ሿ is the node array obtained after
traversing the tree showed in Figure 1b by using the traversal method BFS.

Figure 1. An example of the similarity analysis between two trees.

According to Algorithm 1, the calculation steps are showed in Figure 1d. The values of elements
in 𝑙𝑒𝑛𝑔𝑡ℎ𝐴𝑟𝑟𝑎𝑦ሾ0ሿሾ0ሿ~𝑙𝑒𝑛𝑔𝑡ℎ𝐴𝑟𝑟𝑎𝑦ሾ0ሿሾ4ሿ and 𝑙𝑒𝑛𝑔𝑡ℎ𝐴𝑟𝑟𝑎𝑦ሾ0ሿሾ0ሿ~𝑙𝑒𝑛𝑔𝑡ℎ𝐴𝑟𝑟𝑎𝑦ሾ5ሿሾ0ሿ are all 0. The
length of the longest common subsequence is calculated from the steps indicated by the arrows
started from 𝑙𝑒𝑛𝑔𝑡ℎ𝐴𝑟𝑟𝑎𝑦ሾ1ሿሾ1ሿ.

The value of 𝑙𝑒𝑛𝑔𝑡ℎ𝐴𝑟𝑟𝑎𝑦ሾ5ሿሾ4ሿ is 4, so the length of the longest common subsequence is 4.
Next, we calculate the similarity according to the following steps. 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = caculateMaxSubSequenceLength(𝑛𝑜𝑑𝑒𝐴𝑟𝑟𝑎𝑦1, 𝑛𝑜𝑑𝑒𝐴𝑟𝑟𝑎𝑦2)(𝑛𝑜𝑑𝑒𝐴𝑟𝑟𝑎𝑦1. 𝑙𝑒𝑛𝑔𝑡ℎ + 𝑛𝑜𝑑𝑒𝐴𝑟𝑟𝑎𝑦2. 𝑙𝑒𝑛𝑔𝑡ℎ) 2⁄ × 100%= 4(5 + 4) 2⁄ × 100% = 44.5 × 100% ≈ 88.89%

3.3. Selection of Same Relationship between Two Nodes

In MFPSDDP, it is necessary to select a same relationship between RPSA and CSR. We can
prepare a certain number of target webpage set and non-target webpage set in advance. The target
webpage set is represented by the variable TWPS. The non-target webpage set is represented by the
variable NTWPS. We can randomly select a page in TWPS as a template webpage. The template
webpage is represented by the variable mwp. Next, we use MFPSDDP and Formula (1) to calculate
similarity between a webpage in 𝑻𝑾𝑷𝑺 ∪ 𝑵𝑻𝑾𝑷𝑺 and mwp. When using MFPSDDP, the same
relationships RPSA and CSR are used respectively to calculate the similarity. Comparing the results
of similarity calculation using the same relationships RPSA with CSR, a same relationship with
better classification effect is selected.

There are three criteria for better classification effect of a same relationship, as shown below.

1. It is easy to find a similarity threshold (e.g., 0.4), which can be used to distinguish the
classification of webpages. If the similarity between the webpage and mwp is above the
similarity threshold, the webpage is considered to belong to the type of target webpages.

2. Compared with the filtering method using another relationship, the filtering method using this
relationship has higher Precision Ratio (PR) value. The calculation method of PR is shown in
Formula (2): 𝑃𝑅 = 𝑇𝐴𝐹𝐴𝐹 × 100% (2)

where TAF is the number of target webpages obtained after filtering and AF is the number of
webpages obtained after being filtered.

Figure 1. An example of the similarity analysis between two trees.

According to Algorithm 1, the calculation steps are showed in Figure 1d. The values of
elements in lengthArray[0][0] ∼ lengthArray[0][4] and lengthArray[0][0] ∼ lengthArray[5][0] are
all 0. The length of the longest common subsequence is calculated from the steps indicated by the
arrows started from lengthArray[1][1].

The value of lengthArray[5][4] is 4, so the length of the longest common subsequence is 4. Next,
we calculate the similarity according to the following steps.

similarity =
caculateMaxSubSequenceLength(nodeArray1, nodeArray2)

(nodeArray1.length + nodeArray2.length)/2
× 100%

=
4

(5 + 4)/2
× 100% =

4
4.5
× 100% ≈ 88.89%

3.3. Selection of Same Relationship between Two Nodes

In MFPSDDP, it is necessary to select a same relationship between RPSA and CSR. We can prepare
a certain number of target webpage set and non-target webpage set in advance. The target webpage
set is represented by the variable TWPS. The non-target webpage set is represented by the variable
NTWPS. We can randomly select a page in TWPS as a template webpage. The template webpage
is represented by the variable mwp. Next, we use MFPSDDP and Formula (1) to calculate similarity
between a webpage in TWPS ∪ NTWPS and mwp. When using MFPSDDP, the same relationships
RPSA and CSR are used respectively to calculate the similarity. Comparing the results of similarity
calculation using the same relationships RPSA with CSR, a same relationship with better classification
effect is selected.

There are three criteria for better classification effect of a same relationship, as shown below.

1. It is easy to find a similarity threshold (e.g., 0.4), which can be used to distinguish the classification
of webpages. If the similarity between the webpage and mwp is above the similarity threshold,
the webpage is considered to belong to the type of target webpages.

Future Internet 2018, 10, 124 6 of 12

2. Compared with the filtering method using another relationship, the filtering method using this
relationship has higher Precision Ratio (PR) value. The calculation method of PR is shown in
Formula (2):

PR =
TAF
AF
× 100% (2)

where TAF is the number of target webpages obtained after filtering and AF is the number of
webpages obtained after being filtered.

3. Compared with the filtering method using another relationship, the filtering method using
this relationship has higher Recall Ratio (RR) value. The calculation method of RR is showed
in Formula (3).

RR =
TAF
TUF

× 100% (3)

where RUF is the number of target webpages in the pages to be filtered. We use RR and PR as the
accuracy indicators of filtering methods.

3.4. Software Design of MFPSDDP

To realize MFPSDDP, we need a buffer for dealing with webpages quickly. Furthermore, we need
design the software structure. We adopt double thread to design the software.

3.4.1. Queue Storage and Buffer

The design of the queue storage and buffer is showed in Figure 2. The queue is stored in the
table in the database SQL Server. The queue of pages waiting to be filtered is mapped to one table,
and the filtered page queue is also mapped to another table. We use the class BasicDataSource in
Spring to encapsulate the data source. The elements in these queues take the structure Key-Value.
Key is set as the URI of a webpage. Value is set as the content of the webpage. The elements in the
queues are all Page objects. The Page object has two properties, one is the property “url” which is the
URI of a webpage, and the other is the property “pageContent” which is the content of the webpage.
We assume that k queues are in the buffer, and a queue has n elements, and the length of a URI is l
bytes, and the content length of a webpage is m bytes. Then the buffer size is calculated according to
the following formula:

bu f f erSize = k× n× (l + m) (4)

We set k = 10, n = 100, l = 300, m = 40, 000, then the buffer size is:

bu f f erSize = k× n× (l + m) = 10× 100× (300 + 40, 000) = 40, 300, 000 bytes

So the buffer takes about 40 MB memory space, which is acceptable for the current configuration
of mainstream server.

Future Internet 2018, 10, x FOR PEER REVIEW 6 of 12

3. Compared with the filtering method using another relationship, the filtering method using this
relationship has higher Recall Ratio (RR) value. The calculation method of RR is showed in
Formula (3). 𝑅𝑅 = 𝑇𝐴𝐹𝑇𝑈𝐹 × 100% (3)

where RUF is the number of target webpages in the pages to be filtered. We use RR and PR as
the accuracy indicators of filtering methods.

3.4. Software Design of MFPSDDP

To realize MFPSDDP, we need a buffer for dealing with webpages quickly. Furthermore, we
need design the software structure. We adopt double thread to design the software.

3.4.1. Queue Storage and Buffer

The design of the queue storage and buffer is showed in Figure 2. The queue is stored in the
table in the database SQL Server. The queue of pages waiting to be filtered is mapped to one table,
and the filtered page queue is also mapped to another table. We use the class BasicDataSource in
Spring to encapsulate the data source. The elements in these queues take the structure Key-Value.
Key is set as the URI of a webpage. Value is set as the content of the webpage. The elements in the
queues are all Page objects. The Page object has two properties, one is the property “url” which is the
URI of a webpage, and the other is the property “pageContent” which is the content of the webpage.
We assume that 𝑘 queues are in the buffer, and a queue has 𝑛 elements, and the length of a URI is 𝑙 bytes, and the content length of a webpage is 𝑚 bytes. Then the buffer size is calculated
according to the following formula: 𝑏𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 = 𝑘 × 𝑛 × (𝑙 + 𝑚) (4)

We set 𝑘 = 10, 𝑛 = 100, 𝑙 = 300, 𝑚 = 40,000, then the buffer size is: 𝑏𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 = 𝑘 × 𝑛 × (𝑙 + 𝑚) = 10 × 100 × (300 + 40,000) = 40,300,000 bytes

So the buffer takes about 40 MB memory space, which is acceptable for the current
configuration of mainstream server.

Figure 2. The software design.

3.4.2. Double Thread Design

The software design is showed in Figure 2. We design two threads. One is the buffer
maintenance thread, and the other is the filtering thread. The process of software implementation is
as follows.

Step 1: The buffer maintenance thread pops 500 records of webpages from the database table
each time. 500 webpages require about 20 MB memory space. After our test, the software can more
stably support the transmission of 20 MB data. When the number of webpages popped is greater
than 500, sometimes data transmissions are abnormal. Getting 500 webpages each time can also be

Figure 2. The software design.

Future Internet 2018, 10, 124 7 of 12

3.4.2. Double Thread Design

The software design is showed in Figure 2. We design two threads. One is the buffer maintenance
thread, and the other is the filtering thread. The process of software implementation is as follows.

Step 1: The buffer maintenance thread pops 500 records of webpages from the database table
each time. 500 webpages require about 20 MB memory space. After our test, the software can more stably
support the transmission of 20 MB data. When the number of webpages popped is greater than 500,
sometimes data transmissions are abnormal. Getting 500 webpages each time can also be supported by
the select statement in SQL Server. The software reduces the number of interactions with SQL Server.

Step 2: The buffer maintenance thread pushes 100 webpages as a page queue into the buffer.
The buffer maintenance thread maintains 10-page queues in the buffer. A total of 500 webpages can be
pushed into the buffer divided into 5 times. The 10-page queues require about 40 MB memory space.
The software can support 40 MB memory space without memory overflow.

Step 3: The filtering thread pops 100 webpages once as a queue. After our test, 100 SQL statements
need to be executed to process 100 Webpages at a time, and the software can execute more stably.
Moreover, one queue is processed each time. Considering that insert statements for database operations
are slower than select statements, the software can use five filtering threads to parallel process 5 queues
in the buffer.

Step 4: The filtering thread filters the 100 webpages once. The filtering thread uses Algorithm
1 and Formula (1) to calculate the similarity between the webpage to be filtered and the template
webpage. The filtering thread determines whether the webpage to be filtered belongs to the type of
target webpages according to the similarity threshold in the software configuration.

Step 5: After finishing the filtering operation, the filtering thread pushes once the target webpages
in 100 webpages to be filtered into the filtered page queue in SQL Server.

According to the design ideas discussed above, the filtering thread is developed and implemented
by Java. Through our experimental analysis, the average processing time of the filtering thread for
every 1000 webpages takes only 19.7 s. The filtering thread takes only about 1.1 h for processing
200,000 webpages downloaded from “www.jd.com”. The design ideas of the two threads in Spring’s
container are showed in Figure 3.

Future Internet 2018, 10, x FOR PEER REVIEW 7 of 12

supported by the select statement in SQL Server. The software reduces the number of interactions
with SQL Server.

Step 2: The buffer maintenance thread pushes 100 webpages as a page queue into the buffer.
The buffer maintenance thread maintains 10-page queues in the buffer. A total of 500 webpages can
be pushed into the buffer divided into 5 times. The 10-page queues require about 40 MB memory
space. The software can support 40 MB memory space without memory overflow.

Step 3: The filtering thread pops 100 webpages once as a queue. After our test, 100 SQL
statements need to be executed to process 100 Webpages at a time, and the software can execute
more stably. Moreover, one queue is processed each time. Considering that insert statements for
database operations are slower than select statements, the software can use five filtering threads to
parallel process 5 queues in the buffer.

Step 4: The filtering thread filters the 100 webpages once. The filtering thread uses Algorithm 1
and Formula (1) to calculate the similarity between the webpage to be filtered and the template
webpage. The filtering thread determines whether the webpage to be filtered belongs to the type of
target webpages according to the similarity threshold in the software configuration.

Step 5: After finishing the filtering operation, the filtering thread pushes once the target
webpages in 100 webpages to be filtered into the filtered page queue in SQL Server.

According to the design ideas discussed above, the filtering thread is developed and
implemented by Java. Through our experimental analysis, the average processing time of the
filtering thread for every 1000 webpages takes only 19.7 s. The filtering thread takes only about 1.1 h
for processing 200,000 webpages downloaded from “www.jd.com”. The design ideas of the two
threads in Spring’s container are showed in Figure 3.

Figure 3. The Spring’s AOP idea and Spring’s IoC idea in the two threads.

The Spring’s AOP and Spring’s IoC ideas are adopted as shown in Figure 3. Figure 3a is the
design of the buffer maintenance thread. Figure 3b is the design of the filtering thread. The Spring’s
container supports asynchronous task executor, so the buffer maintenance thread and the filtering
thread may not affect each other. The two threads are executed in parallel. The buffer maintenance
thread starts up first than the filtering thread.

Take Figure 3a as an example, we describe the dependencies between components. The buffer
maintenance bean is the execution entrance of the buffer maintenance thread. We adopt the design
idea of Data Access Object (DAO). DAO is embodied in that the operation beans only implement the
operation methods, and the data operation is implemented by calling specific entity beans. The
buffer maintenance bean depends on the buffer operation bean and the queue operation bean. The
buffer operation bean depends on the buffer bean. The queue operation bean depends on the queue
bean. The buffer bean encapsulates the buffer. The queue bean encapsulates the queue in SQL
Server. Round the methods in each bean, some advices can be carried out including log record,
efficiency analysis, etc.

Figure 3. The Spring’s AOP idea and Spring’s IoC idea in the two threads.

The Spring’s AOP and Spring’s IoC ideas are adopted as shown in Figure 3. Figure 3a is the
design of the buffer maintenance thread. Figure 3b is the design of the filtering thread. The Spring’s
container supports asynchronous task executor, so the buffer maintenance thread and the filtering
thread may not affect each other. The two threads are executed in parallel. The buffer maintenance
thread starts up first than the filtering thread.

Take Figure 3a as an example, we describe the dependencies between components. The buffer
maintenance bean is the execution entrance of the buffer maintenance thread. We adopt the design
idea of Data Access Object (DAO). DAO is embodied in that the operation beans only implement the

www.jd.com

Future Internet 2018, 10, 124 8 of 12

operation methods, and the data operation is implemented by calling specific entity beans. The buffer
maintenance bean depends on the buffer operation bean and the queue operation bean. The buffer
operation bean depends on the buffer bean. The queue operation bean depends on the queue bean.
The buffer bean encapsulates the buffer. The queue bean encapsulates the queue in SQL Server.
Round the methods in each bean, some advices can be carried out including log record, efficiency
analysis, etc.

4. Experimental Analysis

The experimental purpose is finding out the detailed information pages in many webpages
downloaded from the famous website “www.jd.com”. In advance, we prepared 1000 detailed
information pages as TWPS, 1000 non-detailed information webpages as NTWPS. We use these
test webpages to choose a same relationship between RPSA and CSR, find out a similarity threshold.

4.1. Selection of Relationships and Determination of Similarity Threshold

We use Algorithm 1 and Formula (1) to calculate the similarity between mwp and the webpages in
the set TWPS ∪ NTWPS. The URL of mwp is “https://item.jd.com/6813556.html”.

The same relationship RPSA used by us is as follows,

nodemwp ≈ nodei{div.class, div.id, span.class, span.id}, nodei ∈ TWPS∪NTWPS

The above same relationship RPSA indicates that these attributes must be equal between mwp and
the webpages in the set TWPS ∪ NTWPS including the attribute class of the tag <div>, the attribute id
of the tag <div>, the attribute class of the tag , the attribute id of the tag .

The same relationship CSR used by us is as follows,

nodemwp = nodei, nodei ∈ TWPS∪NTWPS

The results of similarity calculation are shown in Figure 4. When RPSA is used, we create a scatter
plot of similarity between the template webpage mwp and the webpages in TWPS, as showed in Figure 4a;
we make a scatter plot of similarity between mwp and the webpages in NTWPS, as showed in Figure 4b.
When CSR is used, we create two scatter plots of similarity between mwp and the webpages in TWPS,
as showed in Figure 4c,d.

Future Internet 2018, 10, x FOR PEER REVIEW 8 of 12

4. Experimental Analysis

The experimental purpose is finding out the detailed information pages in many webpages
downloaded from the famous website “www.jd.com”. In advance, we prepared 1000 detailed
information pages as TWPS, 1000 non-detailed information webpages as NTWPS. We use these test
webpages to choose a same relationship between RPSA and CSR, find out a similarity threshold.

4.1. Selection of Relationships and Determination of Similarity Threshold

We use Algorithm 1 and Formula (1) to calculate the similarity between mwp and the
webpages in the set 𝑻𝑾𝑷𝑺 ∪ 𝑵𝑻𝑾𝑷𝑺. The URL of mwp is “https://item.jd.com/6813556.html”.

The same relationship RPSA used by us is as follows, 𝑛𝑜𝑑𝑒௠௪௣ ≈ 𝑛𝑜𝑑𝑒௜ሼ𝑑𝑖𝑣. 𝑐𝑙𝑎𝑠𝑠, 𝑑𝑖𝑣. 𝑖𝑑, 𝑠𝑝𝑎𝑛. 𝑐𝑙𝑎𝑠𝑠, 𝑠𝑝𝑎𝑛. 𝑖𝑑ሽ, 𝑛𝑜𝑑𝑒௜ ∈ 𝑻𝑾𝑷𝑺 ∪ 𝑵𝑻𝑾𝑷𝑺

The above same relationship RPSA indicates that these attributes must be equal between mwp
and the webpages in the set 𝑻𝑾𝑷𝑺 ∪ 𝑵𝑻𝑾𝑷𝑺 including the attribute class of the tag <div>, the
attribute id of the tag <div>, the attribute class of the tag , the attribute id of the tag .

The same relationship CSR used by us is as follows, 𝑛𝑜𝑑𝑒௠௪௣ = 𝑛𝑜𝑑𝑒௜, 𝑛𝑜𝑑𝑒௜ ∈ 𝑻𝑾𝑷𝑺 ∪ 𝑵𝑻𝑾𝑷𝑺

The results of similarity calculation are shown in Figure 4. When RPSA is used, we create a
scatter plot of similarity between the template webpage mwp and the webpages in TWPS, as
showed in Figure 4a; we make a scatter plot of similarity between mwp and the webpages in
NTWPS, as showed in Figure 4b. When CSR is used, we create two scatter plots of similarity
between mwp and the webpages in TWPS, as showed in Figure 4c,d.

Figure 4. The scatter plots of the similarities.

From Figure 4a,b, we can see the effect of classification. We can choose the similarity threshold
0.4 when using the relationship RPSA. Similarly, we can choose the similarity threshold 0.2 when
using the relationship CSR. Why is the similarity threshold using the relationship CSR lower?
Because the conditions of CSR are more stringent, the similarity threshold is lower.

Figure 4. The scatter plots of the similarities.

www.jd.com
https://item.jd.com/6813556.html

Future Internet 2018, 10, 124 9 of 12

From Figure 4a,b, we can see the effect of classification. We can choose the similarity threshold 0.4
when using the relationship RPSA. Similarly, we can choose the similarity threshold 0.2 when using
the relationship CSR. Why is the similarity threshold using the relationship CSR lower? Because the
conditions of CSR are more stringent, the similarity threshold is lower.

Next, we calculate PRs and RRs according to Formulas (2) and (3), and we can get the results as
showed in Table 1.

Table 1. The RRs and PRs when we use these test webpages.

Same Relationship TUF AF TAF RR PR Similarity Threshold

RPSA 1000 823 703 70.3% 85.4% 0.4
CSR 1000 819 731 73.1% 89.3% 0.2

According to the calculation results in Table 1, both RR and PR using CSR are higher than using
RPSA, so we choose CSR and set the similarity threshold to 0.2.

4.2. Comparison with Other Methods

We compare MFPSDDP with three methods including a Method for Filtering Pages by Containing
Strings (MFPCS), a Method for Filtering Pages by Containing Tags and Attributes (MFPCTA), a Method
for Filtering Pages by Link Ratio (MFPLR).

MFPCS uses string matching to obtain target webpages. MFPCTA traverses the trees of webpages
to find a matching tag and the matching attributes of the tag. Link ratio is the ratio of the number of
link nodes to the number of all nodes in the tree of a webpage. MFPLR needs to set the most important
parameter, which is link ratio. The existing research work mostly set link ratio to 0.25. If the link ratio
of a webpage less than 0.25, then we judge the webpage is a detailed information page. The main
configurations of four methods are showed in Table 2.

Table 2. The main configuration of four methods.

Filtering Method Main Configuration

MFPCS

The following conditions must be satisfied at the same time.
Condition 1. Each webpage obtained after filtering must include one of the
following strings: “price”, “flash purchase price”, “Jingdong price”, “exclusive
price”, or “price spike”. This condition is expressed as follows:
page.containsString (“price”) or page.containsString (“flash purchase price”) or
page.containsString (“Jingdong price”) or page.containsString (“exclusive price”) or
page.containsString (“price spike”)
Condition 2. Each webpage obtained after filtering must include the string
“distribution”. This condition is expressed as follows:
page.containsString (“distribution”)
Condition 3. Each webpage obtained after filtering must include one of the
following strings: “commodity details” or “commodity introduction”. This condition
is expressed as follows:
page.containsString (“commodity details”) or page.containsString
(“commodity introduction”)

MFPCTA

The following condition must be satisfied.
Condition 1. Each webpage obtained after filtering must include the tag <div>,
and the value of the “class” attribute of the tag <div> must be “crumb-wrap”.
This condition is expressed as follows:
page.containsTag (divTag) and page.divTags.containsAttribute (classAttribute)

MFPLR

The following condition must be satisfied.
Condition 1. The link ratio threshold is set to 0.25. This condition is expressed as
follows:
page.linkRatioOut (0.25)

Future Internet 2018, 10, 124 10 of 12

Table 2. Cont.

Filtering Method Main Configuration

MFPSDDP

The following conditions must be satisfied at the same time.
Condition 1. The tags in each webpage tree must include only the tags <div> and
. This condition is expressed as follows:
page.onlyContainTags (divTagAndspanTag)
Condition 2. The similarity between each webpage and a template webpage is
calculated by CSR and Formula (1). The similarity threshold is set to 0.2.
This condition is expressed as follows:
page.similarityOut (0.2)

We compare MFPSDDP with three other methods by RR and PR. From the experimental results
in Figure 5, the RRs and PRs of MFPSDDP can reach more than 70%. The RRs of MFPSDDP show
a monotonous rising trend. When the number of webpages filtered is nearly 200,000, the RR of
MFPSDDP reaches 92.2%, the PR of MFPSDDP reaches 85.1%.

Future Internet 2018, 10, x FOR PEER REVIEW 10 of 12

We compare MFPSDDP with three other methods by RR and PR. From the experimental results
in Figure 5, the RRs and PRs of MFPSDDP can reach more than 70%. The RRs of MFPSDDP show a
monotonous rising trend. When the number of webpages filtered is nearly 200,000, the RR of
MFPSDDP reaches 92.2%, the PR of MFPSDDP reaches 85.1%.

As the number of webpages filtered increases, the RRs of MFPCTA are on the rise. The RR of
MFPCTA reaches 96.8% when the number of webpages filtered is nearly 200,000. But the overall PRs
of MFPCTA decrease with the increase of the number of webpages, at a minimum of 72%.

Figure 5. The experimental results of the accuracies of four filtering methods.

The RRs of MFPLR are relatively stable, which have been over 98%, but the PRs of MFPLR are
relatively low, and the highest PR of MFPLR is only 32.9%.

When the number of webpages filtered is nearly 200,000, the RRs and PRs of four filtering
methods are showed in Table 3. The RR of MFPLR is highest, is 98.5%. But the PR of MFPLR is
lowest, only 32.9%. The PR of MFPSDDP is the highest, 85.1%.

Table 3. The RRs and PRs of four methods when the number of webpages filtered is nearly 200,000.

Filtering Method TUF AF TAF RR PR
MFPCS 57,570 72,643 52,175 90.6% 71.8%

MFPCTA 57,570 76,441 55,725 96.8% 72.9%
MFPLR 57,570 172,694 56,734 98.5% 32.9%

MFPSDDP 57,570 62,372 53,079 92.2% 85.1%

According to the above analysis, the PR of MFPSDDP is highest in the four filtering methods,
and the RR of MFPSDDP is middle in the four filtering methods. In the four filtering methods,
MFPLR and MFPSDDP need not to know the structures of webpages in advance, but MFPCS and
MFPCTA need to know the structures of webpages in advance.

In addition, we downloaded 200,000 webpages from the famous websites “www.taobao.com”.
We still set the similarity threshold to 0.2, and use the webpage “https://item.taobao.com/item.htm?
id=561653265544“ as the template page. After our experiments, when the number of webpages
filtered is nearly 200,000, the RR of MFPSDDP is 91.6%, the PR of MFPSDDP is 85.7%. These show
that MFPSDDP is suitable for large commercial websites with modular development. MFPSDDP
can filter out the target webpages with lots of tag <div> and .

5. Conclusions

Based on three same relationships proposed between two nodes, we give the algorithm of
MFPSDDP. We use 200,000 webpages downloaded from the famous website “www.jd.com” as
experimental data. Through experiments, we choose the same relationship “ 𝑛𝑜𝑑𝑒௠௪௣ = 𝑛𝑜𝑑𝑒௜, 𝑛𝑜𝑑𝑒௜ ∈ 𝑻𝑾𝑷𝑺 ∪ 𝑵𝑻𝑾𝑷𝑺” and set the similarity threshold to 0.2. The RR of MFPSDDP is
middle in the four filtering methods compared. When the number of webpages filtered is nearly
200,000, the PR of MFPSDDP is highest in the four filtering methods compared, can reach 85.1%. The

Figure 5. The experimental results of the accuracies of four filtering methods.

As the number of webpages filtered increases, the RRs of MFPCTA are on the rise. The RR of
MFPCTA reaches 96.8% when the number of webpages filtered is nearly 200,000. But the overall PRs
of MFPCTA decrease with the increase of the number of webpages, at a minimum of 72%.

The RRs of MFPLR are relatively stable, which have been over 98%, but the PRs of MFPLR are
relatively low, and the highest PR of MFPLR is only 32.9%.

When the number of webpages filtered is nearly 200,000, the RRs and PRs of four filtering methods
are showed in Table 3. The RR of MFPLR is highest, is 98.5%. But the PR of MFPLR is lowest, only
32.9%. The PR of MFPSDDP is the highest, 85.1%.

Table 3. The RRs and PRs of four methods when the number of webpages filtered is nearly 200,000.

Filtering Method TUF AF TAF RR PR

MFPCS 57,570 72,643 52,175 90.6% 71.8%
MFPCTA 57,570 76,441 55,725 96.8% 72.9%
MFPLR 57,570 172,694 56,734 98.5% 32.9%

MFPSDDP 57,570 62,372 53,079 92.2% 85.1%

According to the above analysis, the PR of MFPSDDP is highest in the four filtering methods,
and the RR of MFPSDDP is middle in the four filtering methods. In the four filtering methods, MFPLR
and MFPSDDP need not to know the structures of webpages in advance, but MFPCS and MFPCTA
need to know the structures of webpages in advance.

In addition, we downloaded 200,000 webpages from the famous websites “www.taobao.com”.
We still set the similarity threshold to 0.2, and use the webpage “https://item.taobao.com/item.htm?
id=561653265544“ as the template page. After our experiments, when the number of webpages filtered

www.taobao.com
https://item.taobao.com/item.htm?id=561653265544
https://item.taobao.com/item.htm?id=561653265544

Future Internet 2018, 10, 124 11 of 12

is nearly 200,000, the RR of MFPSDDP is 91.6%, the PR of MFPSDDP is 85.7%. These show that
MFPSDDP is suitable for large commercial websites with modular development. MFPSDDP can filter
out the target webpages with lots of tag <div> and .

5. Conclusions

Based on three same relationships proposed between two nodes, we give the algorithm of
MFPSDDP. We use 200,000 webpages downloaded from the famous website “www.jd.com” as
experimental data. Through experiments, we choose the same relationship “nodemwp = nodei, nodei ∈
TWPS∪NTWPS” and set the similarity threshold to 0.2. The RR of MFPSDDP is middle in the four
filtering methods compared. When the number of webpages filtered is nearly 200,000, the PR of
MFPSDDP is highest in the four filtering methods compared, can reach 85.1%. The PR of MFPSDDP is
13.3 percentage points higher than the PR of MFPCS. MFPSDDP need not to know the structures of the
webpages in advance. MFPSDDP is realized by the software designed by us.

The following study will continue to be carried out in the following stages.

1. We will continue to find out some filtering methods with the highly RR and the highly PR
by using Artificial Intelligence (AI) algorithms, such as deep neural networks. We can use
thousands of known pages as a training set, get the feature of the training set, and then filter the
webpages automatically.

2. We continue to improve MFPSDDP. The improved method is to increase the number of template
pages, and take the average similarity of multiple template webpages and filtered webpages as
the similarity of filtered webpages, so we can get higher RR and PR.

Author Contributions: Conceptualization, Z.D.; methodology, Z.D.; software, Z.D.; validation, T.H.; formal
analysis, T.H.; investigation, Z.D.; resources, Z.D.; data curation, Z.D.; writing—original draft preparation, Z.D.;
writing—review and editing, T.H.; project administration, Z.D.; funding acquisition, Z.D.

Funding: This research was funded by “the National Key Technology Support Program of China, grant number
2012BAH09B02”and “the Natural Science Foundation of Hunan Province, grant number 2017JJ5064”.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Díaz-Manríquez, A.; Rios, A.B.; Barron-Zambrano, J.H.; Guerrero, T.Y.; Elizondo, J.C. An Automatic Document
Classifier System Based on Genetic Algorithm and Taxonomy. IEEE Access 2018, 6, 21552–21559. [CrossRef]

2. Bhalla, V.K.; Kumar, N. An efficient scheme for automatic web pages categorization using the support vector
machine. New Rev. Hypermedia Multimedia 2016, 22, 223–242. [CrossRef]

3. Zhang, R.; He, Z.; Wang, H.; You, F.; Li, K. Study on Self-Tuning Tyre Friction Control for Developing
Main-Servo Loop Integrated Chassis Control System. IEEE Access 2017, 5, 6649–6660. [CrossRef]

4. Ahmadi, A.; Fotouhi, M.; Khaleghi, M. Intelligent classification of web pages using contextual and visual
features. Appl. Soft Comput. 2011, 11, 1638–1647. [CrossRef]

5. Saleh, A.I.; Rahmawy, M.F.; Abulwafa, A.E. A semantic based Web page classification strategy using
multi-layered domain ontology. World Wide Web 2017, 20, 939–993. [CrossRef]

6. Baranauskas, J.; Netto, O.P.; Nozawa, S.R.; Macedo, A.A. A tree-based algorithm for attribute selection. Appl. Intell.
2018, 48, 821–833. [CrossRef]

7. Yu, X.; Li, M.; Kim, K.A.; Chung, J.; Ryu, K.H. Emerging Pattern-Based Clustering of Web Users Utilizing a
Simple Page-Linked Graph. Sustainability 2016, 8, 239. [CrossRef]

8. Ilbahar, E.; Cebi, S. Classification of design parameters for e-commerce websites: A novel fuzzy Kano
approach. Telematics Inform. 2017, 38, 1814–1825. [CrossRef]

9. Popescu, D.A.; Radulescu, D. Approximately similarity measurement of web sites. In Proceedings of the 2015
International Conference on Telecommunications & Signal Processing, Istanbul, Turkey, 12 October 2015.

10. Reddy, G.S.; Krishnaiah, R.V. Clustering algorithm with a novel similarity measure. IOSR J. Comput. Eng.
2012, 4, 37–42. [CrossRef]

www.jd.com
http://dx.doi.org/10.1109/ACCESS.2018.2815992
http://dx.doi.org/10.1080/13614568.2016.1152316
http://dx.doi.org/10.1109/ACCESS.2017.2669263
http://dx.doi.org/10.1016/j.asoc.2010.05.003
http://dx.doi.org/10.1007/s11280-016-0415-z
http://dx.doi.org/10.1007/s10489-017-1008-y
http://dx.doi.org/10.3390/su8030239
http://dx.doi.org/10.1016/j.tele.2017.09.004
http://dx.doi.org/10.9790/0661-0463742

Future Internet 2018, 10, 124 12 of 12

11. Crovella, M.E.; Bestavros, A. Self-Similarity in World Wide Web traffic: Evidence and possible causes.
IEEE/ACM Trans. Network. 1997, 5, 835–846. [CrossRef]

12. Deng, Z.; Zhang, J.; He, T. Automatic combination technology of fuzzy CPN for OWL-S web services in
supercomputing cloud platform. Int. J. Pattern Recogit. Artif. Intell. 2017, 31, 1–27. [CrossRef]

13. Du, Y.; Hai, Y. Semantic ranking of web pages based on formal concept analysis. J. Syst. Softw. 2013, 86, 187–197.
[CrossRef]

14. Xie, X.; Wang, B. Web page recommendation via twofold clustering: Considering user behavior and topic
relation. Neural Comput. Appl. 2018, 29, 235–243. [CrossRef]

15. Kou, G.; Lou, C. Multiple factor hierarchical clustering algorithm for large scale web page and search engine
clickstream data. Ann. Oper. Res. 2012, 197, 123–134. [CrossRef]

16. Nguyen, T.T.S.; Lu, H.Y.; Lu, J. Web-page recommendation based on web usage and domain knowledge.
IEEE Trans. Knowl. Data Eng. 2014, 26, 2574–2587. [CrossRef]

17. Du, Y.; Pen, Q.; Gao, Z. A topic-specific crawling strategy based on semantics similarity. Data Knowled. Eng.
2013, 88, 75–93. [CrossRef]

18. Hussien, A. Comparison of machine learning algorithms to classify web pages. Int. J. Adv. Comput. Sci. Appl.
2017, 8, 205–209.

19. Ruchika, M.; Anjali, S. Quantitative evaluation of web metrics for automatic genre classification of web
pages. Int. J. Syst. Assurance Eng. Manag. 2017, 8 (Suppl. 2), 1567–1579.

20. Kavitha, C.; Sudha, G.; Kiruthika, S. Semantic similarity based web document classification using support
vector machine. Int. Arab J. Inf. Technol. 2017, 14, 285–292.

21. Wahab, S.A.R. An Automated web page classifier and an algorithm for the extraction of navigational pattern from
the web data. J. Web Eng. 2017, 16, 126–144.

22. Farman, A.; Pervez, K.; Kashif, R. A fuzzy ontology and SVM-based web content classification system. IEEE Access
2017, 5, 25781–25797.

23. Lee, J.-H.; Yeh, W.-C.; Chuang, M.-C. Web page classification based on a simplified swarm optimization.
Appl. Math. Comput. 2015, 270, 13–24. [CrossRef]

24. Li, H.; Xu, Z.; Li, T. An optimized approach for massive web page classification using entity similarity based
on semantic network. Future Gener. Comput. Syst. 2017, 76, 510–518. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/90.650143
http://dx.doi.org/10.1142/S0218001417590108
http://dx.doi.org/10.1016/j.jss.2012.07.040
http://dx.doi.org/10.1007/s00521-016-2444-z
http://dx.doi.org/10.1007/s10479-010-0704-3
http://dx.doi.org/10.1109/TKDE.2013.78
http://dx.doi.org/10.1016/j.datak.2013.09.003
http://dx.doi.org/10.1016/j.amc.2015.07.120
http://dx.doi.org/10.1016/j.future.2017.03.003
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Filtering Methods Based on URI
	Filtering Methods Based on Contents
	Filtering Methods Based on Structure
	Filtering Methods Based on Autonomous Learning

	Algorithm of MFPSDDP
	Same Relationship between Two Nodes
	Algorithm of MFPSDDP
	Selection of Same Relationship between Two Nodes
	Software Design of MFPSDDP
	Queue Storage and Buffer
	Double Thread Design

	Experimental Analysis
	Selection of Relationships and Determination of Similarity Threshold
	Comparison with Other Methods

	Conclusions
	References

