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Abstract: In this paper, a printed monopole antenna design for WiMAX/WLAN applications in
cable-free self-positioning seismograph nodes is proposed. Great improvements were achieved
in miniaturizing the antenna and in widening the narrow bandwidth of the high-frequency band.
The antenna was fed by a microstrip gradient line and consisted of a triangle, an inverted-F shape,
and an M-shaped structure, which was rotated 90◦ counterclockwise to form a surface-radiating
patch. This structure effectively widened the operating bandwidth of the antenna. Excitation led
to the generation of two impedance bands of 2.39–2.49 and 4.26–7.99 GHz for a voltage standing
wave ratio of less than 2. The two impedance bandwidths were 100 MHz, i.e., 4.08% relative
to the center frequency of 2.45 GHz, and 3730 MHz, i.e., 64.31% relative to the center frequency
of 5.80 GHz, covering the WiMAX high-frequency band (5.25–5.85 GHz) and the WLAN band
(2.4/5.2/5.8). This article describes the design details of the antenna and presents the results of both
simulations and experiments that show good agreement. The proposed antenna meets the field-work
requirements of cable-less seismograph nodes.

Keywords: antenna design; impedance bandwidth; WiMAX/WLAN band; compact printed
monopole antenna

1. Introduction

With the rapid development of radio technology, some systems require more than a single working
frequency; thus, integrating several communication standards into a single system has become a recent
trend. To meet the operating frequency band requirements of IEEE 802.11 WLAN in the operating band
of 2.4 GHz (2400–2484 MHz), 5.2 GHz (5150–5350 MHz), and 5.8 GHz (5725–5825 MHz), as well as the
Worldwide Interoperability for Microwave Access (WiMAX) band of 2.5/3.5 GHz, the development of
a multi-band antenna of 5.5 GHz (2500–2690/3400–3690/5250–5850 MHz) [1] with low cost, small size,
easy manufacture, and good performance has attracted increasing attention. Recently, different
architectures of multi-band antennas have been designed, including the use of microstrip feed
technology to implement multi-band antennas such as an H-shaped slot antenna [2], a Y-shaped
dual broadband microstrip antenna [3], a diamond-shaped slot with two U-shaped antennas [4],
and an E-shaped radiation patch antenna [5], to achieve dual-band WLAN characteristics. Coplanar
waveguide feed concepts have also been applied to microstrip antennas, such as the use of narrow
rectangular slots with meandering asymmetric slot antennas for dual-band antennas [6], compact
wide-slot antennas [7], compact asymmetric-coplanar-strip-fed tri-band meander-line antennas [8],
and rectangular slot antennas [9]. Asymmetric coplanar branches have also been used for WLAN
applications [10]. In addition, the use of planar inverted F antennas combined with parasitic elements
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has been proposed for WLAN operation [11], an inverted L-slot triple-band antenna [12] and a CPW-fed
tri-band printed antenna has been developed [13].

The antennas discussed above are suitable for WLAN communication and ground acquisition
units such as the WTU-508 [14], but they are not applicable to our own developed cable-less
seismograph nodes. Their practical application for cable-less seismograph nodes would contradict with
their miniaturization and high-bandwidth broadband applications. Therefore, we designed an antenna
that can satisfy the needs of miniaturized (<500 mm2) and high-frequency bands (relative bandwidth
>60%). The working scene of our self-developed seismograph is shown in Figure 1. A frequency
of 2.4 GHz is used for communication between the seismograph and the AP (Access Port) relay,
a frequency of 5.8 GHz is used for communication between the central control unit and the AP (Access
Port) relay, and a frequency of 4.95 GHz is used for the remote seismograph information exchange
with the portable hard drive.
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The ideas presented in this paper were inspired by previous structures described in the literature.
The idea of a triangular structure was motivated by a previous design [15]. The meandering technique
has also been previously discussed [16] and has enlightened the idea of constructing an M-type
radiation patch and optimizing the structural size parameters using HFSS software. The inverted F
structure was also inspired by previous work [17]. Finally, the antenna design of the present study is
an extension of previous works.

This paper presents a printed monopole antenna design for WiMAX/WLAN applications
for cable-free self-positioning seismograph nodes. Great improvements have been achieved in
miniaturizing the antenna and in widening the bandwidth of the high-frequency band. The innovation
of this design is the effective enhancement of the working bandwidth of the antenna, which was
achieved by using a five-pronged feed band and a tapered impedance transformer. The feeder strip
connected the triangle and two branches to form an upper-surface radiating patch. This structure was
able to effectively shunt the current to generate three resonant frequencies. The M and F elements
mainly served as the meandering technology to increase the current path of the antenna surface,
to reduce the resonant frequency of the antenna, and to improve the bandwidth of the antenna.
The M element primarily produced the 2.45-GHz band, and the F element produced the 5.80-GHz
band. The ground plate consisted of rectangular patches. The miniaturization of the antenna design
reduced the internal space required for the instrument. In addition, the antenna was simple in
structure, easy to manufacture, and realized ultra-wideband high-frequency characteristics, thereby
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improving its ability to receive signals. This antenna proved to be suitable for the WLAN/WiMAX
(5.15–5.35 GHz) high-frequency band. This article presents the detailed geometric configuration
of the antenna and discusses some of its parameters, including the size of the radiation patch and
ground patch. A comparison of this antenna with several antennas proposed in recent years for
WLAN/WiMAX applications is presented in Table 1. Compared with the other antennas, it is apparent
that the proposed antenna is very small and provides a very wide bandwidth at high frequencies,
completely covering the WLAN frequency band. Although the relative bandwidth of an antenna in
the high-frequency band outlined in a previous study [3] does not differ greatly from that of the design
proposed in this paper, the current design has the advantages of a simple and compact structure, small
volume, and easy manufacture for small-volume high-frequency antenna applications. The second
part of the article covers the design of the antenna, the third part presents an analysis of the current
distribution and parameters, and the fourth part presents the simulation and test results. Concluding
remarks are provided in the fifth part.

Table 1. Comparison of microstrip multi-band antennas.

References Type Size (mm2)
Total Area

(mm2) Bandwidth (GHz) Relative Bandwidth

[2] Tri-band 60 × 60 3600 1.55–1.57, 2.39–2.69, 4.97–5.93 1.27%, 12.00%, 16.55%
[3] Dual-band 35 × 24 840 2.26–2.67, 3.00–6.78 16.40%, 65.17%
[4] Dual-band 40 × 40 1600 3.15–3.70, 5.05–5.97 15.70%, 15.86%
[5] Dual-band 40 × 30 1200 2.39–2.51, 5.00–6.10 4.80%, 18.96%
[6] Dual-band 34 × 30 1020 2.30–2.50, 2.90–15.00 #, #, #
[7] Tri-band 40 × 40 1600 2.28–2.58, 3.38–3.66, 5.07–5.86 12.60%, 8.00%, 14.50%
[8] Tri-band 35 × 15 525 1.48–1.63, 2.25–2.48, 4.22–6.00 9.55%, 9.38%, 30.69%
[9] Dual-band 75 × 75 5625 2.40–2.48, 5.15–5.95 10.60%, 33.8%

Proposed work Dual-band 30 × 17 510 2.39–2.49, 4.27–7.96 4.08%, 64.31%

Notation: # represents information not mentioned in the reference.

2. Antenna Design

The geometric configuration of the proposed antenna is shown in Figure 2. The antenna
consisted of a triangle, an inverted F, and an M, which was rotated 90◦ counterclockwise to form
a surface-radiating patch. This antenna was fabricated on an FR4_epoxy substrate with a relative
permittivity of 4.4, a tangent of 0.02, and a height of 1.6 mm. The size of the antenna substrate was
0.25 λ × 0.14 λ × 1.6 mm (30 × 17 mm, λ is the free wavelength in a 2.45-GHz space). This structure
was fed by a 50-Ω microstrip transmission line with length L f and width W f . The antenna ground plate
was composed of a rectangular patch with length W and width Lg. The two branches of the antenna
increased the flow path of the surface current. In this antenna geometry model, the resonant path
lengths L11 and L22 were approximately one-quarter of the free wavelength in air at the corresponding
frequency. The proposed antenna covered the WLAN (2.4/5.2/5.8) and WiMAX high-frequency
(5.25–5.85 GHz) bands.

L11 and L22 can be described by Equations (1) and (2):

L11 = L2 + L7 + L4 + L6 + 2W6 + W7 + 3a (1)

L22 = L2 + L3 + L4 (2)

From the design of the microstrip patch antenna, the theoretical dimensions were calculated as
follows [18]:

The width w of the patch is:

w =
c

2 f0

(
εr + 1

2

)− 1
2

(3)
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where c represents the speed of light, f0 is the center frequency of the antenna, and εr is the relative
permittivity of the dielectric substrate. The relative effective dielectric constant of the dielectric
substrate εre is:

εre =
εr + 1

2
+

εr − 1
2

(
1 +

12h
w

)− 1
2
. (4)Future Internet 2018, 10, x FOR PEER REVIEW  4 of 14 
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Figure 2. Geometrical configuration of the proposed antenna: (a) top view, (b) bottom view, and (c) 
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The equivalent extension length ∆L caused by the fringe field of the antenna is:

∆L = 0.412h
(εre + 0.3)

(w
h + 0.264

)
(εre − 0.258)

(w
h + 0.8

) (5)

where h represents the thickness of the dielectric substrate.
From this equation, it is possible to calculate the actual length L of the rectangular patch:

L =
c

2 f0

1√
εre
− 2∆L (6)
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The fundamental dimensions of the antenna are based on the above four equations. First, we
designed a structure of a three-band antenna. The specific size was derived from High-Frequency
Electromagnetic Simulation Software (HFSS). Then we optimized the parameters calculated by HFSS
to find the parameters which best meet the design requirements. The specific size parameters for the
antenna are listed in Table 2.

Table 2. Design parameters of the proposed antenna.

Parameters Unit (mm) Parameters Unit (mm) Parameters Unit (mm)

W 17.00 W7 1.00 L5 7.40
W f 2.00 W8 0.45 L6 11.80
W1 1.00 L 30.00 L7 7.00
W2 4.30 L f 10.00 L8 0.70
W3 0.50 L1 2.00 Lg 10.00
W4 0.95 L2 1.60 h 1.60
W5 13.00 L3 10.80
W6 2.40 L4 3.00

Figure 3a,b present photographs of a manufacturing prototype of the proposed antenna. A layer
of tin was attached to the surface to prevent the oxidation of the radiation surface of the antenna.
The design steps of the proposed antenna employed in HFSS are illustrated in Figure 3c. Figure 4
shows the return loss versus frequency diagram for the three cases. For Antenna 1 (Ant1), there was
only a gradual microstrip line and a triangular radiating patch, and a single frequency band appeared.
The bandwidth at the resonance frequency of 5.68 GHz was in the range of 4.59–7.88 GHz. For Antenna
2 (Ant2), dual-frequency characteristics were exhibited with respect to the Ant1 antenna, and resonance
frequency appeared at 2.60 GHz. The matching of these antennas was not very good and did not meet
the requirement of 2.40 GHz for Bluetooth. Finally, the antenna structure of Antenna 3 (Ant3) offered
improvements. This antenna covered two frequency bands of 2.39–2.49 and 4.26–7.99 GHz, and the
bandwidth of the high-frequency band was clearly wider than that of Ant1. This antenna design meets
the requirements of the WLAN and WiMAX (5.25–5.85 GHz) bands. All the optimized dimensions are
the same as those listed in Table 2.
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Figure 3. Fabricated photograph and design steps for the proposed antenna. (a) Top view, (b) bottom
view, and (c) design steps for the proposed antenna used in HFSS software.

Figure 5 presents the simulation result of the voltage standing wave ratio (VSWR) for the proposed
antenna as a function of frequency. In wireless communication, this parameter indicates the matching
degree of the antenna and feeder. When VSWR equals 1, the impedance is precisely matched to achieve
the maximum power transmission. The larger the standing wave ratio, the higher the reflected power
and the lower the transmission efficiency. The VSWR of the antenna was less than 1.5 at 2.45 and
5.80 GHz. Figure 6 presents the input impedance curve of the antenna. The input impedance at 2.45
and 5.80 GHz was 51.0049−8.1573 j and 48.8302−0.3752 j, respectively. These results indicate that
the input impedance is almost 50 Ω at the resonant frequency and that the input impedance of the



Future Internet 2018, 10, 122 6 of 14

antenna is very stable in the 2–10-GHz frequency bands and very close to 50 Ω. The main purpose of
the antenna impedance is to achieve a matching between the antenna and the feeder. If the transmit
antenna matches the feed line, the input impedance of the antenna should be equal to the characteristic
impedance of the feed line. A Smith chart of the antenna is presented in Figure 7, showing information
on the antenna impedance matching, the standing wave ratio, and the normalized impedance. Ang and
Mag represent the phase and amplitude at the resonance points in polar coordinates, respectively.
Rx represents the input impedance of the antenna. It can be seen that the antenna has a good normalized
impedance at the frequencies studied. Table 3 lists the specific values of the Smith chart in Figure 7.
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3. Current Distribution and Parameter Analysis

Figure 8a–c present the simulation results of the surface current distribution of the antenna at
2.45, 4.95, and 5.80 GHz, respectively. At 2.45 GHz, a strong current distribution was observed at the
tip of the triangular radiating patch, the right end of the M structure, and the bottom of the inverted F
structure, which mainly affected the low-frequency resonant frequency of the antenna. The surface
current distribution at 4.95 GHz revealed a strong current at the bottom of the feeder and at the bottom
of the triangle. At 5.80 GHz, the current was distributed over the feeder as well as at several other
locations. This figure clearly demonstrates the main influencing factors of the resonant frequency of
the corresponding points. We were therefore able to adjust the corresponding frequency depending on
the main distribution of the current to change the resonant frequency.
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Figure 8. Surface current distribution (V/m) of the proposed antenna at (a) 2.45 GHz, (b) 4.95 GHz,
and (c) 5.80 GHz.

Figures 9–12 depict the simulated reflection loss effect for different values of L6, L5, L7, and Lg.
The effect of the length of one arm of the upper-surface radiating patch on the return loss parameter of
the antenna is shown in Figure 9. The length of L6 had a significant effect on the 4.95-GHz resonant
frequency of the antenna. As the size of L6 increased from 11.6 to 12 mm, a slight offset occurred at all
three resonance points and the matching of the antenna deteriorated. Therefore, the optimal solution
was achieved when L6 was 11.8 mm. The results of the analysis of the length of the inverted F structure
are presented in Figure 10. The effect of this parameter on the three frequencies was large, and when L5

increased from 7.3 mm to 7.5 mm, the resonant frequency first increased and then decreased. The match
to 5.80 GHz gradually deteriorated, and the matching characteristic of 4.95 GHz was exactly opposite
that at 5.80 GHz. Finally, the optimal value of L5 was 7.4 mm to ensure function in the Bluetooth
band of 2.4 GHz. Figure 11 presents the length analysis results for the bottom edge parameters of the
triangle. With increasing L7, the three resonant frequency points all show a slight offset. Therefore,
this parameter can be used to fine-tune the resonant frequency of the antenna. The matching effect
in the high-frequency and low-frequency bands did not change greatly. The selection of 7 mm for L7

satisfied the requirements of the antenna better. Figure 12 shows that the width Lg of the antenna
ground plane mainly affected the matching problem of the antenna. It had a great influence on the
medium and high frequencies. The low resonant frequency of the antenna also had a substantial effect,
and an optimal value for Lg of 10 mm was selected.
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Figure 9. Simulated return loss versus frequency for the proposed antenna for various values of L6;
other parameters are the same as those listed in Table 2.
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Figure 10. Simulated return loss versus frequency for the proposed antenna for various values of L5;
other parameters are the same as those listed in Table 2.
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Figure 11. Simulated return loss versus frequency for the proposed antenna for various values of L7;
other parameters are the same as those listed in Table 2.
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Figure 12. Simulated return loss versus frequency for the proposed antenna for various values of Lg;
other parameters are the same as those listed in Table 2.
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4. Experimental Results and Discussion

The Agilent E5071C vector network analyzer was used to test the return loss, VSWR, and forward
transmission parameters S21 of the antenna. Figure 13 presents the results of the simulation and
experiment for the return loss of the antenna. The simulation results are in good agreement with
the experimental results. The errors may originate from SMA (Sub-Miniature-A) head connection
welding, substrate loss, the antenna size being too small, the inaccuracy of the processing dimensions,
or the test environment. The differences may also be associated with the relative permittivity used
in the simulation and loss tangent uncertainty caused by error. Figure 14 presents the VSWR
curve for the antenna simulation and the actual measurement. The VSWR was less than 2 in the
range of 4.20–8.20 GHz near 2.34 GHz. The simulation and experimental results were generally
consistent. Figure 15 presents the results for the forward transmission parameter S21 between the
two antennas. It can be observed from the figure that the transmission performance is good at the
frequencies discussed.
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Figure 15. Transmission parameter curve of the proposed antenna.

The gain curve of this antenna is presented in Figure 16, and the gains at 2.45, 4.95, and 5.80 GHz were
approximately −3.57, 1.61, and 0.95 dB, respectively. The radiation efficiencies were approximately
47.27%, 95.72%, and 95.58%, respectively. This antenna showed excellent radiation efficiency at high
frequencies. Table 4 also summarizes the gain and efficiency of the proposed antenna. Figure 17 shows
a photograph of the test environment of the antenna forward transmission parameter S21.
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Figure 16. Simulated gain and total antenna efficiency of the proposed antenna.
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Figure 17. S21 test environment of the proposed antenna.
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Table 4. Gain and efficiency of the proposed antenna.

Frequency 2.45 (GHz) 4.95 (GHz) 5.80 (GHz)

Gain (dB)
Efficiency

−3.57
47.27%

1.61
95.72%

0.95
95.58%

Table 5 compares the performance of the antenna proposed in this paper with existing antennas.
The gain at 5.8 GHz of the first reference antenna design [5] and the efficiency at 2.45 GHz of the second
reference antenna design [19] are slightly better than the antenna of the present study. Other parameters
of the design proposed in this paper are superior to the three reference antennas. The relative
bandwidth of the antenna proposed in this paper reached 64.31% in the high-frequency band, which is
far superior to that of the reference antennas [5,19,20]. This paper focuses on miniaturization [21] and
high-frequency bandwidth [22] and the proposed antenna has great advantages in the above aspects.
In the future, this antenna can be applied in the field of high-frequency broadband antennas.

Table 5. Comparison between the proposed and some existing antennas.

Frequency 2.45(GHz) 4.95(GHz) 5.80(GHz) Relative
Bandwidth

[5] Gain (dB)
Efficiency

−0.90
52.00%

1.58
75.00%

2.20
89.00%

4.80%
and 18.96%

[19] Gain (dB)
Efficiency

3.08
91.07%

−0.5
22%

0.4
45%

23.3%
and 14.03%

[20] Gain (dB)
Efficiency

−0.70
#

1.60
#

1.65
#

#
#

Proposed
antenna

Gain (dB)
Efficiency

−3.57
47.27%

1.61
95.72%

0.95
95.58%

4.08%
and 64.31%

Notation: # represents information not mentioned in the reference.

Figure 18 presents a radiation pattern of the proposed antenna and two-dimensional far-field
radiation patterns of the E-plane and H-plane at different frequencies. As can be seen from the figure,
the antenna proposed in this paper has a good radiation characteristic. In the E-plane, the radiation
direction is oriented toward 0◦ and 180◦, presenting a dipole-like radiation pattern. The E-plane
radiation pattern of the antenna is in the shape of a figure eight, which indicates maximum radiation in
the directions of 0◦ and 180◦. In the H-plane, except for a singularity at 4.95 GHz, the other frequencies
are all close to omni-directional.
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5. Conclusions

In this paper, a design for a printed monopole antenna suitable for cable-less seismograph
nodes is proposed. This antenna can work in the WiMAX (5.25–5.85 GHz) and WLAN (2.4, 5.2,
and 5.8 GHz) bands. The proposed antenna satisfies the needs for miniaturization and has a
relative bandwidth of 64% in the high-frequency band. The prototype with a compact overall size
of 17 mm × 30 mm × 1.6 mm achieved a measured bandwidth of 270 MHz (2.23–2.50 GHz) and
3.88 GHz (4.30–8.18 GHz) at lower and upper bands, respectively. The simulation and experimental
results generally agree well with each other. The test results indicate a high-frequency bandwidth of
4.30–8.18 GHz for the proposed antenna. Therefore, the proposed simple antenna may be suitable for
next-generation UWB systems. Of course, we can also improve the gain of the antenna to increase the
transmission distance. Thereby, it would connect more cable-less seismograph nodes under the same
system. Thus, we could reduce the number of AP (Access Port) relays.
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