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Abstract: Nowadays, companies are heavily investing in the development of “Internet of Things(IoT)”
products. These companies usually and obviously hunt for lucrative business models. Currently,
each person owns at least 3–4 devices (such as mobiles, personal computers, Google Assistant, Alexa,
etc.) that are connected to the Internet 24/7. However, in the future, there might be hundreds of
devices that will be constantly online behind each person, keeping track of body health, banking
transactions, status of personal devices, etc. to make one’s life more efficient and streamlined. Thus,
it is very crucial that each device should be highly secure since one’s life will become dependent
on these devices. However, the current security of IoT devices is mainly focused on resiliency of
device. In addition, less complex node devices are easily accessible to the public resulting in higher
vulnerability. JTAG is an IEEE standard that has been defined to test proper mounting of components
on PCBs (printed circuit boards) and has been extensively used by PCB manufacturers to date.
This JTAG interface can be used as a backdoor entry to access and exploit devices, also defined as
a physical attack. This attack can be used to make products malfunction, modify data, or, in the
worst case, stop working. This paper reviews previous successful JTAG exploitations of well-known
devices operating online and also reviews some proposed possible solutions to see how they can
affect IoT products in a broader sense.
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1. Introduction

Nowadays, there is a lot of development happening in “Internet of Things (IoT)” and connected
smart devices in the market. The Internet of Things (IoT) has been marked as “the next Industrial
Revolution” by The Business Insider [1] due to the way it will change the way individuals live, work,
engage, and travel, as well as how governments and organizations associate with the world. Moreover,
Gartner, Inc. (Stanford, CT, USA) [2] predicts that nearly 20.4 billion IoT connected devices will be
online by 2020. IoT framework mainly comprises sensing, communication, data collection in the
cloud and processing, and delivery of data back to the user. Here, sensing world parameters such as
temperature, pressure, heart rate, blood pressure, GPS locations, etc. is usually performed by IoT node
devices (sensor devices) which inject information into the worldwide web directly or indirectly. Besides,
node devices (sensor devices) are unintelligent devices with less hardware complexity, high power
efficiency (i.e., battery operated), and often lower cost that only sense world parameters and pass
them to the cloud for further processing. Importantly, the vast majority of these devices are physically
available to the public, thus illegitimate parties could influence data, firmware binary file and memory
footprints. This attack can be classified into a physical attack which can influence the behavior of
a product by playing with the actual piece of hardware. Thus, this introduces a noteworthy threat
to embedded sensor nodes. Skorobogatov [3] already evaluated possible physical attack scenarios,
as explained below for embedded devices.
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Theft of Service could be significant as malicious users could get access to sensitive data within the
chip. For example, Satellite TV is a kind of IoT node that is directly connected to the service provider.
An attacker could modify security to gain free services, which could cause huge losses to the service
provider. In addition, cloning and IP Piracy is a notorious challenge faced by the electronic industry
today. Various gadgets get cloned in the industry through physical attacks by getting internal memory
contents such as device ID, unique keys, etc. Due to this, not only development cost is avoided but
also the sellers of these cloned device receive a significant amount of profit. This practice is unlawful
since they use the intellectual property of a company who already invested time and money.

Denial of Service can be used as an attack by devices to satisfy selfish motives. For example,
IoT nodes can be easily reverse-engineered to send fake data to deceive the destination server.

These physical attacks can introduce huge threats not only to customers but also to the companies
that are bound to protect people’s personal data. Now, these physical attacks can happen through
standard hardware interfaces such as USB, JTAG, LAN, WLAN, Serial interface, etc.

JTAG [4] is an IEEE standard developed in the 1990s for debugging, updating and storing
firmware on the chip and still this standard is widely used in the industry. Usually, IoT nodes
are small embedded devices that have a program that runs continuously in a loop called firmware.
These application programs are directly written into the chip through either serial or JTAG debugging
interface. Manufacturers keep JTAG port on PCB board to test/validate if every single electronic part
is appropriately mounted or not, as well as for upgrading the firmware in the future. There are many
JTAG debuggers available in the market which cost from ten to a few hundred dollars, which makes
it even easier for attackers to get access to the internals of a chip and firmware. If we consider this
scenario with thousands of sensor IoT devices, then product manufacturing companies need to provide
not only secure data transmission between multiple devices but also should be more resilient against
physical theft and the intellectual property of the device. Moreover, the IoT business model is not only
about one time product selling but also includes monthly/yearly service subscription model such as
TV channel subscriptions, Google assistant services, etc. This paper studies how JTAG port access to
hardware could be severe and huge in terms of IoT endpoints nodes that are less complex, battery
operated, accessible to the public and importantly those will be in millions of numbers. This paper
covers both various exploitation of products through JTAG port and previous proposed solutions that
make JTAG access secured.

This paper is further organized as follows. In Section 2, we describe the basic background of JTAG
IEEE 1149.1 standard. Section 3 includes various JTAG exploitations that have been demonstrated
before from commercial products to industrial products. Section 4 contains different methods that
have been proposed to make JTAG interface secure. Section 5 provides the discussion of the topic and
Section 6 gives the conclusion and future insight in terms of JTAG interface and IOT infrastructure.

2. JTAG Background

JTAG [4], commonly referred to as boundary-scan and defined by the Institute of Electrical and
Electronic Engineers (IEEE) 1149.1, was developed for validating proper assembly of components
on PCB boards in the 1990s. JTAG is mainly used by IC manufacturer at the developing and testing
stage as well as giving access to the internal subsystem of IC, or for breakdown examination and
debugging. When this standard became popular for the first time, it became necessary to differentiate
between JTAG compatible devices and normal devices. Thus, the committee came up with a standard
hardware description language called “Boundary Scan Description Language (BSDL)”, which unveils
the internal resources of an IC such as logical port description, scan port identification, package pin
mapping, entity declaration, boundary register description, etc. which can be unique for each IC
manufacturer. JTAG consists of

• Test Access Port (TAP): This port gives easy access to test functions built into a component. It has
four input ports, i.e., Test Clock (TCK), Test Mode Select (TMS), Test Data Input (TDI), Test Reset
(TRST) (optional), and one output port, i.e., Test Data Output (TDO). Here, TCK, TMS and optional
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TRST are broadcast signals, whereas TDI builds serial chain, in which test signals are injected and
get test output signals at TDO port. Only these four pins are required to inject test signals on PCB
regardless of the number of components on PCB.

• TAP Controller: The TAP controller is a finite state machine which is responsible for the behavior of
JTAG boundary scan logic in the chip. The TAP controller generates signals to control the operation
of the test data registers, instruction registers, and associated circuitry. The TAP controller finite
machine has two main paths for setting and retrieving information from either the instruction
register or the data register.

• Instruction Register: The “Instruction register” decides on the operation mode of the Boundary
Scan IC. The IEEE standard has three main instructions (modes): BYPASS, SAMPLE/PRELOAD,
and EXTEST.

• One or more data register(s): These registers are used to read-out information in the component.
There are a minimum of two mandatory registers described in this standard, i.e., Boundary Scan
and bypass registers. There are data registers which contain “device ID” and are known as
“idcode” register.

JTAG specification enables testing of all components which are not time critical such as resistors,
crystals, driverICs, logic gates, reset ICs and even RAM ICs or Flash ICs (parallel as well as serial).
This specification offers a low cost, less time requirement for the testing operation, a simplified
connection architecture and hence widely accepted and followed in the industry.

3. JTAG Exploitations

Already many JTAG exploitations have been demonstrated by various researchers before. In this
section, we discuss some of them.

3.1. Exploitation of JTAG Using Physical Pin Modification

Karri et al. [5] (2010) explained different kinds of attacks such as sniffing the TDI or TDO signals,
modifying the TDI or TDO signals, controlling the TMS and TCK signals, or accessing the keys used
by testers. JTAG has a mode of operation called boundary scan, which tests all different modules of a
PCB in serial fashion. Here, the TDI pin is used to inject test signals or secret data into “n” number of
devices, which are connected in series such as memories, sequential or combinational circuits, etc. If the
tester or user is injecting some secret data into the TDI pin, then that data can be sniffed by a device
such as memory, controller, etc. that is already present in that series of devices. This is called a “sniffing
attack”. These attacks are most likely possible in IOT nodes since these nodes may contain memory
to store sensor data or encrypted global unique sensor ID (i.e., unique device ID). Three methods are
used in this paper, namely hash function, message authentication code (MAC), and stream cipher,
in the proposed defense against JTAG attacks. In this paper, an experiment is conducted to ensure the
validity of various components on PCB and the confidentiality of communication between multiple
devices and JTAG debugger.

3.2. Exploitation Using JTAGulator Tool

According to Drake et al. [6], it is one of the important tasks to find open pinouts first that are kept
by manufacturers on PCB board for future debugging and improvement because PCB manufacturers
usually hide JTAG interface points from user to provide basic security rather than exposing it directly.
Here, the authors explained the JTAGulator, an open source hardware tool developed by developer
Grand [7]. The authors explored the open pins that are indirectly available on PCB to normal user
through brute force attack. Once the hacker gets to know the pinout from PCB board through manual
inspection, then the attacker can easily get access to the firmware or bootloader. JTAGulator board
assists all users in identifying OCD (On Chip Debug) interfaces from test points or components pads
which are available on PCB boards. The JTAGulator tool can be connected to a PC via USB interface as
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well as gives interactive CLI for the user. Figure 1 shows JTAGulator image which has USB interface
for PC connection.

Figure 1. JTAGulator device [8].

Here, Android-based HTC Dream cellphone and a Luminary Micro LM3S8962 ARM Evaluation
Board are used in the experiment for exploitation. Users can set off target device operating voltage
levels, which facilitate connecting any device to JTAGulator. the authors configured it to 3.3 V for HTC
dream mobile. JTAGulator is able to perform both boundary scan and IDCODE scan. the IDCODE
scans are used for identifying JTAG slaves. In the experiment, JTAGulator continuously injected
signals at various pins and recorded responses. The authors used these responses to identify pins on
PCB boards through CLI interface. Based on pin information, the authors used J-Link debugger tool
from “segger” to get access through JTAG interface. This method could be the starting point for any
illegitimate user to get JTAG access into IOT node with open source registered toolsets.

3.3. Exploitation of Tiny OS and Mantis OS Using Open Source Software Available on Internet

Hartung et al. [9] conducted experiments to show how physical attacks including JTAG attacks
can be used to compromise sensor nodes. In this paper, researchers exploited TinyOS (an event-based
operating system) and Mantis OS (a multi-threaded operating system). Tiny OS is an open source,
BSD-licensed operating system developed specifically for low-power wireless devices and according to
the official website it has averaged 35,000 downloads in a year. Mantis OS is popular due to its feature
such as multi-threading capability with a small memory footprint (500 bytes). The author experimented
on sensor wireless node “Mica2 mote” manufactured by XBow. the Mica2 internally uses an 8-bit
processor (Atmega128) that runs on 4 MHz, contains 128 KB of instruction flash, 4 KB EEPROM, and 4
KB SRAM. The authors used AVR ICE JTAG programmer to dump and retrieve HEX code.The open
source programs such as linux based standard GDB debugging tool, UISP, avr-objcopy and avr-tool
are used to conduct this experiment. The authors got object file through serial interface connected
to the PC. The Hex converter tool is used for reverse conversion of the assembly code. Generally,
SRAM is considered as the safest among all memories to store keys and sensitive information due to
its volatile nature. This experiment showed that the researchers not only collected sensitive data from
the flash memory and EEPROM but they also copied all data from the SRAM. The authors showed
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that, by using simple hardware and free available software tools, one can get a memory footprint less
than a minute from lightweight operating systems.

Moreover, there has been rapid growth in development of operating systems specifically designed
for small-sized IoT embedded platforms such as Windows 10 IOT OS, ArmMBED OS, Yocto project,
etc. Devices such as routers, cameras, wireless sensor nodes, etc. now contains minimal sized OS
(as small as in Kbytes) for managing hardware/software resources. Since these tiny OSs are used in
many devices; such computing-feasible devices can be used as the bot to execute malicious code, or
to scan to find other vulnerable devices. In comparison to this, recently, a self propagating botnet
malware known as “Mirai” became very popular in industry and researchers community. The Mirai
malware attacked website of “Krebbs; a software security consultant company”, with 620 Gbps of
traffic in September 2016, which was one of the huge DDoS attacks (Distributed denial-of-service).
This Mirai botnet code infects devices such as routers and IP cameras that are still using their factory
default username and password. Usually, manufacturing companies of these products expects that the
user will change default credentials but in practice it has been observed that users are quite ignorant
about its severity. Kolias et al. [10] discussed the severity of this DDoS attack. In short, there are three
main modules in this malware: Bot module, ScanListen module, and Load module. The Bot module
scans other online devices in the network, ScanListen module sends collected information to load
module and Load module performs actual attack. Due to this attack, Hangzhou Xiongmai Technology
recalled 4.3 million Internet-connected camera products from the U.S market [11].

3.4. Exploitation Using Interrupt-Oriented Bugdoor Programming Method

Tan et al. [12] exploited embedded firmware through JTAG interface. They explained the concept
called “bugdoor”. “Backdoor” is a popular term used in software industry for a special code snippet
left in the program to secretly control future debugging. However, if attacker gives proper inputs to
the target program in the device, then the attacker can inject malicious code in the firmware causing
unintentional behavior of device or stealing sensitive data. Generally, server exploitation considers
getting shell (root) access, whereas microcontroller firmware access could be more devastating, since
attacker can change the device behavior, steal protection keys and more. It can go unnoticed by
the owner of the device so that attacker can continue stealing data and can keep a watch on the
device. Authors targeted Texas Instrument’s MSP430, a 16-bit ultra-low power microcontroller for
exploitation through JTAG interface. The author preferred “interrupt oriented programming tricks”,
e.g. microcontroller-based architecture frequently uses interrupt input either from internal modules
such as timer/counter, status registers, etc. or from external devices. Normally, external interrupt
can easily be triggered by attacker by changing the pin states. After this, microcontroller generally
executes interrupt handler code snippet. Similarly if the user carefully injects a specific code snippet
at the start of execution of interrupt handler, then target microcontroller can also have programmed
or program flow can be changed. Usually desktop, servers use high clock speed processors however,
microcontroller runs on significantly less clock speed and usually downclocked in power down
mode. This results in it being feasible to inject well timed code at execution of interrupt handler
called “Interrupt-oriented Programming (IOP)”. When interruption occurs, there is a state of change
between interrupt handler code and some accumulation of state in interruption called “IOP primitives”.
The authors explained various IOP primitives such as state accumulation, memory write, arithmetic,
stack growing, and stack alignment. To exploit TI’s MSP430F2618, the authors created a setup in
which two microcontrollers are connected to the target device. One microcontroller is connected
through JTAG interface and other is connected to send signals to target device. The author performed
three different exploits by writing a simple firmware on a microcontroller to generate timely nested
interrupts. First, the state accumulation exploit acquires state changes information when interrupt
occurs on target device, through which program behavior change has been done. Second, the loop
execution exploit changes memory contents by nesting interrupt loop. Third, the stack growing exploit
is done when the target device receives continuous interruptions, in which stack contents grow by
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2 bytes each time. The authors exploited open source lightweight operating system, TinyOS. The
team has added few lines of code on USART1 to receive an interrupt request, which makes interrupt
handler re-entrant. As a result, the author showed stack growing primitive. The team also performed
static analysis of the firmware of five MSP430-powered devices, FET430UIF, EZ430U, MSP430FET,
EZ430URF and GoodFET, using IDApro [13] debugger and wrote automation using IDAPython
[14] scripts in which they did not find any significant results. However, in the hardware analysis,
they observed the CPU state information that they received, which was modified when JTAG reset
occurred, was not an “actual” reset interruption triggered by a signal edge on the RST/NMI pin. This
is because JTAG debugger resets after every gain/loss action of JTAG control on target device. This
is a contradictory observation with official document provided by MSP manual [15]. To bypass this
JTAG reset problem, the authors wrote firmware that reads register values just before resetting into
some fixed memory location and retrieves it afterwards to compare it with current CPU state. They
observed that MSP430F2618 loads fixed values into CPU registers after each reset except PC and SR
registers, so most of the time it is predictable. Overall, these firmware code snippets and experiments
demonstrated concept of interrupt-oriented programming as well as changing behavior of program
execution, even though these changes are not significant but cannot be ignored in the future.

3.5. Exploitation of Modern Game Console

DeBusschere et al. [16] listed past successful attacks on the game consoles such as XBOX 360
and Sony PS3. The authors reviewed three significant XBOX 360 exploits so far, i.e., the King Kong
glitch/JTAG exploit, Timing Attack, and the Glitch Attack in this report. The King Kong glitch,
also called JTAG exploit, was exposed in late November 2006. A Kernal update (4532) was exposed
to a privilege escalation vulnerability [17] in which an unchecked memory exports in some games
has been done by unsigned shader memory. Generally, Xbox 360’s security system is built around
a hypervisor concept. The hypervisor is responsible not only for memory access but also offers
encryption and decryption services. It manages policies for code that will be executed in either
privileged or unprivileged mode. Normally application executable code interacts with hypervisor
via “sc” (syscall) instruction which switches machine into hypervisor mode. The authors explained
“cmpwi” instruction which caused problem for memory management. XBOX contains basically two
types of memory, i.e., encrypted and unencrypted. Here, “syscall jump table” is kept in encrypted
format in the memory. When “cmplwi” is executed, it is responsible for memory jump which compares
only the lower 32 bits of the system call number. The upper 32 bits are being ignored where other
instructions operate on 64 bit values. As a result, hackers intentionally injected hypervisor syscall with
preloaded register values via unprivileged application code. Moreover, these memory operations are
used to write the result of pixel shader (graphic card memory valus) into main memory while execution
of graphics related operation. However, the hacker used this shader to hold some register values and
instructs kernel to jump on certain location in memory. Due to this, the hacker could get full control
access to hypervisor and run unsigned code. This exploit is also called DMA (Direct media access)
attack since hacking can be done using the authorized memory access tool such as JTAG interface. In
the computer architecture industry, it is well known that the SMC (System Management Controller)
could trigger a DMA because SMC cannot write into NAND registers which are required to enable
correct DMA. A group of hackers reverse engineered GPU JTAG to see if DMA can be triggered by
hardware or not. JTAG could not be used to trigger the DMA since generally interface gets disabled in
early boot process. The smart hackers tried to get JTAG access with DMA address and SMC is used
to initiate DMA. This attack was well spread in hacker community till Microsoft has patched in all
new Xboxes and kernel update. Due to this, Microsoft as well as game design companies have faced
significant loss.
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3.6. Baseband Attacks: Remote Exploitation of Memory Corruptions in Cellular Protocol Stacks

The GPRS/GSM 1st generation system was launched and commercialized in the 1990s. At that
time, companies were charging significant money even for incoming calls. However, the consistent and
advanced development of cellular network (e.g., 2G, 3G, and 4G) not only made it available to people
throughout the world but also companies now mostly only charge money for Internet service on mobile
phones. Currently, IOT power efficient protocols are emerging, such as LoRaWAN, NBIoT, InGenu,
and SigFox, in the market. These protocols are currently in the first phase of the development and
industry sees this as one of the emerging business model. Some of the protocols use open radio band
for the communication such as LoRaWAN protocol which uses 433 MHz/868 MHz/915 MHz open
frequencies but the newest IoT radio protocols such as NBIoT have been developed around existing
cellular technology since cellular network has been widely deployed already around the world.

Weinmann [18] experimented and exploited memory corruption in 2G protocol stack. In his
experiment, the author set up an illegitimate BTS (Base Transceiver Station) to target mobile station (MS)
in the vicinity. This BTS broadcasts fake network and surprisingly mobile station (MS) connects to this
BTS not only due to strongest signal received by it but also GSM does not provide any protection against
fake BTSs. While experimenting with GSM and UMTS stack, the author found some of exploitable
bugs: (1) When the cell phone accesses network service for first time, a 32-bit long TMSI number is
assigned to handset which is variable by nature. By sending longer TMSI such as 128 bytes, it caused
iPhones/mobile phones to crash. (2) For authentication between BTS and MS, BTS sends challenge to
the handset. This challenge is a 16-byte value called RAND value for GSM and AUTN value for UMTS.
The author forcibly transmitted three messages, each 16-byte long. These messages are stored in the
buffer and apparently cause stack overflow. To show these exploitation, The JTAG access is required to
get debug messages from firmware. Most chipsets in mobile phones have configurable JTAG access
nowadays. However, access to PCB board through JTAG interface is provided by OEM manufacturer
not chipset manufacturer. The author experimented on mobile phones such as HTC dream and Apple
iPhones to get JTAG access. Before, HTC dream has provided limited JTAG access but author changed
the register flag by setting breakpoint at secondary boot process whereas iPhone JTAG was completely
locked down from the company itself giving more security, but debug messages and baseband crash
report logs can be found at /Library/Logs/CrashReporter/Baseband location. The author exploited
HTC mobile through JTAG interface by turning ON auto-answer facility provided in the 2G protocol
stack. The TMSI and AUTN bug exploitation method is used in this experiment. When AUTN payload
is forwarded to testcall UDP port after establishing channel using testcall command, this bug turns
ON auto-answer facility without understanding of user. The TMSI overflow bug concept which is
described earlier is used to configure auto-answer facility in iPhone. A LOCATION UPDATING
REQUEST is sent by mobile to the BTS as soon as it connects to fake network. Here, the BTS sends
intentional LOCATION UPDATING ACCEPT reply with some payload. This enabled auto-answer call
in iPhone. These experiments showed successful exploitation of memory corruption in GSM baseband
software stack through JTAG interface. In case of IOT protocols and its stack development, these
considerations should be considered to make IOT products secure.

3.7. Attacks on Programmable Logic Controllers (PLC)

In a broader perspective, IoT infrastructure will be wide enough covering not only commercial,
medical, military and automobile industry but down the line that will also be used in industrial
field to make an improvement into industrial process management. Schuett [19] explained a JTAG
exploitation in the Supervisory control and data acquisition (SCADA) systems which is dominantly
used to monitor and control huge system infrastructure such as electric power transmission lines,
water distribution systems, gas and oil pipelines, etc. The programmable logic controller (PLCs)
gathers data and interacts with sensors and valves for streamlining huge industrial process. For
example, nowadays, the vehicle manufacturing factory assembles 20 cars a minute on an average, so if
any single PLC hardware is being attacked and shut off for even for an hour, it could cause a huge
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loss for company. According to the author, attacks on SCADA systems have predominantly focused
on network protocols (e.g., MODBUS, Ethernet, and CAN protocol) and high-level systems where
human–machine interface occurs, however it is equally important to consider security of PLCs and
monitoring field devices in SCADA systems.

The author experimented on Allen-Bradley’s Controllogix 1756-L61 PLC controller for firmware
exploitation. This experiment used commercial tools such as ControlFLASH for uploading firmware
to PLC, “IDA-Pro Hex Rays” for disassembling the firmware, RealView ICE as JTAG hardware
debugger and ARM Development Studio v5 in this experiment. The author followed three steps
for exploitation: firmware acquisition, analysis of hardware and its components, and analysis of
disassembled firmware. Here, the RealView ICE debugger is used in auto configuration mode to get
all ARM related information. According to author, the hardware analysis is mandatory to identify the
instruction set used in firmware. The author followed static and dynamic analysis for firmware by using
IDA Pro disassembler. Previously developed IDA Pro scripts by Santamarta [20] and Basnight [21] are
used to identify ARM functions. During the static analysis, the location of firmware images in volatile
memory is identified where initial jump to the entry point of the firmware is occurred. During the
dynamic analysis, firmware execution paths are identified by using JTAG interface through which
memory breakpoints can be set and test read/write access. This JTAG interface can also dump memory
and register values before PLC goes into fault state which helped understanding conditional flags
of hardware status. While working on the device, author identified vulnerable firmware sections
through various diagnostic tests such as processor mode diagnostics, processor register r0 diagnostics,
CIP (Common Industrial Protocol) communication protocol diagnosis, etc. In processor mode diagnosis
method, the author was able to get current working mode of system. Usually, PLC has four mode
settings: RUN, PROGRAM, REMOTE RUN, and REMOTE PROGRAM. Registers r0, r1, r2, r3 and r4
are kept observing to see the values while uploading and running program using RSLogix. The author
observed that “cpmode” is being called continuously. Cpmode from JTAG architecture acts as an event
handler which is responsible for above four mode settings in PLC. Thus, the author suggested that
continuous execution of cpmode function could at least hang the system. Next, the author worked on
Allen-Bradley PLC’s CIP communication protocol. This protocol is object-oriented protocol which is
distributed over serial or ethernet link across all parts of system. The author found that the breakpoint
can be triggered if identity object request is sent through CIP messages. All these diagnosis methods
are combinatorially used to influence PLC system. In addition, the author initiated DoS attack, which is
triggered by CIP commands, cpmode check and writing a sentinel value to an unused area of flash
memory. Thus, It keeps executing cpmode function due to presence of sentinel value in memory which
forces PLC to go in fault state. As per author insight, recovery can be done through updating device
firmware or sending device back to manufacturer for repair.

3.8. Attacks on Android OS

Fault injection is a well known term in the software industry for when the robustness of software
is tested by injecting various code paths and analyzing behavior of the code. In software, there are
mainly two types of methods, namely compile time injection and run time injections, and various
tools that utilize these methods are available to date. These techniques are predominantly used in
the software field to test the flow of codes/algorithms. However, Majeric et al. [22,23] combined
this software field with a hardware interface (JTAG) to exploit the recent Linux Android OS 6.0.1
(Marshmallow). As we know, OS contains two major spaces for organizing basic OS functionalities,
i.e., user space and kernel space. Usually, kernel space access is given to authorized administrators,
developers or certified applications to use/manage system resources. To do this, the OS hides all
details of processes/applications to normal users to keep security intact. Here, the authors used the
JTAG tool to get access of internal memory and injecting the faults. This experiment have successfully
changed modes from normal access (restricted) to root access (unrestricted) which is known as a
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privilege escalation attack. This kind of attack can put systems at a huge risk of sharing sensitive data
and, moreover, can corrupt the whole system.

In Android OS, /proc/sys/kernel/kptr_restrict provides a security feature which hides the
addresses of kernel functions. The kernel function sys_setresuid provides the attribute which denotes
whether the application contains root privilege or not. The Author modified this bit to get root privilege
to an unauthorized application. In this experiment, the authors used a 32-bit ARM Cortex A9 processor
which had Android OS version 6.0.1 Marshmallow along with Android debug tool (ADB) (command
line tool), and Lauterbach Trace32 JTAG tool. This experiment is performed with three main steps:
(1) find the address of sys_setresuid; (2) modify this system call; and (3) change root privilege from
user space. The first two steps are carried out with the JTAG probe. %pK is kernel specifier which hides
kernel pointer. If an attacker changes this %pK specifier with %p, then the system starts to display
its symbol pointer regardless of its privileges. A non-privileged user can now ask for addresses with
the command:

$ c a t /proc/kallsyms | grep s e t r e s u i d

This system call address is easily traceable in the memory footprint. Now the attacker can modify
assembly code as per his wish. In the third step, root privilege is assigned from user space through
ADB command line by executing simple C program. This is achievable because ADB command line
provides a new terminal window with root identity. In this whole experiment, JTAG plays a crucial
role since it can see internals of memory directly. If the attacker is skilled and knows about system
internals, then even the latest smartphone’s security can be breached.

4. JTAG Security Solutions

Many solutions have been proposed to make JTAG secured. In this section, we discuss JTAG
attacks solutions and applicability of solutions on IOT nodes.

4.1. Based on Physical Unclonable Functions (PUF)

Suh et al. [24] (2007) provided unique lightweight “Physical Unclonable Functions (PUFs)”
scheme to establish a secure communication between master and all slaves. The PUF is an innovative
primitive that prefers looking key secrets in complex physical characteristics rather than storing them
in digital memory. Usually, the cryptographic secret keys are stored in the non-volatile digital memory
and those keys are susceptible to the physical attack [25–27]. Moreover, continuous battery powered,
resource hungry add-on tamper sensing circuitry is often required for higher memory security. On the
other hand, each IC has a different microstructure that depends on random physical factors introduced
during manufacturing even if same IC manufacturing with same process is being followed. Here,
the PUF generates volatile secrets when chip is powered on and running since it considers random
delay characteristics of wires and transistors. This experiment proposed challenge response-based
solution also known as Ring Oscillator (RO) PUF to provide JTAG security. The challenge sequence
fed to the IC circuit for pseudo random generator then PUF delay circuit is evaluated k times. A ring
oscillator is simple circuit which oscillates at a certain frequency. However, this ring oscillator in
each IC gives slightly different frequency due to the manufacturing variation. Thus, even if the same
input is challenged to different ICs, it has different response output. In addition, this ring oscillator
is highly sensitive to temperature and voltage changes. Hence, the PUF output could be distorted
while generating keys. Thus, the authors proposed the solution of creating challenge response pairs to
minimize the error rate. These pairs are created by comparing two ring oscillators that have a huge
frequency difference called masking. This ring oscillator solution gives unique key generation but
limited number of challenge pairs. To overcome this, the authors proposed two ways to create many
challenge response pairs. First, extensions of oscillators need to have configurable delay paths. Here,
a challenge can select the configuration path that is within a delay loop so that distinct challenges gives
distinct oscillation frequency. Second, a the facility of programmable logic such as FPGA, which has
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inverters, look-up tables and wires, can be used to determine oscillator configuration. To authenticate
and authorize trusted party with this solution, the manufacturer of IC has to keep record of different
challenge response at the time manufacturing process. If response of IC while getting JTAG access
is matched with record, then only JTAG access is given to the party considering it as trusted party.
To prove this, the authors experimented on ASIC implementation of the 64-stage arbiter PUF on
15Xilinx Virtex4 LX25 FPGAs (90 nm) which shows PUF can be used secret key generation and
authentication. The authors successfully conducted “inter-chip variation” and “intra-chip variation”
experiments to test uniqueness and reliability of PUF output. The PUF is not only lightweight and
unique but also ideal for extremely resource constraint platform such as RFID and IOT nodes. Another
advantage of PUF is that it does not require any special manufacturing process or programming and
testing steps.

4.2. Based on Public Key Cryptography

Das et al. [28] (2013) implemented a secured JTAG solution with asymmetric key based approach
by using Public-key Cryptography (PKC) scheme. Specifically, an Elliptic Curve Cryptosystem
approach is used over other public PKC schemes (such as RSA) due to small key size, reduced storage
requirement, and transmission requirement. According to the authors, ECC (An elliptic curve
cryptosystem) based Schnorr protocol provides “no information leak” property while running protocol.
The researchers gave full proof implementation in hardware along with detailed timing results to
prove this. In the draft, the researchers discussed about possible application scenario of attacker
model. In the Manufacturing Test/Firmware or Code Update at Manufacturer’s end scenario
needs to have one way authentication since this environment is controlled whereas In-the-field
Update, Debug and Test is considered as uncontrolled environment, hence needs to have a two-way
authentication, i.e., device side as well as server needs to be authenticated. The authors preferred
ECC over RSA to solve key management problems because ECC offers same security as RSA but
with small footprint. The experiment also proposes offline and online mode with server as two
modes of operation. The online mode uses Authentication Server (AS) to validate certification with
the public key. The disadvantage of this mode is that it needs server access while getting JTAG
access at device, which is not a practical approach for most of the cases. In context of these modes,
the offline mode seems more promising in the IOT infrastructure since nodes might not always
connect to server directly. This offline mode uses clock from the device to validate expiration date
of certification. In this paper, man in middle attack is also prevented by a Elliptic Curve Digital
Signature Algorithm (ECDSA). Two different implementations are provided in this paper: projection
of coordinates and affine coordinates. Projection coordinates method uses few inversion modules,
while affine coordinates method uses dedicated inversion module based on extended Euclidian
algorithm. This helps efficient execution of ECDSA. In addition, integration of the ECC based Schnorr
controller and ECC point multiplier with the JTAG interface along with the other modules is also
another important contribution, as shown in Figure 2. This contribution does not interfere with the
timing aspects of the IEEE 1149.1 JTAG standard. The system supposed to be in LOCKED state in the
initial stage. Basically, Schnorr controller interacts with instruction decoder from the JTAG architecture.
This Schnorr controller gets input from ECC module and a 192-bit random number generator module
and generates “release_unlock” signal. After this step, all the JTAG functionality such as boundary
scan, etc. can be used. The impact of this solution consists of initial delay for execution of Schnorr
protocol/ECDSA but once it is unlocked the remaining functionality is the same as normal JTAG.
This kind of protocol is useful in IOT nodes when nodes contain sensitive identification numbers and
need of secured firmware upgrade through JTAG programmer.
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Figure 2. JTAG ECC controller integration block diagram [28].

4.3. Based on Challenge Response

Clark [29] proposed solution by using SHA256 secure hash and a true random number generator
(TRNG). This solution creates a low gate overhead challenge/response-based access system for IC
test and on-chip internals. The challenge has to be generated at IC and response has to be by JTAG
software on PC, which computes hash value. Figure 3 shows basic block diagram of anti-tamper JTAG.
This method increases hardware complexities since challenge is generated at IC for which a random
generator is required on chip.
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Figure 3. IC with anti-tamper JTAG [29].

4.4. Security Level Based Approach

Buskey et al. [30] (2006) proposed new protected JTAG architecture solution for microcontrollers
and processors. The main motive of this paper is to protect the program residing inside controller.
Thus, to prove this, they proposed a separate hardware protecting mechanism that guarantees reliable
authorization. This solution gives not only facility of three protection levels to user but four different
access modes as per their requirement. AM0 access mode discussed in this paper might be useful if it
becomes implemented since this mode restricts all kinds of data through JTAG interface, giving highest
security to sensitive data. Moreover, Kumar et al. [31] also proposed and simulated multi-level JTAG
architecture. They offered VHDL implementation of JTAG architecture with four levels of privilege
access modes: unprotected level (p1), low level protection level (p2), medium level protection level (p3),
and maximum protection level (p4). AES encryption or decryption method is adopted for private key
generation and authorization. These privilege level accesses are based on different stages involved in
product life cycle development. Unprotected level (p1) can used by developers in initial development
stage since they need full access to internal registers and flash memory. Low protection level (p2)
can be used for just circuitry functions and uploading firmware. Medium protection level (p3) gives
limited debugging facility such as board level interconnection testing for certified product distributor
or service center. Maximum protection level (p4) is a locked state in which JTAG port is completely
disabled hence giving maximum security to owner or user of product. Figure 4 shows block diagram
of Secure JTAG Architecture.

Conventional JTAG architecture gets added by an Authentication and Authorization Module
(AAM) and access provider. AAM register is implemented for communication protocol and user level
access settings whereas Access Provider is a memory module that holds different access levels to actual
JTAG architecture. The authors modeled this using VHDL and simulated using MODEL SIM 10.0d.
In this paper, VHDL programming details are limited but the concept of level-based security seems
promising for IoT devices.
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Figure 4. Secure JTAG architecture [31].

4.5. Credential Based Approach

Park et al. [32] proposed and implemented new end-to-end authentication infrastructure in
which server issues credential and password to user through Internet connection for secure JTAG
interface. This solution has two main phase: credential issue phase and the user authentication phase.
In credential issue phase, a remote server verifies user identity and gives access privileged permissions,
while the user authentication phase validates credentials and password provided by remote server and
allows access to JTAG device as per defined in permissions. According to the authors, this method uses
Hash and XOR calculation for interaction between host (computer) and JTAG device, which makes
this solution less expensive.

4.6. Exploitation Using Statistical Machine Learning

Ren et al. [33] (2015) conducted an experiment to detect unauthorized access through JTAG port.
The authors proposed statistical learning in chip (SLIC-J) scheme for JTAG protection. They proposed
this scheme by assuming illegitimate person will act differently compared with authorized person.
In this, the authors simulated results using openSPARC T2 benchmark. Basically, JTAG functions such
as direct memory observe, clock control, internal scan, shadow scan, L2 cache scan, etc. are stored
inside instruction register, which can be vulnerable with respect to attackers. Authors described JTAG
attacking strategies in three main steps: (1) identifying the JTAG port on chip/PCB board; (2) finding
basic profile of data register (DR) that can be used to extract or write the data; and (3) investigating the
undocumented functions. Table 1 explains the main steps and their sub-steps.
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Table 1. Attacking strategies.

Steps for JTAG Attacking Strategies Sub-Steps

Identification of JTAG ports on PCB 1. Identification of JTAG port is performed either manually or
third-party tools such as JTAGulator [7], ftjrev [34], etc.

Exploration of Data Register(DR) 2. Recollect details about length of Instruction register (IR).
3. Recollect details about length of data register (DR).
4. Get details about opcodes and their association with DR register.
5. Check configurability status of DR register.
6. Identify internal scan chains.

Get Details of undocumented functions 7. Differentiate functions and opcodes which we extracted
during Sub-Step 4.
8. Understanding of functioning of each DR register.
9. Get all details of opcodes and their functioning.

To perform these steps, the authors used a two-phase scheme, i.e., offline learning and online
prediction. Offline learning is used to train decision tree classifier, which is stored in nonvolatile
memory, whereas feature extraction and supplying those features to the decision tree is done in online
prediction. There are basically eight type of features that are explained in the paper: higher and lower
4 bits of JTAG instruction, number of clock cycles in shift-DR, run-test/idle, test-logic-reset, number of
test-mode-select (TMS) transitions, type of transition, and legal opcode. These features are kept in a
look-up table (LUT) and fed to decision-tree classifier. The classifier must have enough datasets for
illegitimate user detection such that SLIC-J is the preferred “normal_transition”.

0 <= Tl <= Th <= k (1)

where k is instructions, m is number of illegitimate predictions within a period, and Tl and Th are
two thresholds.

1. If m = k, then the user is considered as an attacker.
2. IfTh ≤ m ≤ k, then the user is most likely be an attacker.
3. If Tl ≤ m ≤ Th, then the user may or may not be an attacker.
4. If M < +Tl, then the user is considered as legitimate.

The goal of this paper is to discover undocumented JTAG functions that can be used to hack chip.
In addition, the same authors implemented another two-layered approach to secure JTAG attacks

based on machine learning methods [35]. In this experiment, results are compared with other previously
published protection schemes such as encryption, signature detection, anomaly detection, and SLIC-J
statistical learning [33] and showed overall 94% accuracy. They proposed protection scheme to secure
the system from unknown attacks. As we know, if one wants to add security measures in the existing
IEEE 1149.1, then there are primarily two measures considered: (1) the level of security that is
enhanced; and (2) the overall overhead that is added on the existing system. Thus, this experiment
ensures high level security with a medium level of extra overhead. The study proposes a two-layered
approach, where the violation of basic rules of JTAG operation are in the first layer. The second
layer allows those who were successfully examined by first layer, in which Support Vector Machine
(SVM) based classification is performed. The main motivation behind the implementation of the first
layer is to label attackers immediately if one uses illegal opcodes and/or invokes incorrect length
of read/write data. This behavior can only be observed in unauthorized users who have little or
no knowledge of IC internals and its JTAG operation. In the second layer, behavioral pattern of the
user is validated by considering the sequential order of JTAG instructions. Usually, there are multiple
different operations with different JTAG instructions, which mostly have different opcode lengths.
Thus, this shows nonlinear boundaries and overlapping regions while classifying between legitimate
users and illegitimate users. The study tries to solve this classification problem by using a supervised
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learning method known as SVM. Input sample behavior data (training data) is fed into SVM for
classification. Here, the SVM decides the boundary between attacker behavior and normal behavior.
In addition, delayed labeling method is used to avoid false positive and/or false negative results.

The authors used the OpenSPARC T2 platform for this experiment. The dataset included
767 authentic programs which contained 125,017 opcode sequences and 1092 attacking programs
which contained 154,980 opcode sequences. The study also demonstrates two different sets of results
following two different sets of strategies. In the first set, Ren et al. made divisions based on the
component under target. They came up with eight different IC components targeted by attacks.
They used SVM with neural network (hidden layer = 1, hidden neuron = 10), k-nearest-neighbor
(k-NN, k = 3) and decision tree models. In the second set, the authors made nine divisions based on
attacking strategies used for exploitation. The whole experiment showed them 94% overall accuracy
while detecting unseen attacks. This article shows the results based on a two-layered learning technique,
which is significant, but this scheme has more area overhead as well as more latency. This scheme is well
suited where hardware complexity is higher and is not battery powered. The accuracy is dependent
on the datasets of previous attacks to a great extent. The results of this experiment are significant,
e.g., physical security is enhanced up to 94% with machine learning techniques, and improved by 50%
on average compared to previous work.

4.7. JoKER, Trusted Detection of Kernel Rootkits in Android Devices via JTAG Interface

In recent years, there has been tremendous development in OS for handheld devices.
These smartphones and tablets have become very popular and consist of full-fledged operating
systems such as Android, iOS, etc. As we know, there are many antivirus programs available in the
market that promise security against malicious apps. In practice, most of them provide application
level security not low level (kernel) security, which is more prone to attacks. However, it is always best
to prevent kernel level system attacks. Moreover, the JTAG hardware debugging standard is the most
trusted debugging technique at hardware level in the industry.

Guri et al. [36] demonstrated detection of kernel level of rootkits in recent Android devices
through the JTAG interface. Kernel level attacks can grant permissions to hide virus/malware from
antivirus programs so that authors used well known JTAG hardware debugging techniques to get
low level memory screenshots. This experiment is performed on Android versions 2.6.35 and 3.4.0.
The authors downloaded vanilla OS version from its website and compared its memory contents with
the same version OS, which already had hidden malware installed in it. The authors followed three
main steps in the detection process: (1) halting the target processor; (2) extracting kernel data structures
from memory; and (3) running analysis programs to hunt for rootkit footprints. They performed tests
on Samsung Galaxy (S2 and S4) mobile phones with a RIFF Box JTAG controller to execute the first
two steps. The third step consists of two important analysis, i.e., integrity checks and detection of
stealthy hidden processes. Integrity checks comprises testing system call tables, the exception vector
table, and software interrupt handler, since these objects are not usually modified on regular Android
system. However, malicious processes can remove their entry from a process list, hiding their details.
Thus, the authors compared objects from normal process list objects with the protected cache pool
objects to acquire their presence. Although JTAG is designed for system testing and verification, in this
experiment, it is also used for low level threat analysis of Android OS.

5. Discussion

In this article, it is assumed that the IoT node devices have less resources such as battery power,
circuit complexity, memory size and most importantly lower cost for customer. There has always
been a trade-off between product security and all other resources, such as hardware complexity,
cost of product, etc. The linear relationship is always considered between product security and
its cost. Moreover, as we have seen in this article, multiple solutions provided by researchers add
security against JTAG attacks by adding extra hardware circuitry in it. Industry believes changes in



Future Internet 2018, 10, 121 16 of 18

software is always less expensive than that of hardware changes and the JTAG works on most core
layer of the system. Thus, there should be a very fine balance when providing highest security with
limited resources.

Besides, nowadays, various IoT wireless technologies are coming to the market such as LoRaWAN,
NBIoT, LTE, etc. that provides reliable end-to-end communication network link from endpoint nodes
to the centralized server. In this case, most IoT endpoint nodes contain small-sized OS. As discussed in
Section 3.3, we cannot escape from the fact that these operating systems are prone to malware botnets
such as Mirai. These kinds of botnets usually reside in DRAM memory of the device, which is volatile.
Thus, updating the firmware/OS eliminates such malware from the system. Thus, JTAG access port
must be available on PCB board in worst case to debug and update software.

Let us evaluate the JTAG solutions that we discussed one by one. First, it seems unrealistic to
add extra JTAG security circuitry into the resource-constrained IoT nodes. This extra circuitry could
be added to products that are not battery operated, such as game consoles, PLC machines, set top
boxes, etc. Second, a credential-based solution looked promising couple of years back but exponential
growth rate in the number of IoT devices will make it difficult. Usually, JTAG debugging is used by
technicians in the field either to debug circuit or upgrade firmware. Thus, in practical case, technicians
use common password on the field and employees sometimes move to other companies (Job change).
This makes products vulnerable over time, since it would be expensive to configure each device with
new password. Third, If we take secured JTAG key methods, then the database of unique keys has to
be well protected and maintained. Moreover, extra protected access has to be granted to technicians,
which increases system dependency. However, note that, currently, SSL or TLS secure transport is
affordable and cheap in server client protocol. The main advantage of this architecture is offloading
processing on server side. Thus, global unique ID for each node can strengthen overall security. Fourth,
recently machine learning techniques are coming forth to provide prevention against physical threats.
The solutions that are provided with learning methods are mostly based on sample lab datasets. Hence,
realistic datasets with all corner cases can only improve the accuracy of threat detection.

6. Conclusions

In this paper, we review articles of JTAG debug standard, which mainly demonstrated past PCB
exploitation of some well-known products (such as GSM mobile, XBOX, PLC, etc.) as well as some
proposed design solutions to make JTAG interface as a secure debug interface. Secure JTAG solutions
that are reviewed in this paper are considered for making JTAG interface secure at any cost. Moreover,
this might not help in the case of IOT technology since IOT sensor nodes are considered battery
operated, less complex, low computational power/dumb devices, which only sense and forward data
towards gateway or cloud.

If we consider the evolving nature of IOT infrastructure, there will be billions of devices that
can communicate each other independently. Moreover, the Internet network (development of 4G, 5G,
LPWAN, and Bluetooth) is becoming more resilient each day and offers high speed communication due
to healthy competition between network service provider companies. Well known chip manufacturing
companies such as ATMEL, NXP, Intel, Samsung, Texas Instruments, Qualcomm, Toshiba, etc. have
already adapted JTAG standard in the last 18 years. In addition, some of the companies such as
NXP [37] have already come up with their own security enhancement in JTAG standard to make their
own chip secure. Thus, there should be a combined effort from all communities either to revise the
existing standard or to frame-up IOT based secured JTAG by forming a global committee which will
ensure security against physical attacks.
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