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Abstract: A recommendation system can recommend items of interest to users. However, due to
the scarcity of user rating data and the similarity of single ratings, the accuracy of traditional
collaborative filtering algorithms (CF) is limited. Compared with user rating data, the user’s behavior
log is easier to obtain and contains a large amount of implicit feedback information, such as the
purchase behavior, comparison behavior, and sequences of items (item-sequences). In this paper,
we proposed a personalized recommendation algorithm based on a user’s implicit feedback (BUIF).
BUIF considers not only the user’s purchase behavior but also the user’s comparison behavior and
item-sequences. We extracted the purchase behavior, comparison behavior, and item-sequences
from the user’s behavior log; calculated the user’s similarity by purchase behavior and comparison
behavior; and extended word-embedding to item-embedding to obtain the item’s similarity. Based
on the above method, we built a secondary reordering model to generate the recommendation results
for users. The results of the experiment on the JData dataset show that our algorithm shows better
improvement in regard to recommendation accuracy over other CF algorithms.

Keywords: collaborative filtering; comparison behavior; item-pairs; item-embedding; secondary-reordering

1. Introduction

With the rapid development of the Internet and the emergence of big data, information and data
have exploded in size, and it is more difficult for people to obtain accurate and efficient information
in time. Therefore, recommendation systems [1,2] have received more and more attention, including
content-based recommendation algorithms [3,4], collaborative filtering algorithms [5–7], and hybrid
approaches [8,9]. A good recommendation algorithm can better understand the user’s purchase
intention and can improve the user’s viscosity for the e-commerce platform, thereby increasing the
user’s purchase rate. Among these algorithms, the collaborative filtering algorithm is widely used in
various recommendation systems, such as Amazon, Netflix, and others. The reason is that it has no
special requirements on the recommended items and can achieve significant recommendation results.

The nearest neighbors approach (KNN) and matrix factorization (MF) are major collaborative
filtering techniques. Most of them are designed with explicit feedback data such as rating data,
which needs the recommendation systems to guide the users in terms of score. However, users are
often reluctant to spend time reviewing items in the field of e-commerce, which causes the rating data
to be difficult to obtain and sparse.

Some recommendation algorithms are based on user’s behavior logs and can solve the difficulty
of data acquisition. However, the user’s behavior logs lack negative feedback—we cannot be directly
aware of user’s preferences, which makes it more difficult to find the nearest neighbors accurately.
In order to solve this problem, we fully mined the consumer’s implicit feedback, such as the purchase
behavior, comparison behavior, and item-sequences. The TF-IDF (Term Frequency-Inverse Document

Future Internet 2018, 10, 117; doi:10.3390/fi10120117 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
http://www.mdpi.com/1999-5903/10/12/117?type=check_update&version=1
http://dx.doi.org/10.3390/fi10120117
http://www.mdpi.com/journal/futureinternet


Future Internet 2018, 10, 117 2 of 13

Frequency) algorithm and the word-embedding technology of the natural language processing (NLP)
field were improved and applied to the collaborative filtering algorithm. The contributions of our
work are as follows:

• Refine the user’s behavior, build item-pairs, and consider not only the user’s purchase behavior
but also the comparison behavior, and apply TF-IDF to collaborative filtering (CF) to calculate the
user’s similarity more reasonably.

• Extract the user’s browse sequence for items from the user’s behavior log, use word-embedding
technology to map items to low-latitude vector spaces, and calculate the similarity of the items.

• Construct a secondary reordering model to generate the recommendation results for the users.

2. Related Work

According to the classification method proposed by Breese [10], CF algorithms can be divided
into two categories: memory-based CF, which includes information based on the user’s CF [11,12] and
item CF [13]; and model-based CF [14]. Traditional collaborative filtering algorithms are mostly based
on explicit data, such as ratings or stars, which is sparse in e-commerce. Therefore, more and more
scholars have studied the user’s implicit feedback to recommend items to users.

Hu [15] treated the data as an indication of positive and negative and tailored a factor model for
implicit feedback to recommend television shows. Choi [8] considered only the purchase data of the
user to derive implicit ratings, to enable CF to be applied, and then they integrated CF and (sequence
pattern analysis) SPA to improve the recommendation quality. Rendle [16] directly optimized for
ranking by Bayesian personalized ranking (BPR). In Reference [17], the authors incorporated visual
features with BPR for the task of personalized ranking. Li [18] trained multiple GBDT (Gradient
Boosting Decision Tree) models with a user’s characteristics extracted from the user’s behavior
log, and the output was regarded as the input for LR (Logistic Regression) to obtain the final
recommendation results. Reference [19] analyzed the user’s shopping log with SVD++ to obtain
the user’s brand preference. Zhao [6] studied CF in an interactive setting. They used a probabilistic
matrix factorization model to capture the distributions of the users and item feature vectors. Barka [20]
produced embedding for items in a latent space to analyze item–item relations to produce item
similarities. Ozsoy [21] applied Word2Vec to a recommendation system to learn a latent representation
of the users and items, and then combined a collaborative filtering algorithm to recommend items to
the user.

Compared with the above methods, in this paper, we mined not only the user’s purchase behavior
but also comparison behavior and item-sequences to recommend items to users. We combined the
user’s purchase behavior and comparison behavior to modify the method of measuring the user’s
similarity. The purchase behavior was easy to capture, but not the comparison behavior. Thus, we
built item pairs to capture the user’s comparison behavior to obtain the user’s preferences. In addition
to this step, we extracted the item sequences based on the user’s behavior log and calculated the items’
similarities through an item-embedding technique. Lastly, we built a secondary reordering model to
recommend items to users. The results of our method on the JData dataset were compared with other
recommendation algorithms, and our method obtained better performance.

3. User’s Similarity Calculation by Combining User’s Purchase Behavior and Comparison Behavior

Due to the lack of rating information in the user’s behavior log, the user’s similarities cannot be
directly calculated. Therefore, in this part, we considered the user’s purchase behavior and comparison
behavior to measure the user’s similarity. By analyzing the user’s purchase behavior, we can directly
know the user’s love for the item. However, in the user’s behavior log, there are many other behaviors,
such as clicking behavior, adding item to shopping cart behavior, and collecting behavior. When a
user wants to buy an item in JD (a large e-commerce platform in China), the different behaviors reflect
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different degrees of user interest for the item. Additionally, if two users select the same item when
facing the same two items, they have similar comparison behavior and are more similar in preference.

3.1. User’s Browsing Behavior Analysis

In e-commerce, a user’s behavior is divided into clicking, add item to shopping cart (represented
by adding in the following), collecting, and buying. We defined the user’s behavior as B = (b1, b2, b3, b4)

where b1 means clicking, b2 means adding, b3 means collecting, and b4 means buying. Intuitively,
in the user’s behavior log, a certain behavior occurs more with lower interest, and otherwise with
higher interest. Table 1 shows the user’s behavior-matrix extracted from the user’s behavior log. Here,
fk describes a type of feedback behavior, and ni,k describes the average number of fk for user i. Then,
we obtained the user’s behavioral-habit matrix, as shown in Table 2, by Equation (1):

w fk
=

∑4
k n fk

/n fk

∑4
j ∑4

k n fk
/n f j

, (1)

where n fk
describes the average number of fk, and w fk

describes the weight of fk. Here, wi,k describes
the weight of the user’s different feedback in Table 2.

Table 1. User’s behavior-matrix.

User f1 f2 f3 f4

u1 n1,1 n1,2 n1,3 n1,4
u2 n2,1 n2,2 n2,3 n2,4
. . . . . . . . . . . . . . .
ui ni,1 ni,2 ni,3 ni,4

Table 2. User’s behavior-habits-matrix.

User f1 f2 f3 f4

u1 w1,1 w1,2 w1,3 w1,4
u2 w2,1 w2,2 w2,3 w2,4
. . . . . . . . . . . . . . .
ui wi,1 wi,2 wi,3 wi,4

Unlike the explicit feedback, we do not have any direct data from the users with regard to
their preferences, but we can extract the user’s behavior-habit instead, which is represented by
Wu = (wu,1, wu,2, wu,3, wu,4). Otherwise, we analyzed the user’s behavior log and build the user’s
interaction vector for items that are represented by ni = (n1, n2, n3, n4). Therefore, we obtained the
user’s preferences for items based on the user’s interaction with the recommendation system by
Equation (2):

Scoreu,i = wu ∗ ni, (2)

where Scoreu,i represents the user’s preference for items.

3.2. User’s Comparison Behavior Analysis

When purchasing items, users will compare a series of items and finally purchase one. The process
of selecting items reflects the user’s comparison behavior. If users have similar comparison behaviors,
they should be more similar. In this section, we built item pairs to capture a user’s comparison behavior
and obtain a user’s real preference for items.

Definition 1. Purchase cycle T. In real life, users often buy items on an e-commerce platform for a period of
time. Therefore, we split the user’s behavior log into different purchase cycles based on the time when the user’s
purchase behavior occurs, T = (t1, t2, . . . , tn).
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Definition 2. Item-pair p(u,i>j). This concept describes a user’s comparison behavior before purchasing items
in a purchase cycle, and it can be used to measure the user’s similarity.

Table 3 is an example to show how to build an item-pair.

Table 3. A series of feedback for u1 in a purchase cycle.

User Interaction Log Adding Collecting Buying

u1 a, a, b, a, c, a, a a, c a a

Table 3 shows the user’s interaction vectors to items represented by nu1,a = (2, 1, 1, 1),
nu1,b = (1, 0, 0, 0), and nu1,c = (2, 1, 0, 0). The user’s behavior-habits matrix has been obtained in
“Section 3.1”, and thus, the preference to items of u1 can be obtained by Equation (2). Then we can
build the item-pairs P(u1,a>b), P(u1,a>c), and P(u1,c>b).

3.3. User’s Similarity Calculation

Each user has their own item-pair sets, and different item-pairs have different weights for the
user, to calculate user’s similarity. An example is shown in Table 4.

Table 4. User’s item-pairs sets.

User Item-Pairs Set

u1 P(u1,a>b), P(u1,a>c), P(u1,c>b), P(u1,c>d) . . . . . .
u2 P(u2,a>b), P(u2,c>a), P(u2,c>b), P(u2,d>c) . . . . . .
u3 P(u3,a>b), P(u3,c>a), P(u3,c>b), P(u3,d>c) . . . . . .
u4 P(u4,a>b), P(u4,a>c), P(u4,c>b), P(u4c>d) . . . . . .
u5 P(u5,a>b), P(u5,a>c), P(u5,c>b), P(u5,c>d) . . . . . .

When facing a and c, three-fifths of consumers choose a, and two-fifths choose c, and thus, P(u,c>a) should be a
greater weight for u2, u3 than for u1, u4, u5.

In the field of natural language processing (NLP), the TF-IDF algorithm is a statistical method to
assess the importance of the same word for one file or one corpus. The corpus is similar for user groups.
Therefore, in this paper, we tried to apply TF-IDF to a recommendation algorithm. We regarded the
user groups as a corpus, the user’s item-pair sets as one file, and an item-pair as a word.

Definition 3. Item-pair Frequency (IPF). This concept describes the times that an item-pair appears in the
item-pair sets of a user. The larger the number of times is, the more important the item-pair is to the user.

Definition 4. Inverse item-pair Frequency (IIPF). This concept describes how many user’s item-pair sets
contain the item-pair. The larger the number of times that an item-pair appears in all user’s item-pair sets,
the worse the item-pair is for distinguishing the user when calculating the user’s similarity.

Figure 1 shows the process of IPF–IIPF, and the weight of the item-pair for each user can be
calculated by Equation (3):

IPF− I IPFw(pi ,uj)
= IPF(i,j) × I IPSF(i,j) =

npi ,uj

∑k npk ,uj

× log

(
|U|

1 +
∣∣j : pi ∈ uj

∣∣
)

, (3)

where pi means an item-pair, uj means a user, npi ,uj means the number of occurrences of pi in the
item-pair set of uj, and |U|means all users.



Future Internet 2018, 10, 117 5 of 13

Then, the user’s similarity can be calculated by Equation (4):

simpair_item(u, v) =
∑k

pj∈IPu,v

(
wu,pj − wu

)(
wv,pj − wv

)
1 +

√
∑n

pi∈Iu

(
wu,pi − wu

)2
∑n

pj∈Iv

(
wv,pj − wv

)2 , (4)

where IPu,v means the common item-pairs of user u and user v, pi, pj means the item-pair, and wu

means the average weight of the user’s item-pairs.
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4. Item’s Similarity Calculation Based on Item Embedding

In the user’s behavior log, the user’s interaction record over time contains a large amount of
information on the items. For example, if a user wants to buy a computer, they will compare a series of
computers, and the compared sequence shows a high degree of similarity between items. To calculate
the similarity of these items, we applied word-embedding technology to train item-sequences to obtain
item vectors and measure the item’s similarity.

Word2vec is a group of models of word-embedding technologies, which was proposed by
Mikolov [22,23]. It contains two different models, namely Skip-gram and CBOW (Continuous
Bag-of-Words), which use either hierarchical softmax or negative sampling. Skip-gram and CBOW
models are all shallow three-layer neural network models, and in contrast to traditional DNN (Deep
Neural Networks) models, they use a Huffman tree to replace neurons in the hidden and output layers,
which reduced the calculations. In this section, we used both of the models to process the sequence of
items that were browsed by a user.

4.1. Extract the Item-Sequences

Applying word2vec technology to a recommendation algorithm [24], we must first obtain training
data that is similar to the corpus, which is composed of sentences.

We split the user’s behavior log into different purchase cycles by the algorithm shown in
Algorithm 1 and extracted the item-sequences shown in Table 5. In each cycle, only one item is
purchased by the user.
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Table 5. Item-sequences.

T Item-Sequence

T1 item1, item3, item3,item4 . . .
T2 item2, item6, item4,item9 . . .
T3 item3, item6, item8,item10 . . .
T4 item4, item12, item12,item10 . . .
. . . . . . . . .

Algorithm 1: The algorithm for extracting the item-sequences

1 Input: logs dataset, “4” means buying.
2 Output: sets of item-sequences of all users.
3 Function getItemSequences(logs dataset):
4 allT{} // save all purchase cycles T
5 for u∈|U| Do
6 u_log {} //single user’s behavior log
7 end for
8 sort(u_log) // sort user’s records by time
9 for r ∈ u_log do
10 if r == 4 then
11 T{}
12 allT.add(T)
13 end if
14 end for
15 return allT
16 end function

4.2. Item Vector Representation and Similarity Calculation

In this part, we applied the word2vec to train the item-sequences and obtain the item vectors.
The main models of word2vec are CBOW and Skip-gram, with the input a large corpus of sentences.
Word2vec builds a dictionary as an input to the training models, which is a three-layer neural network
for words that appear in the corpus.

The CBOW predicts the target word from the original sentence. We entered the words
wt−2, wt−1, wt+1, wt+2 around the target word wt and maximized the likelihood function, as shown
in Equation (5), by the stochastic gradient descent algorithm, to obtain a vector of the target word.
The Skip-gram is the opposite. Figure 2 shows the difference of the two models.

ζ = ∑
w∈c

logp(wt|context(wt)), (5)

The process of recommendation is similar to the process of CBOW and Skip-gram to predict
vectors of words, and therefore, we regarded items as words and extracted item-sequences from the
user’s behavior log as sentences. Then, we put these data into the CBOW model and Skip-gram model
to obtain the item’s vectors, and we calculated the similarity of the items by Equation (6):

sim(i, j) =
Vi ∗Vj

‖ Vi ‖ ‖ Vj ‖
, (6)

where Vi, Vj means the vectors of item i and j. Then, we proposed two algorithms called CBOW-CF
and Skip-CF. In the experiment, we have discussed the different influences of the different dimensions
of vectors on the recommendation results.
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5. The Recommendation Algorithm Based on the User’s Implicit Feedback

Based on the previous introduction, we considered the user’s clicking, adding, collecting,
and buying behaviors and built item pairs by the user’s interaction with the JD system to calculate
the user’s similarity more accurately, and we learned the vector space representation of items with
word2vec technology to calculate the items’ similarity more reasonably. Additionally, we obtained
the user’s candidate set and item’s candidate set and relied on the two methods, and then, the
recommended results were generated by the secondary reordering. Figure 3 shows the overview of
the whole algorithm.
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When recommending items to users, we should first choose the K nearest neighbors of the users.
Traditional CF always chooses the K nearest neighbors from all of the users, which increases the
calculation time. To solve this problem, we set a threshold β to obtain a candidate set of users. Here,
β is repressed by Equation (7):

β = Simuser(u) =
∑m

i Simuser(i)
m

, (7)

where Simuser(u) is the average similarity of the target user. If Sim(u, v) ≥ β, then user v will be added
to the candidate set of user u.

Different from the method in Reference [18], which calculates the item’s similarity by a single
item vector, we considered the item-sequences that users had before purchasing a specific item, and we
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attempted to predict the user’s purchase intention, as represented by vecu, which is expressed by
Equation (8):

vecu =
∑n

i veci ∗ wu,k

n
, (8)

where veci indicates the vector of the item that the user had browsed recently, and wu,k indicates the
weight of fk of the user.

The same as with a user, we also set a threshold γ to obtain a candidate set of items. Here,
Simitem(i) is the average similarity to the user’s purchase intention vecu, as expressed by Equation (9):

γ = Simitem(i) =
∑m

k=1 Simitem(k)
m

. (9)

If Sim(vecu, j) ≥ γ, then item j will be added to the candidate set of vecu.
Reference [3] has proved that the CF based on the items is superior to the CF based on the users.

Therefore, we focused on selecting the item’s nearest neighbors for recommendations. Equation (10)
expresses the traditional CF based on the items.

R(u,i) =
∑j∈seti

sim(i, j)× R(u,j)

∑j∈seti
|sim(i, j)| . (10)

We obtained R(u,i), which means the preference of user u to item i, and then, recommended the
items by R(u,i) from high to low.

In contrast to the traditional CF, we considered the user’s candidate set to reorder the item’s
candidate set to obtain better recommendation results. Suppose that Si,j describes the item-support of
items i and j, respectively; then, it is calculated by Equation (11):

Si,j =
∑n

v∈Set(u)
G(v, i, j)

max
(

∑n
v∈Set(u)

G(v, i, j)
) , (11)

where i and j means items, and vlog means the behavior log of user v. If i ∈ vlog, j ∈ vlog,
then G(v, i, j) = 1; otherwise, G(v, i, j) = 0. Therefore, we calculated the R(u,i) more accurately by
Equation (12):

R(u,i) =
∑j∈Set(i) sim(i, j)× R(u,j) × Si,j

∑j∈seti
|sim(i, j)| . (12)

We illustrate the specific principle with an example: assume that the candidate set of user u is
{v1, v2, v3, v4}, and the candidate set of item i is {j1, j2, j3 , j4}.

Analyzing the behavior logs of v1, v2, v3, v4, we obtained:

• v1log = {j1, j3, . . .}
• v2log = {j1, j3, . . .}
• v3log = {j2, j3, j1 . . .}
• v4log = {j2, j4, j1 . . .}

and Si,j1 = 1, Si,j2 = 0.5, Si,j3 = 0.75, Si,j4 = 0.25. Therefore, we reordered the items’ candidate set by
Equations (11) and (12) to generate better recommendation results to the users.

6. Experiments and Analysis

6.1. Dataset

The JData dataset of our experiment was provided by JD, which is the second largest Chinese
e-commerce platform. The JData dataset contains user behavior logs from 1 February to 15 April,
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and the time is accurate to the second, which is the main reason why we used the JData dataset.
The download site of JData dataset is on the first page. The user’s behavior contains four main types:
clicking, adding shopping cart, collecting, and buying. In addition, the user’s Id, item’s Id, precise time
of user’s behavior, item’s category, item’s brand, and the type of user’s behavior were also included.

First, we preprocessed the data, retaining only the users who had purchased during this period
of time. Then, we obtained 6,841,000 behavior records that contained 29,485 users and 21,267 items.
We divided these records into training data and testing data. The training data were composed of the
records from 1 February to 10 April, and the testing data were composed of the records from 10 April
to 15 April. In the training data, there were 6,168,390 behavior records. We divided them into different
purchase-cycles and obtained 122,954 purchase-cycles.

6.2. Evaluation Criterion

In this paper, our position was to predict the items that users will purchase in the next period
by mining the user’s behavior log. Therefore, we used precision, recall, and F-score to evaluate the
quality of the algorithms.

Precision =
TP

TP + FP
, (13)

Recall =
TP

TP + FN
, (14)

F =
2∗Precision ∗ Recall
Precision + Recall

, (15)

where TP means the set of items in the recommendation results and purchased by the user. FP means
the set of items in the recommendation results but not purchased by the user. FN means the set of
items that were purchased by user but not in the recommendation results. F is the harmonic average
of the precision and recall.

6.3. Experimental Results and Analysis

6.3.1. Experiment 1: Discuss the Methods of Calculating the User’s Similarity

Different methods to measure the similarity of the users can obtain different nearest neighbors,
and the recommendation results will be influenced. To illustrate that our method was better, we chose
the following methods:

AW: add weight directly to the user’s different behaviors. Clicking with 1, adding with 2,
collecting with 3, buying with 5. Then, we calculated the user’s similarity with the Pearson
Correlation Coefficient.

CFPP [6]: calculate the user’s similarity by the Pearson correlation coefficient with the user’s
preference, which is computed solely based on the purchase data.

BUPSP (based-user-purchase-comparison-behavior): calculate the user’s similarity by the Pearson
correlation coefficient with the user’s purchase behavior and comparison behavior.

It can be seen that the precision and recall of AW is the worst, from Figure 4. The reason is that
AW does not consider the user’s individual preference. The result of CFPP is better than AW but
worse than BUPCB, which is because CFPP only considers the user’s purchase behavior. Different
from the two above methods, BUPCB quantifies the user’s different behaviors according to the user’s
behavior habits and calculates the user’s similarity with the user’s comparison behavior. In addition,
the results prove the importance of considering the user’s comparison behavior when calculating the
user’s similarity. Figure 4a also shows that the precision is lower when the number recommended
increase, which occurs because the test data only include 5 days of JData, and the number of items
purchased by a user is small.
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6.3.2. Experiment 2: Discuss the Methods of Calculating the Item’s Similarity

In this paper, we used the CBOW model and Skip-gram model to map items to low-latitude
vector space, and we used cosine to calculate the item’s similarity; the two methods are represented by
CBOW-CF and Skip-CF. First, we set the vector size to be from 10 to 70, and obtained the precision
shown in Figure 5.
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Figure 5 shows that when the vector’s dimension is 30, the precision is the best. Therefore,
the constant values for the parameters were set to the following: embedding-size = 30, skip-window = 1,
and train-times = 50,000, and we removed the items that appeared less than two times.

Figure 6a,b shows the comparison with BICF, which calculates the item’s similarity by the user’s
rating, and the interactive times with the items is considered to be the rating data of the user to the
items in BICF. The precision and recall of CBOW-CF and Skip-CF, proposed in this paper, were better
than BICF, and the result of CBOW-CF was better than Skip-CF. This finding could arise because the
training data were small, and the CBOW model performs better when the training data are small.
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6.3.3. Experiment 3: Comparison with Other Methods

Because our method was based entirely on the user’s implicit feedback, we called it BUIF. To verify
the effectiveness of BUIF, the precision, recall, and F1 were compared with the following algorithms
while using the same dataset.

BUCF: traditional CF based on users. BUCF calculates the user’s similarity by the number of
common items that are purchased by the users.

BICF [3]: traditional CF based on items. BICF calculates the item’s similarity by the number of
common users that purchased the same item.

FPP [6]: builds a rating matrix solely based on the purchase data of the users. FPP integrates
CF-based recommendations and SPA-based recommendations.

BUPCB: proposed in this paper, it calculates the user’s similarity by the Pearson correlation
coefficient with the user’s purchase behavior and comparison behavior.

CBOW-CF: trains item-sequences with the CBOW model to obtain the item vectors, and then,
combines the traditional CF to generate the algorithm CBOW-CF.

BUIF: Our methods described above.
From Figure 7a–c, it can be seen that the precision, recall, and F1 of BUCF and BICF are worse,

which is because they regard all behaviors as one type and select the nearest neighbors based on the
whole user set and item set. The FPP solely considers the user’s purchase data and disregards the
information included in clicking, adding, and collecting, which causes the recommendation quality to
be reduced. The BUIF method performed better than the others in terms of the precision and recall
because BUIF not only considers the user’s purchase behavior but also comparison behavior that
improved the accuracy of the user’s similarity, and BUIF calculates the item’s similarity by an item
vector that considers the item-sequence information. In addition, the overall accuracy and quality of
recommendation were improved effectively through reordering the item’s candidate items.
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There is also an example of a real JD user represented by user_id (290054). We used the above
methods to recommend items (number of recommended is five) to the user (290054) and the results are
shown in Table 6.

In Table 6, the items are also represented by sku_id. Additionally, the red sku_id means purchased
items by the user (290054) in the test data. From Table 5, it can be seen that the recommendation results
of BUIF were purchased more than other methods, which means our method will obtain a high degree
of user satisfaction.

Table 6. The recommendation results of above methods for user ‘290054’.

Methods Recommend Items

BUCF 78508, 109840, 44042, 1633, 143199
BICF 118895, 15523, 120076, 70936, 170215
FPP 135865, 130914, 109840, 57161, 43960

BUPCB 135272, 15523, 63231, 75750, 26229
CBOW-CF 160485, 109840, 24774, 62330, 170215

BUIF 24774, 108097, 121588, 135865, 109840

7. Conclusions

This paper proposed a new personalized recommendation algorithm based on the user’s implicit
feedback. This method fully exploits the implicit information in the user’s behavior log, such as
the purchase behavior, comparison behavior, and item sequences. Some algorithms in the NLP
field, such as TF-IDF and word2vec technologies, were improved and applied to calculate the
user’s similarity and item’s similarity, which make the user’s similarity and item’s similarity more
accurate. Additionally, a secondary reordering screening process was constructed to obtain the final
recommended items. From the results, it can be seen that the F1 of BUIF increased an average 28% and
22% compared with BUCF and BICF, respectively, when the number of recommended items is 5, 10,
and 15. At present, the paper only mines the user’s behavior log. In the future, we will combine the
user behavior log with the user’s demographic features (age, gender, and occupation) and the item’s
features information (brand, category) and refine it on the basis of a specific group of people or items.
In addition, the experiments in this paper were experiments on a part of the data. In future work,
we will verify the performance of the algorithm on a larger data set.
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