
future internet

Article

An Integrated Platform for the Internet of Things
Based on an Open Source Ecosystem

YangQun Li

College of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
yqli@njupt.edu.cn; Tel.: +86-025-8349-2013

Received: 21 September 2018; Accepted: 30 October 2018; Published: 31 October 2018
����������
�������

Abstract: The Internet of Things (IoT) is increasingly part of daily life. However, the development
of IoT applications still faces many problems, such as heterogeneity, complex management, and
other difficulties. In this paper, first, the open source technologies of IoT are surveyed. We compare
these technologies from the point of view of different levels of technical requirements, such as device
management, data management, communication, intelligent data processing, security and privacy
protection; we also look at requirements of application development and deployment. Second, an IoT
integrated development platform architecture for IoT applications based on open source ecosystem is
proposed and evaluated in an industrial setting. We applied P2P technology to distributed resource
management and blockchain-based smart contract mechanics for resource billing management.
The results show that the IoT gateway based on an open source ecosystem had a stable and reliable
system performance with a certain data size and concurrency scale. These conditions satisfy the
application requirements of the IoT in most sensing environments.

Keywords: IoT middleware; open source ecosystem; industrial IoT; integrated development platform;
performance evaluation

1. Introduction

With the development of hardware and software technologies, Internet of Things (IoT) technology
has extended intelligence from ordinary computers into people’s daily lives. In IoT, many sensors
transmit monitoring data through the network to a Cloud Computing platform for storage and
intelligent processing. According to the processing results, the needs of people are met by controlling
and changing their environment.

In 2014, ITU-T released a general requirement proposal for IoT applications [1]. Shen [2] summarized
the general requirements of IoT technologies and the specific functions of each type of requirement.
These common requirements include non-functional, application support, service, communication,
device data management and security and privacy protection requirements. Using this framework,
Section 2 presents further analysis of the actual requirements faced by each layer in the architecture of
the IoT.

To understand and satisfy IoT application real requirements, several IoT research projects have
been conducted. The WoT (Web of Things) test bed WoTT is proposed in [3], where the goal is to
provide a stable, open, flexible, and secure infrastructure that simplified the design and development
of applications. The WoTT test bed is based on a standard protocol that facilitates development
and deployment. The specific objectives include hiding details of the underlying implementation,
strengthening network self-configuration management (to reduce manual interventions), transparently
and simultaneously managing multiple protocols and multiple platforms, and providing a platform
for designing and testing task interactions. The IoT-LAB [4] technology mainly tests the link layer
protocol performance, such as resource consumption and packet success rate. SmartSantander [5,6]

Future Internet 2018, 10, 105; doi:10.3390/fi10110105 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
https://orcid.org/0000-0002-4381-9329
http://www.mdpi.com/1999-5903/10/11/105?type=check_update&version=1
http://dx.doi.org/10.3390/fi10110105
http://www.mdpi.com/journal/futureinternet

Future Internet 2018, 10, 105 2 of 27

provides a large-scale test bed with approximately 20,000 nodes deployed in multiple cities in Europe.
It focuses on smart city services and environmental data collection.

The functional and non-functional requirements of IoT middleware are given in [7]. Various
commercial and open source middleware considering application support, application development,
and device connection and management are compared. Based on this analysis, an IoT middleware
reference model is introduced. By analyzing the characteristics of IoT architecture and applications,
the functional and non-functional requirements of IoT middleware technology are also given in [8].
The review summarizes the IoT middleware platforms from the perspectives of resource discovery
and management, data management, event management, and code management. However, these
platforms mainly focus on wireless sensor networks and were developed early on by scientific
research institutions. Palade et al. [9] studied the evaluation criteria of IoT middleware and used the
analytic hierarchy process (AHP) method to determine the weights of different standards. They then
analyzed and compared the middleware performance in service registration and service composition.
Finally, they compared the application development process of four middleware through four
different scenarios.

Claudio S. et al. [10] surveyed and compared the most relevant autonomic and cognitive
architectures for the IoT. They investigated those IoT architectures with self-management and cognitive
capabilities for managing many devices and different applications. These architectures try to minimize
human intervention and shield the devices’ heterogeneity, which are interesting research topics and
worthy of deeper study in the future. Giancarlo F. et al. [11] proposed an INTER-IoT approach
for layer interoperability between different IoT domains, including INTER-IoT, INTER-FW, and
INTER-Meth. INTER-IoT provides interoperability of different layers, such as the device layer,
networking layer, middleware layers, and services layer. INTER-FW is a framework for IoT application
development. INTER-Meth provides an engineering methodology based on CASE tools for IoT
application integration. The method shows the concept model fulfilled the interoperability requirement
between domains in two use cases, but does not explain how it was implemented. Claudio S. et al. [12]
further described both the abstract and instantiated process schema of INTER-Meth methodology, and
provided a reference architecture with different layer interoperability.

Compared with the experimental platforms [3–6], the proposed platform is based on micro-service
architecture. It focuses on integrated application development platform of the IoT through an open
source system that establishes an end-to-end integrated application development and deployment
environment for IoT. Compared with related research works in [10–12], here, we propose a novel
integrated application development architecture for different IoT platforms from a practical point of
view. We also applied WoT technology—such as data description, data transfer, and semantic data
processing—to improve the interoperability of different IoT applications.

Although there are many technologies and experimental platforms available, they do not
consider the requirements of IoT standardization and real scenario. To solve these problems, we
built an end-to-end platform that meets the complex requirements of real-world scenarios and
the standardization requirements. The platform supports heterogeneous devices, a variety of
application scenarios and can realize multi-source data intelligent processing and personalized IoT
service development.

The contributions of this research are as follows:

1. We studied and compared open source IoT technologies. The IoT-related requirements for
different levels of IoT architecture were analyzed. For example, open source middleware
platforms were analyzed and compared from different aspects, such as heterogeneous device
access, device management, data transmission, intelligent data processing, system security, cloud
platform integration, API style, application support, and activeness.

2. By comparing the open source systems listed with the various requirements of different layer, the
requirements implemented and not yet implemented by open source systems were analyzed.

Future Internet 2018, 10, 105 3 of 27

3. A cloud–fog collaboratively integrated development platform for IoT is given. Some technologies
are adopted to implement requirements that have not yet been solved by open source systems.
For example, P2P is used for distributed resource management of IoT and blockchain-based
smart contract is applied for resource billing management.

4. An industrial IoT scenario was used for evaluation and the preliminary result shows the feasibility
of the platform.

The rest of the paper is organized as follows. In Section 2, the existing IoT open source technologies
are comprehensively reviewed and compared. In Section 3, integrated application development
platform architecture for the IoT is presented according to the characteristics of IoT applications.
Section 4 gives the specific design of the development platform, which is evaluated in an industrial
IoT application scenario. Finally, our conclusions and future work are provided.

2. Open Source Ecosystem for the IoT

At present, the overall architecture of IoT technology consists of three layers: the device layer,
network layer, and the service support and application layer.

For the device layer, it is necessary to solve the problem of how and when the device is accessed
by the IoT. These problems are as follows:

1. Device access and state management: Access management refers to which protocols the device
layer supports for devices to access the network. State management means how to manage the
life cycle of the device, i.e., device access, data-read and device control, status maintenance, and
device failure management, which provides status information for the upper application.

2. Device identification: Many devices need to be distinguished by identifiers. Does the device ID
need to include location information? How can the relative positional relationship between
devices be reflected? For example, a hierarchical resource structure corresponding to a
geographical location can be applied for managing device resources in an IoT application
environment. However, this implementation requires manually associating relative relationships
between resources. If the identifier can automatically include the relative geographical position
relationship, it can automate the hierarchical management of resources. When a device accesses
the network, can the device identifier be generated automatically? How can we locate smart
things based on their device IDs?

3. Data description: Different devices have different data description methods, which are text-based
or semantic-based. Therefore, the device layer needs to flexibly support and process commonly
used data description methods, and be able to perform functions such as data format conversion
and semantic reasoning for the different data descriptions.

The network layer is responsible for the network communication and connection management
between devices and the remote server. The data transmission protocol and the networking mode
can be determined from the application. For example, in an IoT environment, there are many sensing
nodes with limited resources, which intermittently transmit few data. This kinds of new requirements
are imposed on the network transmission mechanism in a large-scale network environment.

The service support layer provides developers with service development platforms and basic
platform functions. These basic functions may include:

1. Service discovery: It should be easy for developers to discover the service capabilities of
the device.

2. Resource management: This function monitors the status of resources. When the resource fails,
or when the resource is about to be invalid due to low battery levels, it selects alternative resources
to ensure that the application has a certain degree of robustness.

3. Security mechanism: They provide a variety of efficient security mechanisms to ensure the safety
and reliability of data transmission, storage, and processing.

Future Internet 2018, 10, 105 4 of 27

4. Intelligent data processing and personalized service provisioning functions: Intelligent
algorithms are applied to multi-source sensing data for intelligently inferring and gaining new
knowledge. It can also provide users with personalized services by using sensors to obtain
contextual information.

With the development of IoT technology, the combination of many open source technologies
constitutes an open source ecosystem for the IoT, with each part implementing different functions of
IoT architecture. These functions range from data sensing to applications for end users. This section
analyzes the existing IoT open source technologies which can satisfy the different layer requirements.
We also mention some IoT requirements that have not been implemented by the open source ecosystems
thus far.

2.1. Open Source IoT Technology for Device Access

Currently, device layer requirements implemented by open source technologies mainly include
requirements related to the device connection and the device’s immediate state management. Specific
technologies include the following.

2.1.1. Short-Distance Communication

1. Bluetooth technology [13–17]: This has been developed and applied for many years, and there
are many open source Bluetooth platforms. For example, Bluez technology provides a complete
Bluetooth system which supports a variety of CPUs, Linux and Android operating systems.
Android BLE built into Android implements Bluetooth device access management. Gatt, based
on the Go language, is an open source software that implements the GATT framework. Noble
implemented the central module of Bluetooth by using Node.js and Bloon implemented a
Bluetooth peripheral module based on Node.js.

2. NFC (Near Field Communication) [18]: There are many open source systems that support
NFC. For example, Libnfc provides platform-independent, low level NFC SDK, and supports
event-based device interaction mechanisms. NFC device read capabilities for the Android
platform are also available.

2.1.2. Long-Distance Communication

1. LoRa/LoRaWAN [19,20]: This technology is used for low-power long-distance communication
in the IoT. LoRAWAN is the long-range communication protocol and architecture, and LoRA is
the physical layer. They use a long-distance star structure to achieve communication between
nodes and servers, enabling sensor data acquisition. LoRAWAN open source technologies
include Lora-gate-bridge, Loraserver, Lora-app-server, packet forwarder, and the things network.
Lora-gate-bridge provides a service that converts UDP packet to JSON or MQTT format.
Loraserver provides Lora network server functions, which are responsible for uplink data
reception and scheduling downlink data transmission. Lora-app-server, as an application server,
mainly provides the LoRAWAN infrastructure node inventory, handling the received uplink
application payload and downlink payload queue. It also comes with a web GUI for device
management and provides the developer with a RESTful, JSON and gRPC interface. LoRAWAN
also supports publishing the received payload to an MQTT broker. The Lora packet forwarder
runs on the Lora gateway to convert between RF signals and IP/UDP. The things network
provides Cloud Platform for accessing LoRa devices. Currently, many LoRa manufacturers use
the things network to provide services where there are more than a thousand gateway devices in
operation. The Lora server supports Linux, OS X, and Microsoft Windows operating systems.
The Lora-gate-bridge, Lora packet forwarder, and Lora-app-server support Linux operating
systems. Together, these open source software systems build a data acquisition, transmission,
and application development platform for the IoT, as shown in Figure 1.

Future Internet 2018, 10, 105 5 of 27

Future Internet 2018, 10, x FOR PEER REVIEW 5 of 27

operating systems. The Lora-gate-bridge, Lora packet forwarder, and Lora-app-server support
Linux operating systems. Together, these open source software systems build a data acquisition,
transmission, and application development platform for the IoT, as shown in Figure 1.

Figure 1. LoRA architecture.

2. SIGFOX open source technology: This is an IoT access technology in competition with LoRA. It
is a business-operated protocol with features such as simple usage, low power consumption,
low cost, and short messages. It cannot create a private network and the user can only use the
“connect as a service” (Caas), which is provided by the SIGFOX operator. Currently, the open
source technology related to SIGFOX is the Sigfox Platform, which was developed and
maintained independently of SIGFOX as a visualization cloud platform for SIGGOX terminal
device access [21].

3. Narrowband-IoT (NB-IoT) open source technology: The NB-IoT technology uses the operator’s
base station as a gateway for data access and transmission. Currently, searching on the
GitHub.com website using the keyword “NB-IoT” shows that there are open source platforms
implementing the NB-IoT development framework for terminal modules (including open source
hardware platforms) and cloud platforms. Relatively complete and highly active frameworks
include EasyIoT [22] and Huawei’s CodeLab [23].

2.1.3. Automatic Access of Devices

At present, automatic access requirements for devices are mainly fulfilled through the device’s
auto-discovery mechanism. Open source technologies in this space include mDNS, Bonjour, uPnP,
etc. mDNS uses multicast technology to implement the service discovery in the LAN and also
supports P2P service discovery, which was released as a draft RFC in 2013. uPnP also uses multicast
technology to implement communication between devices. It was developed earlier and is more
mature which was released as the ISO/IEC 29341 standard in 2008 [24].

2.2. Data Management Requirements

IoT applications generate many data, and hence require appropriate mechanisms for efficient
data transmission and data integration. These mechanisms include data representation, data
visualization, resource descriptions, and semantic processing, as detailed in the following.

2.2.1. Data Representation

At present, there are mainly three mechanisms for data transmission on resource constrained
devices: CBOR, FlatBuffers, and protocol buffers [25–28]. CBOR (Concise Binary Object
Representation) is a data format with good scalability that minimizes the size of the code, has a
relatively small message size and no version negotiation. The current draft is RFC 7049. TinyCBOR
is a C/C++ based CBOR implementation from Intel that meets industrial standards. FlatBuffers,
originally developed by Google for games and other performance-critical applications, is an efficient

Figure 1. LoRA architecture.

2. SIGFOX open source technology: This is an IoT access technology in competition with LoRA.
It is a business-operated protocol with features such as simple usage, low power consumption,
low cost, and short messages. It cannot create a private network and the user can only use
the “connect as a service” (Caas), which is provided by the SIGFOX operator. Currently, the
open source technology related to SIGFOX is the Sigfox Platform, which was developed and
maintained independently of SIGFOX as a visualization cloud platform for SIGGOX terminal
device access [21].

3. Narrowband-IoT (NB-IoT) open source technology: The NB-IoT technology uses the operator’s
base station as a gateway for data access and transmission. Currently, searching on the
GitHub.com website using the keyword “NB-IoT” shows that there are open source platforms
implementing the NB-IoT development framework for terminal modules (including open source
hardware platforms) and cloud platforms. Relatively complete and highly active frameworks
include EasyIoT [22] and Huawei’s CodeLab [23].

2.1.3. Automatic Access of Devices

At present, automatic access requirements for devices are mainly fulfilled through the device’s
auto-discovery mechanism. Open source technologies in this space include mDNS, Bonjour, uPnP, etc.
mDNS uses multicast technology to implement the service discovery in the LAN and also supports
P2P service discovery, which was released as a draft RFC in 2013. uPnP also uses multicast technology
to implement communication between devices. It was developed earlier and is more mature which
was released as the ISO/IEC 29341 standard in 2008 [24].

2.2. Data Management Requirements

IoT applications generate many data, and hence require appropriate mechanisms for efficient data
transmission and data integration. These mechanisms include data representation, data visualization,
resource descriptions, and semantic processing, as detailed in the following.

2.2.1. Data Representation

At present, there are mainly three mechanisms for data transmission on resource constrained
devices: CBOR, FlatBuffers, and protocol buffers [25–28]. CBOR (Concise Binary Object Representation)
is a data format with good scalability that minimizes the size of the code, has a relatively small message
size and no version negotiation. The current draft is RFC 7049. TinyCBOR is a C/C++ based CBOR
implementation from Intel that meets industrial standards. FlatBuffers, originally developed by Google
for games and other performance-critical applications, is an efficient cross-platform serialization library
that supports languages such as C++, C#, C, Go, Java, JavaScript, PHP, and Python.

Future Internet 2018, 10, 105 6 of 27

Protocol buffers is a language- and platform-neutral, extensible XML structured data serialization
method developed by Google, but it is smaller, faster, and simpler. It is easy to use, and can define
customized structured data and automatically generate the read/write method for the structured data.
Open source implementations of this mechanism support a variety of platforms and languages.

From the above three data description mechanisms, it can be seen that the goals of these methods
are to reduce the number of data transmissions, reduce the resource consumption of data processing,
and simplify the data processing process to meet the requirements of IoT applications.

2.2.2. Data Semantic Processing

We found 28 open source projects through a search on GitHub.com using the keyword “Semantic
IoT”. After removing some invalid results, they were classified according to their main functions and
are compared in Table 1.

These open source semantic platforms are the product of academic research and lack the support
of a specific team or company. Therefore, there is a lack of an open source IoT semantic data processing
platform that is relatively complete and mature.

Future Internet 2018, 10, 105 7 of 27

Table 1. Open source system comparison of semantic data processing.

Product Function Language Licenses Update Maturity

Semantic
description

iotdb-vocabulary [29]
iotdb-models [30]

Describe the semantic model of the
items such as sensors and controllers.
The model is relatively simple.

Python
JS

GPL-3.0
Apache 2.0

2016
2016

Personal
development

Semantic
framework M3Framework [31]

Provides semantic processing
framework such as
M3/SWoT/SSN/S-LOR/LOV4IOT etc.

Web Ontology / 2016 Unknown

Semantic interface SemanticInterface [32] Provide semantic interface for service
discovery Java MIT 2017 Personal

development

Semantic
discovery fiware-iot-discovery-sr [33] Semantic registration of IoT resources,

entities and service descriptions Java / 2016 University of
Surrey

IoT data semantic
annotation semantic_Annotator [34]

Semantic data annotation of one M2M
resources, currently supporting Smart
Park scenarios

JS / 2018 Personal
development

Semantic
middleware
for IoT

aura-middleware [35]

Facilitates the development of IoT
applications and shields the differences
between sensors so that they can
work together

Python GPL-3.0 2016 Personal
development

Future Internet 2018, 10, 105 8 of 27

2.2.3. Resource Description

Resource descriptions provide information about physical entities or service resources to help
service users. The HyperCat specification [36] is an open source, lightweight, JSON-based IoT resource
description mechanism that implements mapping between physical entities and virtual resources.
It provides the metadata description of resource objects, description of relationships between objects,
CRUD-based API interfaces, and support for publish/subscribe and event flows.

2.3. Application Layer Transmission Requirements

This section concerns data transmission requirements between IoT devices or between the devices
and the cloud platform. Current application-layer data transmission protocols include Modbus,
MQTT (Message Queuing Telemetry Transport), CoAP (Constrained Application Protocol), OPC-UA
(OPC Unified Architecture), HTTP protocols, etc. Here, we introduce the first four mentioned protocols.

2.3.1. Modbus Protocol

Modbus technology [37] is an application layer protocol that implements client/server
communication between devices connected to different buses or networks, enabling communication
between multiple devices. The protocol is widely used in industrial environments and can operate
on networks such as TCP, Ethernet, Serial, and RS-485. At present, there are many sensors using the
Modbus protocol. Open source software that supports the Modbus protocol includes a variety of
development language versions, such as Java, C, Node.js, Python, and Go.

2.3.2. MQTT Protocol

MQTT is a lightweight publish/subscribe messaging protocol that can be used for M2M IoT
connections. It is used for communication via satellite link or dial-up link between the sensor node
and the MQTT broker. It has the characteristics of small code size, low power consumption, minimized
data packet size, and can distribute packets to multiple applications at the same time. It also achieves
loose coupling of application programs and became the OASIS standard in 2014. Eclipse Paho [38]
provides an open source implementation of the MQTT protocol client, supporting languages such as
Java, Python, Javascript, Go, C, .Net (C#), Embedded C/C++, etc. Moquette [39] implemented the
Java-based Broker function of MQTT. MQTT.js is a Node.js-based MQTT client library that can be used
in web development. MQTT-sn-tools [40] implemented the MQTT protocol version for use in sensor
networks. These open source systems are regularly updated at the time of writing.

2.3.3. CoAP Protocol

CoAP [41] is a data transfer protocol between resource-limited devices. It provides four methods
for resource data operation: PUT, DELETE, GET, and POST. It is based on the UDP protocol and uses its
own lightweight protocol to ensure the reliability of packet transmission. Currently, it is standardized
in draft RFC 7252. There are many open-source implementations of this protocol that are based on
languages such as Java, C, Go, Node.js and can run on Arduino and other micro controllers.

2.3.4. OPC-UA Architecture

OPC-UA is an interoperable standard that enables industrial automation data to communicate
securely and reliably, maintaining platform neutrality and vendor independence. It provides the
following functions: defining server and client interfaces, real-time data access, alarm and time
monitoring, historical data access, and data modeling [42]. It also features secure communication and
user access control.

Table 2 gives a comparison of these transmission protocols and analyzes the role and characteristics
of their data transmission in IoT applications.

Future Internet 2018, 10, 105 9 of 27

2.4. Security and Privacy Protection Requirements

Open source systems for embedded system security in IoT applications implement the datagram
transport layer security (DTLS) mechanism and transport layer security (TLS). The open source
software for the former include C-based Eclipse TinyDTLS [43], Java-based Eclipse Scandium [44],
and C-based mbedTLS running on embedded systems [45]. These security mechanisms require a
certain amount of computing resources, and their consumption and use of resources in the context of
resource-constrained IoT devices require further testing and analysis.

2.5. IoT Device Management

The following gives examples of open source systems for the management of many IoT devices.

2.5.1. Eclipse hawkBit

Eclipse hawkBit [46] supports device software updates and controls, and connects devices to
IP networks. It can update the software, operating system, and firmware running on the device, in
addition to supporting the monitoring and management of the device. The supported management
protocols include OMA-DM/LwM2M. Two kinds of APIs are used to connect to IP networks: the
direct device integration API via HTTP, and the device management federation API; these allow the
connection of devices with different protocols adapters.

2.5.2. LwM2M Technology

The LwM2M is a lightweight protocol based on the RESTful style for managing sensor devices and
M2M devices. It defines a scalable resource or data model and implements the remote management of
devices by the CoAP protocol. It is standardized by the OMA device management group [47]. Open
source implementations of this protocol include Betwixt [48], based on Go, for LwM2M server and
client; Eclipse Wakaama [49] and AwaLWM2M [50], based on C; and Eclipse Leshan [51] based on the
Java language.

Future Internet 2018, 10, 105 10 of 27

Table 2. Comparison of IoT application layer protocols.

Resource Discovery Supported Protocol Communication Mode Openness Security Scenario

Modbus - TCP/Serial/Ethernet
Master–slave polling,

Request/response.
and 1-to-n

No open API and requiring
professional knowledge for

development
-

Industrial automation,
monitoring and data

acquisition

OPC-UA Local or network
server discovery Protocol independent Publish/subscribe and

event-based notification

Device integration with
enterprise application,

No high-level API
encryption/audit/authentication Industrial automation

MQTT - TCP/IP, WebSocket 1-to-n based on
publish/subscribe mode Strong openness encryption/authorization/authentication

Loosely coupled
integration between

applications

CoAP Resource discovery
and storage UDP

Request/response,
publish/subscribe,

Multicast
Strong openness encryption Device integration

with WWW

Future Internet 2018, 10, 105 11 of 27

2.6. Application Support Layer (IoT Middleware)

2.6.1. Open Source Middleware Platforms

The role of the application support layer is similar to that of IoT middleware technology. They
shield the diversity of the underlying technologies and provide various functions for applications to
facilitate the development of IoT applications. At present, the major open source IoT middleware
platforms include:

1. Eclipse Kura [52]: The goal of this platform is to build an IoT application gateway. It is an
application container that supports remote device management and provides a series of APIs
for IoT application development. It supports a variety of peripheral interfaces and application
layer protocols. Kura offers external device interfaces, data storage and forwarding, and services
publishing, as well as provides an API interface to integrate with cloud services. This project is
active and supported by Eclipse, using the EPL-1.0 license.

2. Zetta [53]: This is an API-first application platform for the IoT. It is based on Node.js and can
build a distributed IoT server and cloud platform. It communicates with the device through
the RESTful API. It can be used to build a distributed IoT application server and can be used as
a gateway. It supports publish/subscribe mode and data stream. It features device discovery,
registration, and device identification. Zetta is an active project that uses the MIT license.

3. IoTivity [54]: This is a reference implementation of the Open Interconnect Consortium (OIC)
standard, which includes functions for the device layer, network layer, and application support
layer. It provides RESTful interfaces and supports application layer protocols such as CoAP
and MQTT. It implements resource discovery by mDNS and uPNP, resource storage directory,
message routing, and security mechanisms. The functions provided by the service layer include
simulation tools, protocol conversion, agents, publish/subscribe services, device management,
resource encapsulation, resource containers, etc.

4. AllJoyn framework [55]: This is a framework for connecting multiple heterogeneous devices and
APP applications. It provides device discovery and communication functions for applications
and cloud platforms. It has the following functions: point-to-point and group sessions;
external API interfaces; supporting MQTT, XMPP and TR-069 protocols; supporting proximity
device discovery and communication; and supporting point-to-point encryption (AES128) and
authentication (PSK, ECDSA) security mechanisms. It is also an implementation of the Open
Connectivity Foundation (OCF) reference architecture.

5. OpenIot [56]: As an IoT middleware platform, OpenIot can easily deploy various algorithms and
applications for data processing, and can generate application events. It provides ontologies,
semantic modeling, and semantic development interconnection technologies for data and
interconnected devices. It integrates well with Cloud Computing platforms, supports sensor
discovery, and can dynamically compose with other services. The project is supported by a
number of research institutions and some companies.

6. SiteWhere [57]: This open source software is built on micro-service architecture and hence
has good flexibility, scalability, and availability. It uses application layer protocols such as
MQTT/AMPP to transfer data and supports data storage by big data technology. SiteWhere also
offers an object model to describe data relationships. The system provides RESTful, MQTT/AMPP
application development interfaces, which can be used to integrate with Cloud Computing
platforms and provide users with a web application runtime environment through web containers.
The devices are managed by device self-registration, RESTful service, or batch processing. It also
supports security mechanisms, such as encryption, authentication, and role-based access control.
It uses the open source CPAL1.0 license.

7. Thinger.io [58]: This middleware provides cloud-based device access management and data
service interfaces at the gateway layer that can be deployed in the cloud and local site. It can

Future Internet 2018, 10, 105 12 of 27

run on open source hardware platforms such as Arduino, Raspberry Pi, Intel Edison, and ARM
Mbed, and operating systems such as Linux, and Android. It supports the SIGFOX protocol.
The security mechanism used is unknown. It has been integrated with NodeMCU to implement
motion detection applications [59] and also used in smart emergency response systems [60].

8. WSO2IoT [61]: This includes gateway layer and application layer functions, providing terminal
equipment access management, data flow, and CEP processing. It can customize web portals
for application development and supports devices that run Android and iOS. It has relatively
complete security mechanisms, including encryption, authorization, identity authentication,
single sign-on, and transport-layer security mechanisms. The Apache License 2.0 is adopted.

9. ThingsBoard [62]: This provides data acquisition, processing, visualization, and device
management functions. HTTPs and MQTTs, SIGFOX, OPC-UA, etc. are supported, while
CoAPs are not yet supported. It supports device identity authentication based on X.509. Apache
License 2.0 is used and about 10 partners are involved. Recently, it has been adopted by different
applications, such as data collection platform for situational awareness-centric microgrids [63]; and
real-time processing of data streams received from sensor devices, via integration with Spark [64].

10. DeviceHive [65]: This provides management, communication and data processing functions for
devices, providing RESTful API interfaces. Authentication mechanisms based on JWT (JSON
Web Token), TLS encryption, and role-based access control are supported. It has good flexibility
and reliability by using micro-service architecture. It is released under an Apache License 2.0
license. DeviceHive is used as a connector service to route commands between DeviceHive and
other services in a smart home [66]. The services are registered into DeviceHive as devices and
are polled for commands. In the smart metering of electrical power systems, DeviceHive has
been used as a cloud and client to communicate with remote sensors. It abstracts resources into
seven components: Network, User, Device, Device Class, Equipment, and Access key [67].

11. ThingSpeak [68]: This IoT platform developed by the Mathworks company implements data
acquisition, analysis, and action triggering functions. The data processing is done by Matlab.
It provides cloud platform and supports mobile terminal application development. ThingSpeak
has been used in applications such as intelligent agriculture field monitoring systems [69], and
automatic car parking systems [70].

12. VSCP (Very Simple Control Protocol) [71]: This is used as a gateway in IoT to provide device
discovery and identification, device configuration management, secure device firmware updates,
and UI interfaces. It stores and transmits data by a secure encryption mechanism.

13. Macchina.io [72]: This is an edge and fog computing tool set for IoT application development,
which supports multiple devices and terminal equipment access, data transmission, integration with a
Cloud Computing platform. Seven partners are involved and the Apache 2.0 license has been adopted.

14. T6IotApp [73]: This provides device connectivity, data flow with a timestamp, data processing, a
dashboard interface, and a JWT security mechanism. A few different hardware is currently supported.

15. Distributed Services Architecture for IoT (DSA) [74]: DSA realizes the integration of a
variety of data or protocols used for communication between heterogeneous devices. It also
supports group-based authorization management, LDAP-based authentication, and SSL-based
transmissions. The Apache License 2.0 is adopted.

16. Kaa [75]: This is a middleware platform for building end-to-end applications of IoT, which
can be used as a gateway or as an application server. It supports device management, device
interaction, remote device configuration and distributed remote device firmware updates, cloud
service creation, data collection and analysis, user behavior analysis, target event notification,
and data storage based on big data. In the literature [76], Kaa has been deployed in clusters as an
application server for distributed data collection.

17. PlatformIO [77]: This is an open source IoT development ecosystem. It operates at the application
layer and provides a cross-platform build system that integrates a continuous development

Future Internet 2018, 10, 105 13 of 27

environment and library management environment. Its main role lies in being an integrated
development environment and framework that supports multiple hardware platforms. There is
no support for device networking, discovery, and semantic processing. Companies such as ARM,
Freescale, and TI provide support and the Apache 2.0 license is used.

18. Mainflux [78]: This is a hardware-independent IoT cloud platform based on the Go language and
micro-service architecture, supporting multiple protocols, device management, OTA-FW-based
firmware update, application management, data storage, and fine-grained access control based on
customizable API keys and scoped JWT. TLS and DTLS security mechanisms are also supported.
The Apache-2.0 License is used.

19. Patchwork Toolkit [79]: Patchwork provides lightweight tools for the interconnection of a variety
of heterogeneous devices which are within the LAN. It only retains the necessary features
and therefore is easy to deploy with good scalability. It also provides service registration and
discovery functions.

2.6.2. Comparison of Open Source Middleware

Through a comprehensive analysis of the main functions of open source IoT middleware and
the requirements of IoT applications, the open source platforms were compared using seven features,
including both functional and non-functional properties. Other non-functionalities such as flexibility,
extensibility, reliability, etc. are not covered here. These seven dimensions are shown in Figure 2.
The details are as follows:

1. Access and management of heterogeneous devices. The platform should support various
hardware using different protocols and provide management of device status and firmware
updates. The open source middleware technologies introduced above almost all support a variety
of mainstream open source hardware and mobile terminals, such as the Raspberry Pi, BeagleBone,
Arduino, and so on. The underlying access protocols include ZigBee, CAN, RS-232, Bluetooth,
GPIO, LoRA, SIGFOX, and others. Some open source platforms provide identity management
for access devices.

2. Application layer data transmission. At present, open source platforms mostly support
HTTP/MQTT application layer protocols, and some also support application layer protocols
such as WebSocket, Modbus, OPC-UA, CoAP, and AMPP.

3. Data storage and intelligent processing. Data can be stored by the middleware itself to provide
edge computing capabilities and can also be stored on cloud platforms. Data processing
capabilities include complex event processing (CEP), rule-based event processing, and stream
processing; some platforms also support machine learning capabilities.

4. Providing API interface and application support capabilities. The platforms above provide
applications with various capabilities through RESTful interfaces.

5. Deployment mode. Some open source systems are deployed as gateways, some are simply
deployed as IoT applications, and others have both capabilities.

6. Completeness of security. The platform needs to provide data encryption, secure transmission,
identity authentication, and access control mechanisms to meet the needs of IoT applications.

7. Activeness. The activeness of development of the open source system is also an important factor
when developers choose a platform. The activeness of the 19 platforms investigated here is shown
in Figure 3. The number of results obtained through a Google search and the number of topics in
the open source system’s own forums can roughly reflect its activeness. The topic in the figure
indicates the number of topics of each platform, which mainly comes from the Stack Overflow
website and self-built forums.

Based on the above features, Table 3 shows a comparison of the open source platforms listed in
this paper. The symbol “/” indicates a feature is unknown. In Table 3, we can see that the degree

Future Internet 2018, 10, 105 14 of 27

of activity of the project has a strong correlation with the support it receives. For example, Eclipse
Kura is supported by the Eclipse open source organization, and IoTivity has received support from big
companies such as Intel, Cisco, and Samsung. WSO2IoT has about 70 partners, and AllJoyn includes
more than 100 companies as partners and is supported by the Linux Open Source Foundation. Table 3
also shows that the function of these open source projects is more comprehensive. Most systems are
still regularly updated and developed, in addition to some platforms that are mature or have not been
maintained. For example, 44 systems were updated in 2018 and 15 were updated in 2017.

Future Internet 2018, 10, x FOR PEER REVIEW 13 of 27

no support for device networking, discovery, and semantic processing. Companies such as
ARM, Freescale, and TI provide support and the Apache 2.0 license is used.

18. Mainflux [78]: This is a hardware-independent IoT cloud platform based on the Go language
and micro-service architecture, supporting multiple protocols, device management, OTA-FW-
based firmware update, application management, data storage, and fine-grained access control
based on customizable API keys and scoped JWT. TLS and DTLS security mechanisms are also
supported. The Apache-2.0 License is used.

19. Patchwork Toolkit [79]: Patchwork provides lightweight tools for the interconnection of a
variety of heterogeneous devices which are within the LAN. It only retains the necessary
features and therefore is easy to deploy with good scalability. It also provides service registration
and discovery functions.

2.6.2. Comparison of Open Source Middleware

Through a comprehensive analysis of the main functions of open source IoT middleware and
the requirements of IoT applications, the open source platforms were compared using seven features,
including both functional and non-functional properties. Other non-functionalities such as flexibility,
extensibility, reliability, etc. are not covered here. These seven dimensions are shown in Figure 2. The
details are as follows:

Figure 2. Key features of open source middleware for the IoT.

1. Access and management of heterogeneous devices. The platform should support various
hardware using different protocols and provide management of device status and firmware
updates. The open source middleware technologies introduced above almost all support a
variety of mainstream open source hardware and mobile terminals, such as the Raspberry Pi,
BeagleBone, Arduino, and so on. The underlying access protocols include ZigBee, CAN, RS-232,
Bluetooth, GPIO, LoRA, SIGFOX, and others. Some open source platforms provide identity
management for access devices.

2. Application layer data transmission. At present, open source platforms mostly support
HTTP/MQTT application layer protocols, and some also support application layer protocols
such as WebSocket, Modbus, OPC-UA, CoAP, and AMPP.

3. Data storage and intelligent processing. Data can be stored by the middleware itself to provide
edge computing capabilities and can also be stored on cloud platforms. Data processing
capabilities include complex event processing (CEP), rule-based event processing, and stream
processing; some platforms also support machine learning capabilities.

4. Providing API interface and application support capabilities. The platforms above provide
applications with various capabilities through RESTful interfaces.

5. Deployment mode. Some open source systems are deployed as gateways, some are simply
deployed as IoT applications, and others have both capabilities.

6. Completeness of security. The platform needs to provide data encryption, secure transmission,
identity authentication, and access control mechanisms to meet the needs of IoT applications.

Figure 2. Key features of open source middleware for the IoT.

Future Internet 2018, 10, x FOR PEER REVIEW 14 of 27

7. Activeness. The activeness of development of the open source system is also an important factor
when developers choose a platform. The activeness of the 19 platforms investigated here is
shown in Figure 3. The number of results obtained through a Google search and the number of
topics in the open source system’s own forums can roughly reflect its activeness. The topic in
the figure indicates the number of topics of each platform, which mainly comes from the Stack
Overflow website and self-built forums.

Based on the above features, Table 3 shows a comparison of the open source platforms listed in
this paper. The symbol “/” indicates a feature is unknown. In Table 3, we can see that the degree of
activity of the project has a strong correlation with the support it receives. For example, Eclipse Kura
is supported by the Eclipse open source organization, and IoTivity has received support from big
companies such as Intel, Cisco, and Samsung. WSO2IoT has about 70 partners, and AllJoyn includes
more than 100 companies as partners and is supported by the Linux Open Source Foundation. Table
3 also shows that the function of these open source projects is more comprehensive. Most systems are
still regularly updated and developed, in addition to some platforms that are mature or have not
been maintained. For example, 44 systems were updated in 2018 and 15 were updated in 2017.

Table 3. Comparison of open source IoT middleware platforms.

 P1 1 P2 2 P3 3 P4 4 P5 5 P6 6 P7 7 P8 8 P9 9
Kura √ √ √ √ X √ GW 11/AP 12 SSL Great

Zetta √ X √ CS 10
Data

stream
√ √ X Good

Iotivity √ √ √ CS X √ √ √ Excellent
Alljoyn √ √ √ √ X √ GW/AP √ Excellent
OpenIot X X X CS SP 13 X AP AA 14 Good

SiteWhere √ √ √ CS/LS 15 √ √ AP √ Good
Thinger.io √ √ / CS / √ √ / Good
WSO2IoT √ √ √ CS √ √ √ √ Excellent

ThingsBoard √ √ √ CS √ RPC GW AA Excellent
DeviceHive √ √ √ √ √ GW √ Good
ThingSpeak √ X √ CS √ √ AP / Great

VSCP √ √ √ X X X GW / Good
Macchina.io √ X √ √ X √ GW √ Good

T6Iot
A

few
X X / √ √ AP √ Poor

DSA √ X WS 16/Http LS X X GW √ Good
Kaa √ √ √ √ √ √ √ / Good

PlatformIO √ X X X X X X / Good
Mainflux √ √ √ √ √ √ √ √ Good

Patchwork √ X √ X X √ GW / Poor
1 Heterogeneous devices; 2 Device Management; 3 Application Layer Transfer; 4 Data storage; 5

Intelligent processing; 6 RESTful Interface; 7 Deploy Mode; 8 Security; 9 Activeness; 10 Cloud storage; 11

Gateway; 12 Application platform; 13 Semantic Processing; 14 Authentication Authorization; 15 Local
storage; 16 WebSocket.

Figure 3. Activeness of development of open source middleware platform for IoT. Figure 3. Activeness of development of open source middleware platform for IoT.

Table 3. Comparison of open source IoT middleware platforms.

P1 1 P2 2 P3 3 P4 4 P5 5 P6 6 P7 7 P8 8 P9 9

Kura
√ √ √ √

X
√ GW

11/AP 12 SSL Great

Zetta
√

X
√

CS 10 Data stream
√ √

X Good
Iotivity

√ √ √
CS X

√ √ √
Excellent

Alljoyn
√ √ √ √

X
√

GW/AP
√

Excellent
OpenIot X X X CS SP 13 X AP AA 14 Good

SiteWhere
√ √ √

CS/LS 15 √ √
AP

√
Good

Thinger.io
√ √

/ CS /
√ √

/ Good
WSO2IoT

√ √ √
CS

√ √ √ √
Excellent

ThingsBoard
√ √ √

CS
√

RPC GW AA Excellent
DeviceHive

√ √ √ √ √
GW

√
Good

ThingSpeak
√

X
√

CS
√ √

AP / Great
VSCP

√ √ √
X X X GW / Good

Macchina.io
√

X
√ √

X
√

GW
√

Good
T6Iot A few X X /

√ √
AP

√
Poor

DSA
√

X WS 16/Http LS X X GW
√

Good
Kaa

√ √ √ √ √ √ √
/ Good

PlatformIO
√

X X X X X X / Good
Mainflux

√ √ √ √ √ √ √ √
Good

Patchwork
√

X
√

X X
√

GW / Poor
1 Heterogeneous devices; 2 Device Management; 3 Application Layer Transfer; 4 Data storage; 5 Intelligent
processing; 6 RESTful Interface; 7 Deploy Mode; 8 Security; 9 Activeness; 10 Cloud storage; 11 Gateway; 12 Application
platform; 13 Semantic Processing; 14 Authentication Authorization; 15 Local storage; 16 WebSocket.

Future Internet 2018, 10, 105 15 of 27

2.7. Comparison between IoT Requirements and Open Source System

By comparing the open source systems listed above with the various requirements of the IoT
listed in [2], the requirements implemented and not yet implemented by open source systems were
analyzed. The results are shown in Table 4.

Table 4. Comparison between the IoT requirements and current open source systems.

Layer Sub-Requirement Layer Sub-Requirement

Device layer Connection management based
on identification No

Data layer

Data classification No

Plug and play Yes Rule-based data fusion and
data mining Yes

Mobility management No Data semantic annotation
and query Yes

Device integrity check No Data exchange/aggregation Yes

Data lifecycle management No

Data description Yes

Communication
layer

Event-based/multicast
communication Yes

Service
layer

Service composition Yes

Content-aware communication No Semantic-based service Yes

Self-Management, self-heal,
self-optimization, self-protection No Mobility service No

Periodic communication No Autonomous service No

Heterogeneous communication
integration Yes Personalized service Yes

Scenario aware service No

Application
development Programming API Yes

Security
and privacy

Authentication/
Authorization/Audit Yes

Group management Yes Privacy protection No

Collaboration requirement No Security policy No

Resource accounting No

3. Architecture of the Integrated IoT Application Development Platform

3.1. The IoT Application Development Platform

Figure 4 shows the proposed architecture of the integrated IoT application development platform.
It includes the following functions.

1. Heterogeneous devices supporting various sensing devices with different functions, operating
systems, transmission protocols, power consumptions, and other characteristics. Current
mainstream devices are supported, in order to meet the application requirements. Gateways
are used to implement the management of heterogeneous devices. The gateway implements
device interconnection, state management, and protocol conversion as well as unified description,
storage, forwarding, and basic processing of data. It can also automatically produce the ID of the
access device according to the device function, protocol, physical location, etc., for identifying
and locating the device.

2. Application layer protocols. Data transmission is achieved by using standard application layer
protocols, such as HTTP, CoAP, MQTT, or AMQP, to implement integration among different
applications. The publish/subscribe mechanism is also supported to implement loose coupling
systems and meet real-time application requirements.

3. Distributed resource management. Compared with traditional software development, IoT
application development is based on specific sensing devices. During the development, it
is necessary to use the functions and specific features provided by the existing devices. Therefore,
it is necessary to provide a common public service or resource discovery mechanism to efficiently

Future Internet 2018, 10, 105 16 of 27

and accurately find the available resources it needs. P2P (peer-to-peer) is a distributed computing
technology that has been widely used in resource sharing and virtual currency trading. This
platform utilizes P2P technology to realize the distributed storage and retrieval of IoT resources.
IoT applications developed on P2P therefore have good scalability, flexibility, and high availability.
However, these details are beyond the scope of this article.

4. API interface and security mechanism. The platform supports Web Service and RESTful style API
interfaces. Network layer security mechanisms such as the DTLS and TLS mechanisms for the
embedded environment are adopted to implement data encryption and identity authentication. The
JWT is used in the application layer to implement secure transmission of compact and self-contained
information. The transferred information is signed to ensure data integrity and non-repudiation.

5. Service delivery platform and development environment. The open source system Platform
API is used to provide a cross-platform build system, and integrate a continuous development
environment and a variety of development library. IoT applications can be developed and
deployed through cloud platforms. The cloud platform stores the global information gathered by
the sensors distributed in various places. It processes the data to obtain new knowledge by using
intelligent technologies, such as data mining, machine learning, semantic web reasoning, and
others. The Eclipse Kapua [80] cloud platform was used as a data processing platform for the IoT
and combined with Apache Kafka, an open source real-time streaming processing technology.

6. Resource bill, based on blockchain technology, is used to ensure the safe, reliable, and efficient use
of sensor resources. Using P2P resource management, blockchain and smart contract technology
were combined to achieve resource management for the IoT. For example, when and where the
owner of a resource can publish resource, and how the resource will be used and billed, which is
a module that will be further studied at a later date.

Future Internet 2018, 10, x FOR PEER REVIEW 15 of 27

2.7. Comparison between IoT Requirements and Open Source System

By comparing the open source systems listed above with the various requirements of the IoT
listed in [2], the requirements implemented and not yet implemented by open source systems were
analyzed. The results are shown in Table 4.

Table 4. Comparison between the IoT requirements and current open source systems.

Layer Sub-Requirement Layer Sub-Requirement

Device layer
Connection management based on

identification
No

Data layer

Data classification No

 Plug and play Yes
Rule-based data fusion and

data mining
Yes

 Mobility management No
Data semantic annotation

and query
Yes

 Device integrity check No Data exchange/aggregation Yes
 Data lifecycle management No
 Data description Yes

Communication
layer

Event-based/multicast
communication

Yes

Service layer

Service composition Yes

 Content-aware communication No Semantic-based service Yes

Self-Management, self-heal, self-

optimization, self-protection
No Mobility service No

 Periodic communication No Autonomous service No

Heterogeneous communication

integration
Yes Personalized service Yes

 Scenario aware service No
Application

development
Programming API Yes

Security and
privacy

Authentication/
Authorization/Audit

Yes

 Group management Yes Privacy protection No
 Collaboration requirement No Security policy No
 Resource accounting No

3. Architecture of the Integrated IoT Application Development Platform

3.1. The IoT Application Development Platform

Figure 4 shows the proposed architecture of the integrated IoT application development
platform. It includes the following functions.

Figure 4. The IoT application development platform, based on open source technology. Figure 4. The IoT application development platform, based on open source technology.

3.2. Characteristics of the IoT Application Development Platform

Da Cruz [7] proposed an IoT middleware reference model that included an interoperability
module that operates on a gateway for integrating; a persistence and analytics module that stores and
processes data; a context module that provides relevant information for services and users; a semantic
operation module; and a resource and event module that manages the device capability and generates
events according to the capability and context. Compared with this proposal, the system architecture
proposed here has the following characteristics:

1. Cloud–fog collaborative computing mode. The system can be deployed in the IoT environment
near the sensor devices in a fog computing form. The data do not need to be transmitted to a

Future Internet 2018, 10, 105 17 of 27

remote cloud computing platform and can be processed locally. Then, the processed data can be
transmitted to intelligent processing functions which are deployed in the remote cloud computing
platform to implement collaborative computing between the cloud and the fog.

2. The northbound interface is utilized to shield the underlying heterogeneity and support different
kinds of devices to meet system scalability requirements. At the same time, a southbound
interface is provided to the user application for development. The southbound interfaces support
different styles of API interfaces, such as Web Service, the open source Platform API, RESTful
style interface, and SDK.

3. Multiple open source platforms are integrated. In a large-scale IoT application environment—for
example a smart city—different subsystems may adopt different open source platforms or
self-development platforms. One of the goals of the system is to use Web of Things technology to
implement service interactions between different platforms.

4. The architecture proposed here implements the context processing mechanism through
application layer business logic, such as complex event processing, which provides more
intelligent application processing capabilities.

5. Distributed resource management and blockchain-based resource billing.

4. Evaluation

The IoT integrated application development platform proposed here was evaluated by an
industrial IoT scenario. In an industrial production environment, functions such as environment
monitoring, data acquisition processing, and equipment management can be implemented by IoT
technology to improve production efficiency and ensure production safety. At present, a typical
industrial IoT application is where a factory uses sensors to monitor various data in the production
environment [81]. The smart factory has typical IoT application characteristics, such as a diversity of
devices and transmission protocols, stringent real-time business requirements, and complexity of data
processing. The sensing data collected about the smart factory also need to be transmitted to a remote
cloud computing platform for intelligent processing, which can detect abnormal events. The factory
production environment is complex and often located far from enterprise management personnel.
Therefore, it requires a long-distance wireless data transfer mechanism to achieve remote data collection
and management. These protocols also can be easily integrated with enterprise applications.

Figure 5 shows an industrial IoT scenario that implements the acquisition, monitoring, and
management control functions of a factory. The simulation environment is shown in Table 5.
The Modbus protocol does not have open API and requires professional knowledge for development.
For easy integration with various application systems, application-oriented protocols, such as
CoAP/HTTP/MQTT/WebSocket, were applied. At present, the CoAP and HTTP protocol are used
for remote data transmission. In the future, more application layer protocols will be added, analyzed
and compared.

Below, we present the evaluation results, including the system functions and performance analysis.

Table 5. Devices list used for evaluation.

Technology Product Name and Quantity

Gateway Raspberry Pi 3 B+ running Eclipse Kura and CoAP Server

Link LoRA protocol: Lora-gate-bridge, Loraserver, Lora-app-server, packet forwarder, or wireless and
wired LAN established via Tp-Link

LoRAWAN Gateway 1
LoRA Terminal Module 2

Transfer protocol CoAP/HTTP/MQTT/WebSocket
Security DTLS Eclipse Scandium
Sensors One temperature and humidity sensor DHT11 connected with GPIO, Two LED lights

MQTT Client PC
Cloud Platform Docker-based Eclipse Kapua running on ThinkPad T470 Laptop

CoAP Client Copper1.0.1 + Firefox55 plugin
GUI Node-Red +node-red-contrib-coap 0.3.0

Future Internet 2018, 10, 105 18 of 27

Future Internet 2018, 10, x FOR PEER REVIEW 18 of 27

CoAP Client Copper1.0.1 + Firefox55 plugin
GUI Node-Red +node-red-contrib-coap 0.3.0

Figure 5. An industrial IoT simulation environment.

4.1. System Function

The system function evaluation results are given in Figure 6. For the evaluation, the following
were considered

1. The integrated application development platform is described here using the system functions
implementation.

2. The experiment was conducted using a campus network environment. Each measurement result
was obtained by performing the test 50 times. Experiments under more complex network
conditions will be conducted in the future.

3. We tested the availability of architecture that uses only one kind of gateway technology; the
interoperability between different subsystems using different kinds of open source gateways
will be studied further.

As shown in Figure 6a, the open source Cloud Computing platform Eclipse Kapua was used to
implement MQTT-based IoT gateway management and MQTT broker functions, which included
application deployment, system configuration, data publishing and subscription. By using Kapua,
the IoT gateway could be managed by an administrator at a remote office, and the data published
and subscribed by different applications running in different locations.

Figure 6b shows the resource list for the smart factor from the “well-known” interface of the
CoAP protocol by querying the P2P gateway node. These CoAP resources can be operated by the
GET, PUT, and DELETE operations, which are invoked by web applications. The resources are
accessed by URL. For example, the light resource of factory 1 can be invoked using “GET
coap://192.168.1.115:5683/factory1/light”. The resource is managed by a gateway which is run as a
P2P node. In our simulations, dozens of P2P nodes are running on the same gateway.

Figure 6c presents the node-red visual interface for developing an IoT application. It displays
the visual flow programming mode for IoT application. Figure 6d shows the result of Figure 6c, which
shows various environmental data with the Dashboard interface. Figure 6c,d shows that it is easy to
develop IoT applications with open source systems.

Figure 5. An industrial IoT simulation environment.

4.1. System Function

The system function evaluation results are given in Figure 6. For the evaluation, the following
were considered

1. The integrated application development platform is described here using the system
functions implementation.

2. The experiment was conducted using a campus network environment. Each measurement
result was obtained by performing the test 50 times. Experiments under more complex network
conditions will be conducted in the future.

3. We tested the availability of architecture that uses only one kind of gateway technology;
the interoperability between different subsystems using different kinds of open source gateways
will be studied further.

As shown in Figure 6a, the open source Cloud Computing platform Eclipse Kapua was used
to implement MQTT-based IoT gateway management and MQTT broker functions, which included
application deployment, system configuration, data publishing and subscription. By using Kapua, the
IoT gateway could be managed by an administrator at a remote office, and the data published and
subscribed by different applications running in different locations.

Figure 6b shows the resource list for the smart factor from the “well-known” interface of the
CoAP protocol by querying the P2P gateway node. These CoAP resources can be operated by the GET,
PUT, and DELETE operations, which are invoked by web applications. The resources are accessed by
URL. For example, the light resource of factory 1 can be invoked using “GET coap://192.168.1.115:
5683/factory1/light\T1\textquotedblright. The resource is managed by a gateway which is run as a
P2P node. In our simulations, dozens of P2P nodes are running on the same gateway.

Figure 6c presents the node-red visual interface for developing an IoT application. It displays the
visual flow programming mode for IoT application. Figure 6d shows the result of Figure 6c, which
shows various environmental data with the Dashboard interface. Figure 6c,d shows that it is easy to
develop IoT applications with open source systems.

coap://192.168.1.115:5683/factory1/light\T1\textquotedblright
coap://192.168.1.115:5683/factory1/light\T1\textquotedblright

Future Internet 2018, 10, 105 19 of 27

Future Internet 2018, 10, x FOR PEER REVIEW 19 of 27

(a)

(b)

(c)

(d)

Figure 6. IoT application platform based on open source ecosystem: (a) gateway management and
data collection; (b) CoAP resource discovery; (c) Node-Red development; and (d) Dashboard GUI.

Figure 6. IoT application platform based on open source ecosystem: (a) gateway management and
data collection; (b) CoAP resource discovery; (c) Node-Red development; and (d) Dashboard GUI.

Future Internet 2018, 10, 105 20 of 27

4.2. System Performance Analysis

Esquiagola et al. [82] proposed a comprehensive test methodology for IoT platform testing.
The methodology includes functional, connectivity, performance, security, compatibility, and
exploratory testing. It was applied to their SwarmOS platform, but only showed the HTTP response
time with a different number of requests on three hardware platforms. They did not report the platform
performance under different conditions. Babovic, Z. et al. [83] compared different web applications
and IoT message protocol performances in a specific scenario. However, this test is not suited to
industrial Internet of Things applications and does not include function testing.

We compared the performance of different mainstream application layer transmission protocols
under the condition of the industrial IoT and with the LoRA protocol used as the link layer protocol.
Figure 7 shows the transmission performance test model of this system. Node-Red stands for the
browser and runs the IoT application developed by Node-Red. The Eclipse Kura Gateway is the
IoT gateway. The communication performance between the IoT application and the gateway is
found by testing RTT (Round Time Live). Ttrans1 is the request time, Tprocess is the request processing
time, Ttrans2 is the response time of request, and Trender refers to the time taken by the browser to
display the received data. The performance tests were conducted according to Equations (1) and (2).
The RTT performance of the CoAP and HTTP protocols were tested and compared using Jmeter and
Jmeter-iot-lib based on Equation (1). The GET and PUT operations of the CoAP (POST for HTTP)
protocol were compared and are shown in Figure 8 for the CON and NON-CON retransmission
mechanism, respectively.

RTT = Ttrans1 + Tprocess + Ttrans2 (1)

RTT = Ttrans1 + Tprocess + Ttrans2 + Trender (2)

In smart factories, some measurement data are small-sized, such as temperature, humidity,
pressure, etc. However, in some cases—for example, when the network is congested—frequent data
transmission may affect network performance, so the application can transmit the data measured
multiple times at once. To check this situation, the transmission performance under different payloads
was tested.

Future Internet 2018, 10, x FOR PEER REVIEW 20 of 27

4.2. System Performance Analysis

Esquiagola et al. [82] proposed a comprehensive test methodology for IoT platform testing. The
methodology includes functional, connectivity, performance, security, compatibility, and
exploratory testing. It was applied to their SwarmOS platform, but only showed the HTTP response
time with a different number of requests on three hardware platforms. They did not report the
platform performance under different conditions. Babovic, Z. et al. [83] compared different web
applications and IoT message protocol performances in a specific scenario. However, this test is not
suited to industrial Internet of Things applications and does not include function testing.

We compared the performance of different mainstream application layer transmission protocols
under the condition of the industrial IoT and with the LoRA protocol used as the link layer protocol.
Figure 7 shows the transmission performance test model of this system. Node-Red stands for the
browser and runs the IoT application developed by Node-Red. The Eclipse Kura Gateway is the IoT
gateway. The communication performance between the IoT application and the gateway is found by
testing RTT (Round Time Live). Ttrans1 is the request time, Tprocess is the request processing time, Ttrans2
is the response time of request, and Trender refers to the time taken by the browser to display the
received data. The performance tests were conducted according to Equations (1) and (2). The RTT
performance of the CoAP and HTTP protocols were tested and compared using Jmeter and Jmeter-
iot-lib based on Equation (1). The GET and PUT operations of the CoAP (POST for HTTP) protocol
were compared and are shown in Figure 8 for the CON and NON-CON retransmission mechanism,
respectively.

RTT = Ttrans1 + Tprocess + Ttrans2 (1)

RTT = Ttrans1 + Tprocess + Ttrans2 + Trender (2)

In smart factories, some measurement data are small-sized, such as temperature, humidity,
pressure, etc. However, in some cases—for example, when the network is congested—frequent data
transmission may affect network performance, so the application can transmit the data measured
multiple times at once. To check this situation, the transmission performance under different
payloads was tested.

Figure 7. RTT measurement.

The GET operation was used to obtain the resource data and the PUT operation was used to
change the resource state. The CoAP block size was set to the default value. In Figure 8, it can be seen
that the performance of the NON and CON mechanisms of the CoAP protocol was close when the

Figure 7. RTT measurement.

The GET operation was used to obtain the resource data and the PUT operation was used to
change the resource state. The CoAP block size was set to the default value. In Figure 8, it can be seen
that the performance of the NON and CON mechanisms of the CoAP protocol was close when the

Future Internet 2018, 10, 105 21 of 27

payload was small. When the payload was less than 1000 bytes, the RTT time was less than 10 ms
in a wireless LAN environment, regardless of the CON or NON PUT and GET operations. When
the transmission data were larger than the CoAP data block size, they increased faster because the
data needed to be divided into smaller blocks to be transmitted several times. For example, when the
payload was 1000 bytes, the RTT time of the NON CoAP was 10 ms; when the payload was 2000 bytes,
the RTT time increased to 38 ms. When the payload was 3000 bytes, the RTT time was increased to
68 ms. The RTT time of the CON CoAP was 12, 53, and 76 ms, respectively. The overhead of CON
mechanics also increased with the payload size. This indicates that, when the payload size is bigger
than the size of the CoAP block size, the message will be transferred multiple times, and so the CON
time is increased.

In Figure 8, we show that the HTTP RTT time was twice that of NON CoAP when the payload
size was less than 400 bytes. This is because the HTTP is connection-oriented and based on the TCP
protocol. However, when the payload size is more than 1000 bytes, the RTT time of HTTP increased
steadily. This is because of the different block size of the two protocols. For example, when the payload
size was 2000 bytes, the RTT time of the HTTP GET operation was 18 ms and the RTT time of the CON
CoAP GET operation was 53 ms. When the payload size was 3000 bytes, the RTT time of the HTTP
GET operation as 22 ms, but the RTT time of the CON CoAP GET operation was 76 ms. In conclusion,
when the payload size was small, CoAP is preferred over HTTP. The performance of the CoAP GET
and CoAP PUT operations under different data block sizes was tested based on Equation (2) with the
Firefox browser. The RTT was measured by setting the CoAP block size to 64 bytes and 1024 bytes,
respectively. In Figure 9, it can be seen that the larger the data block, the smaller the RTT. When the
package size exceeded 64 bytes or 1800 bytes, the RTT grows faster because the data are transmitted
in several segments. This also shows that when the CoAP protocol is integrated with other wireless
sensor networks, the transmission performance will be affected if the other network data frames are
small. For a block size of 64 bytes (the default size), the CON CoAP GET RTT for Equations (1) and (2)
were compared, as shown in Figure 10. The Trender was much larger than both the RTT, indicating that
the application process time of Firefox was much larger than the CoAP protocol transmission needs.

Future Internet 2018, 10, x FOR PEER REVIEW 21 of 27

payload was small. When the payload was less than 1000 bytes, the RTT time was less than 10 ms in
a wireless LAN environment, regardless of the CON or NON PUT and GET operations. When the
transmission data were larger than the CoAP data block size, they increased faster because the data
needed to be divided into smaller blocks to be transmitted several times. For example, when the
payload was 1000 bytes, the RTT time of the NON CoAP was 10 ms; when the payload was 2000
bytes, the RTT time increased to 38 ms. When the payload was 3000 bytes, the RTT time was increased
to 68 ms. The RTT time of the CON CoAP was 12, 53, and 76 ms, respectively. The overhead of CON
mechanics also increased with the payload size. This indicates that, when the payload size is bigger
than the size of the CoAP block size, the message will be transferred multiple times, and so the CON
time is increased.

In Figure 8, we show that the HTTP RTT time was twice that of NON CoAP when the payload
size was less than 400 bytes. This is because the HTTP is connection-oriented and based on the TCP
protocol. However, when the payload size is more than 1000 bytes, the RTT time of HTTP increased
steadily. This is because of the different block size of the two protocols. For example, when the
payload size was 2000 bytes, the RTT time of the HTTP GET operation was 18 ms and the RTT time
of the CON CoAP GET operation was 53 ms. When the payload size was 3000 bytes, the RTT time of
the HTTP GET operation as 22 ms, but the RTT time of the CON CoAP GET operation was 76 ms. In
conclusion, when the payload size was small, CoAP is preferred over HTTP. The performance of the
CoAP GET and CoAP PUT operations under different data block sizes was tested based on Equation
(2) with the Firefox browser. The RTT was measured by setting the CoAP block size to 64 bytes and
1024 bytes, respectively. In Figure 9, it can be seen that the larger the data block, the smaller the RTT.
When the package size exceeded 64 bytes or 1800 bytes, the RTT grows faster because the data are
transmitted in several segments. This also shows that when the CoAP protocol is integrated with
other wireless sensor networks, the transmission performance will be affected if the other network
data frames are small. For a block size of 64 bytes (the default size), the CON CoAP GET RTT for
Equations (1) and (2) were compared, as shown in Figure 10. The Trender was much larger than both
the RTT, indicating that the application process time of Firefox was much larger than the CoAP
protocol transmission needs.

(a)

(b)

Figure 8. CoAP vs. HTTP: (a) CoAP GET and HTTP GET; and (b) CoAP PUT and HTTP POST. Figure 8. CoAP vs. HTTP: (a) CoAP GET and HTTP GET; and (b) CoAP PUT and HTTP POST.

Future Internet 2018, 10, 105 22 of 27

Future Internet 2018, 10, x FOR PEER REVIEW 22 of 27

(a)

(b)

Figure 9. Impact of different CoAP data block size on performance: (a) CoAP GET RTT; and (b) CoAP
PUT RTT.

Figure 10. The CON CoAP GET performance comparison between Equations (1) and (2).

Figure 11 shows the availability of the Eclipse Kura gateway under different load conditions. In
Figure 11a, it can be seen that, when the payload size was 2000 bytes, the system success rate
decreased quickly with increasing concurrency number. When the number was 60, the success rate
decreased to 80. When it exceeded 100, the success rate was reduced to less than 50%. At the same
time, the memory usage of the Eclipse Kura gateway remained stable, and the CPU usage increased
rapidly when the number of concurrencies exceeded 400. In Figure 11b, the payload was set to 1000
bytes. In this case, the success rate of the system was 100% when the concurrency was less than 400.

Figure 9. Impact of different CoAP data block size on performance: (a) CoAP GET RTT; and (b) CoAP
PUT RTT.

Future Internet 2018, 10, x FOR PEER REVIEW 22 of 27

(a)

(b)

Figure 9. Impact of different CoAP data block size on performance: (a) CoAP GET RTT; and (b) CoAP
PUT RTT.

Figure 10. The CON CoAP GET performance comparison between Equations (1) and (2).

Figure 11 shows the availability of the Eclipse Kura gateway under different load conditions. In
Figure 11a, it can be seen that, when the payload size was 2000 bytes, the system success rate
decreased quickly with increasing concurrency number. When the number was 60, the success rate
decreased to 80. When it exceeded 100, the success rate was reduced to less than 50%. At the same
time, the memory usage of the Eclipse Kura gateway remained stable, and the CPU usage increased
rapidly when the number of concurrencies exceeded 400. In Figure 11b, the payload was set to 1000
bytes. In this case, the success rate of the system was 100% when the concurrency was less than 400.

Figure 10. The CON CoAP GET performance comparison between Equations (1) and (2).

Figure 11 shows the availability of the Eclipse Kura gateway under different load conditions.
In Figure 11a, it can be seen that, when the payload size was 2000 bytes, the system success rate
decreased quickly with increasing concurrency number. When the number was 60, the success rate
decreased to 80. When it exceeded 100, the success rate was reduced to less than 50%. At the same time,
the memory usage of the Eclipse Kura gateway remained stable, and the CPU usage increased rapidly
when the number of concurrencies exceeded 400. In Figure 11b, the payload was set to 1000 bytes.

Future Internet 2018, 10, 105 23 of 27

In this case, the success rate of the system was 100% when the concurrency was less than 400. Even if
it was increased to 1000, the success rate was still above 96%. Therefore, it can be concluded that the
success rate was high and the system stable and reliable with small payload data. In both cases, the
system memory usage was stable and the CPU usage increased rapidly when the concurrency number
exceeded 200.

Future Internet 2018, 10, x FOR PEER REVIEW 23 of 27

Even if it was increased to 1000, the success rate was still above 96%. Therefore, it can be concluded
that the success rate was high and the system stable and reliable with small payload data. In both
cases, the system memory usage was stable and the CPU usage increased rapidly when the
concurrency number exceeded 200.

(a)

(b)

Figure 11. System performance under different loads: (a) a payload of 2000 bytes; and (b) a payload
of 1000 bytes.

5. Conclusions

We surveyed and compared the mainstream open source technologies for the IoT based on the
technical requirements of different aspects of IoT, such as device management, data management,
data communications, security and privacy protection, and application support. The requirements
for IoT unimplemented by open source were analyzed. Then, A kind of cloud–fog cooperated
integrated application development platform architecture for IoT applications based on an open
source ecosystem was proposed and evaluated in an industrial IoT scenario. The architecture also
applied the P2P technology for distributed resource management and blockchain-based smart
contract mechanics for resource billing management.

The preliminary function tests allowed us to confirm that the architecture is viable for IoT
application development. The performance results showed that, when the sensor data size was small,
which it is in most cases, the CoAP protocol performed better than HTTP. The gateway availability
test also showed that the IoT gateway based on the open source ecosystem had a stable and reliable
performance with a certain data size and concurrency scale, and that this scale could meet the
application requirements of the IoT in most sensing environments. However, it is necessary to
conduct further research to implement more functions.

The Kura middleware and Eclipse Kapua Cloud Computing platform were adopted to perform
a preliminary implementation and performance analysis of the application development platform in
a simple simulation topology. In future work, it is necessary to further study how to use a variety of
open source middleware to collaboratively build a comprehensive platform for the IoT for complex
application scenarios. In terms of network transmission, the CoAP/HTTP network performance in a
LoRA network environment with long-distance communication will be further analyzed and
compared. Meanwhile, device access and device life cycle management, such as automatic

Figure 11. System performance under different loads: (a) a payload of 2000 bytes; and (b) a payload of
1000 bytes.

5. Conclusions

We surveyed and compared the mainstream open source technologies for the IoT based on the
technical requirements of different aspects of IoT, such as device management, data management, data
communications, security and privacy protection, and application support. The requirements for IoT
unimplemented by open source were analyzed. Then, A kind of cloud–fog cooperated integrated
application development platform architecture for IoT applications based on an open source ecosystem
was proposed and evaluated in an industrial IoT scenario. The architecture also applied the P2P
technology for distributed resource management and blockchain-based smart contract mechanics for
resource billing management.

The preliminary function tests allowed us to confirm that the architecture is viable for IoT
application development. The performance results showed that, when the sensor data size was small,
which it is in most cases, the CoAP protocol performed better than HTTP. The gateway availability test
also showed that the IoT gateway based on the open source ecosystem had a stable and reliable
performance with a certain data size and concurrency scale, and that this scale could meet the
application requirements of the IoT in most sensing environments. However, it is necessary to
conduct further research to implement more functions.

The Kura middleware and Eclipse Kapua Cloud Computing platform were adopted to perform a
preliminary implementation and performance analysis of the application development platform in a
simple simulation topology. In future work, it is necessary to further study how to use a variety of
open source middleware to collaboratively build a comprehensive platform for the IoT for complex

Future Internet 2018, 10, 105 24 of 27

application scenarios. In terms of network transmission, the CoAP/HTTP network performance
in a LoRA network environment with long-distance communication will be further analyzed and
compared. Meanwhile, device access and device life cycle management, such as automatic description,
automatic access, automatic registration, automatic release, and automatic update for physical entities,
will be further studied. In the future, we will integrate intelligent technologies together into the
platform for data processing and customized services. For example, machine learning will be adopted
to learn from sea of IoT data to help people make correct and smart decision. Semantic technology will
be used combining with Knowledge Base and Rule system for reasoning to obtain useful information
and implementing application interoperability as well. SDN (Software Defined Networking) will be
adopted for efficient and personal IoT service providing for users.

Funding: This work was funded by the National Natural Science Foundation of China (No. 61502246), the
Research Innovation Program for College Graduates of Jiangsu Province (No. CXZZ12_0482), and the Research
Project of Nanjing University of Posts and Telecommunications (No. XK0160915170).

Conflicts of Interest: The author declares no conflict of interest.

References

1. ITU-T Recommendation Y, 2066. Common Requirements of the Internet of Things. Available online:
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=12169&lang=en (accessed on 18 July 2017).

2. Shen, S.; Yang, Z. Architecture of Internet of Things and its standardization. J. Nanjing Univ. Posts Telecommun.
2015, 35, 1–18.

3. Belli, L.; Cirani, S.; Davoli, L.; Gorrieri, A.; Mancin, M.; Picone, M. Design and Deployment of an IoT
Application Oriented Testbed. IEEE Comput. 2015, 48, 32–40. [CrossRef]

4. Fit IOT-LAB. Available online: https://www.iot-lab.info/ (accessed on 18 June 2018).
5. Sotres, P.; Santana, J.R.; Sanchez, L.; Lanza, J.; Munoz, L. Practical Lessons from the Deployment

and Management of a Smart City Internet-of-Things Infrastructure: The SmartSantander Testbed Case.
IEEE Access 2017, 5, 14309–14322. [CrossRef]

6. Sánchez, L.; Gutiérrez, V.; Galach, J.A.; Sotres, P.; Santana, J.R.; Casanueva, J.; Muñoz, L. SmartSantander:
Experimentation and service provision in the smart city. In Proceedings of the 16th International Symposium
on Wireless Personal Multimedia Communications (WPMC), Atlantic City, NJ, USA, 24–27 June 2013; pp. 1–6.

7. Da Cruz, M.A.A.; Rodrigues, J.J.P.C.; Al-Muhtadi, J.; Korotaev, V.; Albuquerque, V.H.C. A Reference Model
for Internet of Things Middleware. IEEE Internet Things J. 2018, 99, 871–883. [CrossRef]

8. Razzaque, M.A.; Milojevic-Jevric, M.; Palade, A.; Clarke, S. Middleware for Internet of Things: A Survey.
IEEE Internet Things J. 2016, 3, 70–95. [CrossRef]

9. Palade, A.; Cabrera, C.; White, G.; Razzaque, M.A.; Clarke, S. Middleware for Internet of Things:
A quantitative evaluation in small scale. In Proceedings of the IEEE 18th International Symposium on
a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Macau, China, 12–15 June 2017; pp. 1–6.

10. Savaglio, C.; Fortino, G. Autonomic and Cognitive Architectures for the Internet of Things. In Proceedings
of the IDCS 2015 Proceedings of the 8th International Conference on Internet and Distributed Computing
Systems, Windsor, UK, 2–4 September 2015; pp. 39–47.

11. Fortino, G.; Savaglio, C.; Puga, J.S.D.; Ganzha, M.; Paprzycki, M.; Montesinos, M.; Liotta, A.; Llop, M.
Towards Multi-layer Interoperability of Heterogeneous IoT Platforms: The INTER-IoT Approach.
In Integration, Interconnection, and Interoperability of IoT Systems; Internet of Things Book Series (ITTCC);
Springer: Dordrecht, The Netherlands, 2018; pp. 199–232. ISBN 978-3-319-61299-7.

12. Savaglio, C.; Fortino, G.; Gravina, R.; Russo, W. A methodology for integrating internet of things platforms.
In Proceedings of the 2018 IEEE International Conference on Cloud Engineering (IC2E), Orlando, FL, USA,
17–20 April 2018; pp. 317–322.

13. BlueZ. Available online: http://www.bluez.org/bluez-architecture-overview/ (accessed on 2 May 2018).
14. Android BLE. Available online: http://www.huwei.tech/ (accessed on 7 June 2018).
15. Yoon, C.; Choi, H.; Cho, J.; Kim, Y.W. CoAP over BLE-GATT for OCF. In Proceedings of the International

Conference on Information and Communication Technology Convergence: ICT Convergence Technologies
Leading the Fourth Industrial Revolution, ICTC, Jeju, Korea, 18–20 October 2017; pp. 32–34.

https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=12169&lang=en
http://dx.doi.org/10.1109/MC.2015.253
https://www.iot-lab.info/
http://dx.doi.org/10.1109/ACCESS.2017.2723659
http://dx.doi.org/10.1109/JIOT.2018.2796561
http://dx.doi.org/10.1109/JIOT.2015.2498900
http://www.bluez.org/bluez-architecture-overview/
http://www.huwei.tech/

Future Internet 2018, 10, 105 25 of 27

16. Noble. Available online: https://github.com/noble/noble (accessed on 5 May 2018).
17. A Node.js Module for Implementing BLE (Bluetooth Low Energy) Peripherals. Available online:

https://github.com/noble/bleno (accessed on 5 May 2018).
18. NFC Tools. Available online: http://nfc-tools.org/ (accessed on 8 May 2018).
19. Sinha, R.S.; Wei, Y.; Hwang, S.H. A survey on LPWA technology: LoRa and NB-IoT. ICT Express 2017, 3,

14–21. [CrossRef]
20. LoRa Gateway Bridge Abstracts the Packet Forwarder Protocol into JSON over MQTT. Available online:

http://docs.loraserver.io/lora-gateway-bridge/ (accessed on 5 May 2018).
21. Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low Power Wide Area Networks: An Overview. IEEE Commun.

Surv. Tutor. 2017, 19, 855–873. [CrossRef]
22. Easy-Iot. Available online: https://www.easy-iot.cn/ (accessed on 9 May 2018).
23. CodeLab. Available online: https://github.com/softbaddog/iot-codelabs (accessed on 9 May 2018).
24. Information Technology—UPnP Device Architecture. Available online: https://www.iso.org/standard/

69286.html (accessed on 10 May 2018).
25. Bormann, C. Internet Engineering Task Force (IETF) Request for Comments: RFC 7049. Available online:

http://cbor.io/ (accessed on 10 May 2018).
26. Pavel, K. Implementace a Evaluace Protokolu CBOR. Bachelor Thesis, Charles University, Prague,

Czech Republic, 2015.
27. Flatbuffers Overview. Available online: https://google.github.io/flatbuffers/ (accessed on 10 May 2018).
28. Protocol Buffers. Available online: https://developers.google.com/protocol-buffers/ (accessed on

10 May 2018).
29. Iotdb-Vocabulary. Available online: https://github.com/dpjanes/iotdb-vocabulary (accessed on

12 May 2018).
30. Iotdb-Models. Available online: https://github.com/dpjanes/iotdb-models (accessed on 12 May 2018).
31. Gyrard, A.; Datta, S.K.; Bonnet, C. Cross-Domain Internet of Things Application Development: M3

Framework and Evaluation. In Proceedings of the 3rd International Conference on Future Internet of
Things and Cloud, Rome, Italy, 24–26 August 2015; pp. 9–16.

32. Schachinger, D.; Kastner, W. Semantic interface for machine-to-machine communication in building
automation. In Proceedings of the IEEE 13th International Workshop on Factory Communication Systems
(WFCS), Trondheim, Norway, 31 May–2 June 2017.

33. Fiware-Iot-Discovery-sr. Available online: https://github.com/UniSurreyIoT/fiware-iot-discovery
(accessed on 10 May 2018).

34. Semantic Annotator. Available online: https://github.com/komi786/SemanticAnnotator (accessed on
20 May 2018).

35. Aura-Middleware. Available online: https://github.com/AuraMiddleware/aura-middleware (accessed on
20 May 2018).

36. Blackstock, M.; Lea, R. IoT interoperability: A hub-based approach. In Proceedings of the International
Conference on the Internet of Things, Cambridge, MA, USA, 6–8 October 2014; pp. 79–84.

37. Kuang, Y. Communication between PLC and Arduino Based on Modbus Protocol. In Proceedings of the 4th
International Conference on Instrumentation and Measurement, Computer, Communication and Control,
Harbin, China, 18–20 September 2014; pp. 370–373.

38. Eclipse Paho. Available online: https://www.eclipse.org/paho/ (accessed on 20 May 2018).
39. Moquette. Available online: https://github.com/andsel/moquette (accessed on 25 May 2018).
40. Command Line Tools Written in C for the MQTT-SN (MQTT For Sensor Networks) protocol. Available

online: https://github.com/njh/mqtt-sn-tools (accessed on 25 May 2018).
41. Constrained Application Protocol (CoAP) Draft-Ietf-Core-Coap-08. Available online: https://datatracker.

ietf.org/doc/draft-ietf-core-coap/ (accessed on 25 November 2017).
42. Unified Architecture. Available online: https://opcfoundation.org/about/opc-technologies/opc-ua/

(accessed on 25 May 2018).
43. Eclipse TinyDTLS. Available online: https://projects.eclipse.org/projects/iot.tinydtls (accessed on

30 May 2018).
44. Eclipse Scandium. Available online: http://www.eclipse.org/californium (accessed on 30 May 2018).
45. Mbed TLS. Available online: https://tls.mbed.org/ (accessed on 30 May 2018).

https://github.com/noble/noble
https://github.com/noble/bleno
http://nfc-tools.org/
http://dx.doi.org/10.1016/j.icte.2017.03.004
http://docs.loraserver.io/lora-gateway-bridge/
http://dx.doi.org/10.1109/COMST.2017.2652320
https://www.easy-iot.cn/
https://github.com/softbaddog/iot-codelabs
https://www.iso.org/standard/69286.html
https://www.iso.org/standard/69286.html
http://cbor.io/
https://google.github.io/flatbuffers/
https://developers.google.com/protocol-buffers/
https://github.com/dpjanes/iotdb-vocabulary
https://github.com/dpjanes/iotdb-models
https://github.com/UniSurreyIoT/fiware-iot-discovery
https://github.com/komi786/SemanticAnnotator
https://github.com/AuraMiddleware/aura-middleware
https://www.eclipse.org/paho/
https://github.com/andsel/moquette
https://github.com/njh/mqtt-sn-tools
https://datatracker.ietf.org/doc/draft-ietf-core-coap/
https://datatracker.ietf.org/doc/draft-ietf-core-coap/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://projects.eclipse.org/projects/iot.tinydtls
http://www.eclipse.org/californium
https://tls.mbed.org/

Future Internet 2018, 10, 105 26 of 27

46. Eclipse hawkBit. Available online: https://github.com/eclipse/hawkbit (accessed on 30 May 2018).
47. Rao, S.; Chendanda, D.; Deshpande, C.; Lakkundi, V. Implementing LWM2M in constrained IoT devices.

In Proceedings of the IEEE Conference on Wireless Sensors, Melaka, Malaysia, 24–26 August 2015; pp. 52–57.
48. Betwixt. Available online: https://github.com/zubairhamed/betwixt (accessed on 30 May 2018).
49. Wakaama. Available online: https://eclipse.org/wakaama/ (accessed on 30 May 2018).
50. AwaLWM2M. Available online: https://github.com/ConnectivityFoundry/AwaLWM2M (accessed on

30 May 2018).
51. Eclipse Leshan. Available online: https://eclipse.org/leshan/ (accessed on 30 May 2018).
52. Eclipse Kura. Available online: https://www.eclipse.org/kura/ (accessed on 30 June 2017).
53. Zetta. Available online: http://www.zettajs.org/ (accessed on 30 June 2017).
54. Lee, J.C.; Jeon, J.H.; Kim, S.H. Design and implementation of healthcare resource model on IoTivity platform.

In Proceedings of the International Conference on Information and Communication Technology Convergence,
Jeju, Korea, 19–21 October 2016; pp. 887–891.

55. Costa, D.; Mingozzi, E.; Tanganelli, G.; Vallati, C. An AllJoyn to CoAP bridge. In Proceedings of the IEEE 3rd
World Forum on Internet of Things, Reston, VA, USA, 12–14 December 2016; pp. 395–400.

56. Kim, J.; Lee, J.W. An open service framework for the Internet of Things. In Proceedings of the IEEE World
Forum on Internet of Things (WF-IoT), Seoul, Korea, 6–8 March 2014; pp. 89–93.

57. SiteWhere LLC., SiteWhere System Architecture. Available online: http://documentation.sitewhere.org/
architecture.html (accessed on 30 May 2018).

58. Thinger.io. Available online: https://www.thinger.io/ (accessed on 10 June 2018).
59. Kodali, R.K.; Sundeep, V.; Gorantla, K. RESTful Motion Detection and Notification using IoT. In Proceedings

of the International Conference on Computer Communication and Informatics (ICCCI), Coimbatore,
Tamilnadu, India, 4–6 January 2018; pp. 1–5.

60. Zander, J. Smart emergency response system. In Proceedings of the TENCON 2017–2017 IEEE Region 10
Conference, Penang, Malaysia, 5–8 November 2017; pp. 712–717.

61. WSO2IoT. Available online: https://wso2.com/iot (accessed on 10 June 2018).
62. ThingsBoard. Available online: https://thingsboard.io/ (accessed on 12 June 2018).
63. Alavi, S.A.; Rahimian, A.; Mehran, K.; Alaleddin, J.A.M. An IoT-Based Data Collection Platform for

Situational Awareness-Centric Microgrids. In Proceedings of the IEEE Canadian Conference on Electrical &
Computer Engineering (CCECE), Quebec City, QC, Canada, 13–16 May 2018.

64. Paolis, L.T.D.; Luca, V.D.; Paiano, R. Sensor Data collection and analytics with ThingsBoard and Spark
Streaming. In Proceedings of the IEEE Workshop on Environmental, Energy, and Structural Monitoring
Systems (EESMS), Salerno, Italy, 21–22 June 2018; pp. 1–6.

65. DeviceHive. Available online: https://devicehive.com/ (accessed on 15 June 2018).
66. Lyaskov, M.; Spasov, G.; Petrova, G. A practical implementation of smart home energy data storage and

control application based on cloud services. In Proceedings of the 2017 XXVI International Scientific
Conference Electronics (ET), Sozopol, Bulgaria, 13–15 September 2017; pp. 1–4.

67. Shopov, M.P. An M2M solution for smart metering in electrical power systems. In Proceedings of the 39th
International Convention on Information and Communication Technology, Electronics and Microelectronics,
Opatija, Croatia, 30 May–3 June 2016; pp. 1141–1144.

68. ThingSpeak. Available online: https://thingspeak.com/ (accessed on 15 June 2018).
69. AshifuddinMondal, M.; Rehena, Z. IoT Based Intelligent Agriculture Field Monitoring System.

In Proceedings of the 8th International Conference on Cloud Computing, Data Science & Engineering
(Confluence), Noida, India, 11–12 January 2018; pp. 625–629.

70. Mendiratta, S.; Dey, D.; Rani Sona, D. Automatic car parking system with visual indicator along with IoT.
In Proceedings of the International Conference on Microelectronic Devices, Circuits and Systems, ICMDCS
2017, Vellore, India, 10–12 August 2017; pp. 1–3.

71. VSCP (Very Simple Control Protocol). Available online: http://www.vscp.org/ (accessed on 15 June 2018).
72. Macchina.io. Available online: https://www.macchina.io/ (accessed on 15 June 2018).
73. T6IotApp. Available online: https://api.internetcollaboratif.info/ (accessed on 15 June 2018).
74. Distributed Services Architecture for IoT (DSA). Available online: http://iot-dsa.org/ (accessed on

16 June 2018).
75. Kaa. Available online: https://www.kaaproject.org/ (accessed on 16 June 2018).

https://github.com/eclipse/hawkbit
https://github.com/zubairhamed/betwixt
https://eclipse.org/wakaama/
https://github.com/ConnectivityFoundry/AwaLWM2M
https://eclipse.org/leshan/
https://www.eclipse.org/kura/
http://www.zettajs.org/
http://documentation.sitewhere.org/architecture.html
http://documentation.sitewhere.org/architecture.html
https://www.thinger.io/
https://wso2.com/iot
https://thingsboard.io/
https://devicehive.com/
https://thingspeak.com/
http://www.vscp.org/
https://www.macchina.io/
https://api.internetcollaboratif.info/
http://iot-dsa.org/
https://www.kaaproject.org/

Future Internet 2018, 10, 105 27 of 27

76. Cruz Huacarpuma, R.; de Sousa Junior, R.; de Holanda, M.; de Oliveira Albuquerque, R.; García Villalba, L.
Distributed Data Service for Data Management in Internet of Things Middleware. Sensors 2017, 17, 977.
[CrossRef] [PubMed]

77. PlatformIO. Available online: https://platformio.org/ (accessed on 20 June 2018).
78. Mainflux. Available online: https://www.mainflux.com/ (accessed on 20 June 2018).
79. Patchwork. Available online: http://patchwork-toolkitgithub.io/ (accessed on 20 June 2018).
80. Eclipse Kapua. Available online: https://www.eclipse.org/Kapua/ (accessed on 25 June 2018).
81. Fortino, G.; Savaglio, C.; Zhou, M. Toward opportunistic services for the industrial Internet of Thing.

In Proceedings of the 13th IEEE Conference on Automation Science and Engineering (CASE), Xi’an, China,
20–23 August 2017; pp. 825–830.

82. Esquiagola, J.; Costa, L.; Calcina, P.; Fedrecheski, G.; Zuffo, M. Performance Testing of an Internet of Things
Platform. In Proceedings of the 2nd International Conference on Internet of Things, Big Data and Security,
Porto, Portugal, 24–26 April 2017; pp. 309–314.

83. Babovic, Z.; Protic, J.; Milutinovic, V. Web Performance Evaluation for Internet of Things Applications.
IEEE Access 2016, 4, 6974–6992. [CrossRef]

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s17050977
http://www.ncbi.nlm.nih.gov/pubmed/28448469
https://platformio.org/
https://www.mainflux.com/
http://patchwork-toolkitgithub.io/
https://www.eclipse.org/Kapua/
http://dx.doi.org/10.1109/ACCESS.2016.2615181
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Open Source Ecosystem for the IoT
	Open Source IoT Technology for Device Access
	Short-Distance Communication
	Long-Distance Communication
	Automatic Access of Devices

	Data Management Requirements
	Data Representation
	Data Semantic Processing
	Resource Description

	Application Layer Transmission Requirements
	Modbus Protocol
	MQTT Protocol
	CoAP Protocol
	OPC-UA Architecture

	Security and Privacy Protection Requirements
	IoT Device Management
	Eclipse hawkBit
	LwM2M Technology

	Application Support Layer (IoT Middleware)
	Open Source Middleware Platforms
	Comparison of Open Source Middleware

	Comparison between IoT Requirements and Open Source System

	Architecture of the Integrated IoT Application Development Platform
	The IoT Application Development Platform
	Characteristics of the IoT Application Development Platform

	Evaluation
	System Function
	System Performance Analysis

	Conclusions
	References

