
future internet

Article

Structured Data REST Protocol for End to End
Data Mashup

Prakash Narayan Hardaha 1,* and Shailendra Singh 2

1 Barkatullah University Institute of Technology, Barkatullah University, Bhopal 462026, MP, India
2 Department of Computer Engineering & Applications, National Institute of Technical Teacher’s Training

and Research, Bhopal 462002, MP, India; ssingh@nitttrbpl.ac.in
* Correspondence: prakashnarayan007@gmail.com

Received: 1 August 2018; Accepted: 12 September 2018; Published: 4 October 2018
����������
�������

Abstract: Due to the exponential growth of the data and its services, visiting multiple webs/apps by
a user raises three issues—(1) consumption of extra bytes; (2) time killing process of surfing inside the
webs/apps; (3) tedious task of remembering address of webs/apps with their credentials. The data
mashup is a set of techniques and user-friendly approaches which not only resolves above issues but
also allows ordinary user to fetch required data from multiple disparate data sources and to create the
integrated view in his defined digital place. In this paper, we have proposed an extension of existing
REST protocol called Structured Data REST (SDRest) protocol and user-friendly novel approach
which allows even ordinary users to develop end to end data mashup, using the innovative concept
of Structured Data Mashup Box (SDMB) and One Time Configuration (OTC)-Any Time Access (ATA)
models. Our implementation shows that pre-mashup configuration can easily be performed by an
ordinary user and an integrated user interface view of end user data mashup can be created without
any technical knowledge or programming. We have also evaluated the proposed work by comparing
it with some of the related works and found that the proposed work has developed user friendly
configurable approach using the current state of the art techniques to involve not only the ordinary
user but also the mashup service provider and the data service provider to develop public, private
and hybrid data mashup.

Keywords: structured data; REST protocol; structured data mashup box; one-time configuration
model; any time access model; end to end data mashup; ordinary user; mashup service provider;
data service provider

1. Introduction

In the current state of technology, not only the data and its services but also their users are
increasing day by day. A user is required to visit multiple webs/apps using some credentials to
access the personal/private information. In order to access public information, a user searches
the appropriate webs/apps and explores them to reach to the information as per their need. It is
obvious that instead of searching and visiting the multiple webs/apps, the users would like to
view all their needed information at one digital place, which could be his personal web page, email
account, social media page, desktop application or their mobile screen, etc. The data mashup is a
set of techniques and user-friendly approaches to allow ordinary users to fetch the required data
from multiple data sources and facilitates them to mashup the data and view them together in a
single digital place. The industries and researchers are continuously working on the development of
user-friendly approach for performing the data mashup after fetching the hybrid kind of data from
the disparate data sources even by ordinary users. Mashup users can be divided into two types of
groups namely End User Developer (EUD)/End User Programmer (EUP) [1,2] and Ordinary User

Future Internet 2018, 10, 98; doi:10.3390/fi10100098 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
http://dx.doi.org/10.3390/fi10100098
http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com/1999-5903/10/10/98?type=check_update&version=1

Future Internet 2018, 10, 98 2 of 37

(OU) [3]/naive End User (EU) who are supposed to use mashup applications according to their skills.
The end user developer possesses some technical skills and can use mashup tools and techniques to
develop mashup application for himself but the ordinary user does not have any technical skill and
can use only those mashup tools and techniques which expect simple skills like internet browsing,
mouse click, key press or filling the web forms, etc.

Most of the mashup tools expect some technical skills from users and are suitable for end user
developers only. Initially, the mashup development was started to fulfill the need of ordinary users
but later on, the development of mashup was diverted to make the mashup tools targeted for end
user developer. The proposed work targets to ordinary user and we will use the term ‘End User
(EU)’ or ‘user’ for ordinary user who does not have any technical skill. Other than end user, there
are two other major stakeholders called Mashup Service Provider (MSP) and Data Service Provider
(DSP) involved in mashup development [4]. The details about MSP and DSP and their roles have been
explained later in this paper. Generally, data mashup performed by end user includes seven basic
steps—(1) determining its own digital place; (2) defining requirement of the data to be mashed up in a
data mashup box; (3) searching appropriate MSPs/DSPs for mashup services and/or data services;
(4) configuring each mashup box for mashing up data from relevant services; (5) fetching required
data from multiple MSPs/DSPs; (6) mashing up the data, received from MSPs/DSPs into mashup box
and injecting them into pre-determined/customized view; (7) showing the integrated view of mashed
up data to the end user. Unlike other research works on data mashup, this paper covers all the steps
required in the data mashup development as mentioned above.

The proposed work is based on the standard REpresentational State Transfer (REST) protocol [5]
to perform end to end data mashup which includes all stakeholders (EU, MSP, DSP) for performing
data mashup using mashup communication between any two stakeholders (EU and MSP, EU and
DSP, MSP and MSP or MSP and DSP). Data mashup techniques and approaches have not become
as popular as email till now because of the less utilization of the standard communication protocols
for mashup communication and the lack of generalized user-friendly approaches. Any mashup tool
and technique cannot become popular among ordinary users until it provides user-friendly approach,
which does not expect any technical skills from users and uses the general but secured communication
protocol for performing the data mashup.

This paper focuses on SDRest protocol to develop user-friendly mashup approach, which allows
ordinary users to define requirement of the data to be mashed up, fetch and integrate the needed
Structured Data (SD) from multiple data sources at their own defined digital place without any
programming and facilitate them to view the integrated UI in a single screen.

The rest of the paper is organized as follows. The Section 2 covers the related literature review
and the major challenges. The Section 3 clearly mentions the motivation behind the proposed work
and sets the goal. The Section 4 describes our contributions in brief. Section 5 explains the model
and architecture of the proposed Structured Data Rest Protocol (SDRest) and various algorithms
required in different stages of the data mashup development. The Section 6 explains the algorithms
used by end user and mashup service provider for performing data mashup. The Section 7 shows
the implementation of the proposed work by developing the data mashup service network for three
services which explores the user-friendly approach for performing the pre-mashup configuration and
end user data mashup by an ordinary user. The Section 8 evaluates the proposed work by comparing
it with some other related works based on some important parameters needed to evaluate each step of
the mashup development and at last the conclusion and the future work.

2. Related Work and Challenges

The data mashup is useful in terms of the direct involvement of ordinary users for developing the
information system. It will not only increase the user’s satisfaction but also will reduce the network
traffic and overcome so many challenges of IT system developers. Many researchers and market
players developed many mashup tools and techniques based on various approaches and also got

Future Internet 2018, 10, 98 3 of 37

success up to certain level but the actual aim for developing mashup by ordinary user without any
programming/scripting in user friendly manner is still ahead. According to [6,7] widget approaches
generally become popular among ordinary users because these include drag and drop like feature to
mashup the desired data. In this approach, EU selects a widget, drops it onto a canvas, customizes
the widget, and species how to connect a widget to other widgets by creating a connected graph [8].
Reference [9] proposed a mashup model that enables the integration at the presentation layer of
“actionable UI components” which are equipped with both data visualization templates and a proper
logic consisting of functions to manipulate the visualized data. References [1,8,10] discussed mashup
technologies of the market players which include Google Mashup Editor, IBM Mashup Center, Intel
MashMaker, Microsoft Popfly, Yahoo Pipes etc. Google Mashup editor [8] was the simple graphical
editor to create AJAX based application with no plug-ins required and used to pull data from RSS
feeds and Atoms. IBM Mashup Center [8] allows users to create widgets and to wire them to assemble
pages to create mashup. Intel® Mash Maker [11] uses browser plug-ins which allows the user to see
information from other websites in a single page. It learns new mashups by simply copy and paste
method which can further be used to suggest other users. Yahoo! Pipes [10,12] allows to mix popular
data feeds using a visual editor to create data mashup. Yahoo pipe consists of various data sources like
RSS, Atom, XML etc. and defines the set of operations to perform some task. It was providing visual
tools to connect one widget to other widget in such a way that output of one widget was input to other
and so on. Three problems as identified in widget approaches include locating the appropriate widget,
customization of some widgets expects knowledge of programming and most of the mashup tools are
not complete in all respect to perform independent mashup. FlexMash [13] is an approach and tool
implemented for flexible data mashups based on pattern-based model transformation and subdivided
the data mashup into modeling, transformation, execution and presentation level.

Another approach is the End User Programming (EUP) [14,15] approach which allows end users
to write and/or edit various script codes. Some tools provide the visual editor to copy and paste
the script to integrate the data from various data resources but simply copy and paste of the script
is inadequate because it requires re-scripting, modification and debugging as per situational need.
Looking to the need of the ordinary user, programming by example/demonstration approach [16] was
designed which allows them to just perform simple drag and drop operations with instant output as
an example so as to teach the mashup framework to do the remaining task automatically. According to
this, five steps are required to perform mashup i.e., data retrieving (data extraction from web sites),
source modeling (mapping between source data and destination data model), data cleaning (dealing
with data formats, spelling etc.), data integration (combining the data from multiple sources) and
data visualization (integrated UI). They used the “drag and drop” approach from a web page to
extract web data based on Document Object Model (DOM) by allowing ordinary user to try with an
example. It was really simple approach for normal user but it has limitations like extracting data from
website, time consuming process of data cleaning and its limitation on data sources (suitable for a
well-structured web page only).

Web data extraction [17] has been the focus of researchers, but still remains challenging because a
web page may contain the data in structured, semi-structured or unstructured format. Reference [18]
explained extracting Web API Specifications from HTML documentation but due to uncertainty on
structure of the web page, the approach of data extraction from web page can never be reliable.
Another problem with web data extraction is to extract data of deep web pages because a deep page
is generated when some inputs are given through some web form. Reference [19] present discovery
algorithms which can generate optimal plans by applying strategies and can play a critical role in
conducting further API composition which follows a graph-based approach. Reference [20] presented
the Linked Web APIs dataset which supports API consumers and API Provider in the process of
discovery, selection and use of Web APIs. Spread sheet approach [21,22] is another UI approach which
aims to provide a spreadsheet-like view to mash up the data and is becoming popular because most of
the ordinary users are familiar with spread sheet. The RESTful architectural model is helpful for widget

Future Internet 2018, 10, 98 4 of 37

development for mashup purpose because of its nature of portability, scalability and multi-platform
support [5]. Reference [23] presented process data widget approach to assist designers by configuring
RESTful services but this is also not suitable for ordinary user because ordinary user can not define
his requirement in terms of web services. Service oriented approaches [24,25] involve selection and
composition of various services made available by MSP/DSP to the end user. Because of increasing
popularity and demands of cloud computing, cloud mashup service approaches [24] are also being
experimented to promote Mashup as a Service (MaaS)/Data as a Service (DaaS). In database driven
approach, reference [26] proposed the service data model for adaptation of heterogeneous web services,
the service relation model for representation and refinement of data interaction between services, and
the service process graph for describing business logics of mashup applications. Another approach is
the linked data mashup approach [27,28] which uses semantic web technology based on linked data
for combining, aggregating, and transforming data from heterogeneous data resources to build linked
data mashups.

The followings are the major challenges found during study on the data mashup.

2.1. Involvement of Stakeholders

Ordinary users are the actual targeted users of the mashup hence their involvement cannot be
avoided. In mashup applications, users are given freedom to fetch data from multiple data sources and
to perform the data mashup at one digital place, most preferably their personal page/desktop or mobile
application. In order to provide the data to its users, data sources should have service interfaces and
user-friendly access mechanism so that even an ordinary user can use it. Generally, MSP does not own
the user’s data but provides mashup services or tools to its users to mashup the data at their end. Based
on various skills, reference [21] divided mashup users into three categories namely developer, power
user and casual user. The developer should be familiar with web technologies and programming,
power user has no programming skills but has functional knowledge of specific tools but casual user
or ordinary user should have the skills to use the web browser only. Our work is completely concerned
with casual user or ordinary user. Reference [29] discussed the mashup ecosystems consisting of
mashup authors, service providers and mashup users. Thus, mashup has three major stakeholders
called Mashup Service Provider (MSP), Data Service Provider (DSP) and Ordinary User (OU). While
performing the mashup, the ordinary users generally face problems like high learning curve of the
tools, expectation of some technical skills from end user, dependency on mashup developers for
processing of mashup and approaches, the reliability of services and lack of user-friendly mechanism
of searching the correct data sources, etc. Involvement of MSPs as intermediate between actual end
users and DSPs always raise issues such as disclosure of private data and their security, which have
been mentioned in Section 2.3. Involvement of end users and DSPs are compulsory in data mashup
but the involvement of MSP is optional.

2.2. Searching the Right MSP/DSP

Data services as well as mashup services, are increasing day by day and their users too. Due to an
exponential growth of the services, searching the right MSP/DSP is becoming the challenging task for
users. Each MSP/DSP publishes one or more services and thus searching the appropriate service of that
MSP/DSP again is tedious and time consuming. Reference [3] designed and implemented lightweight
services mashup platform for service creations by ordinary user without expecting specific computing
knowledge. Reference [30] recommended the framework for data service mashup, based on several
mashup patterns and the corresponding recommendation method. Reference [31] proposed a novel
framework for service discovery which exploits social media information and different methods to
measure social factors with weight learning algorithm to learn an optimal combination of the measured
social factors. Reference [32] proposed a novel category-aware service clustering and distributed
recommending method for automatic mashup creation and developed a category-aware distributed
service recommendation model, which is based on a distributed machine learning framework.

Future Internet 2018, 10, 98 5 of 37

Reference [33] explored API recommendation for mashups in the reusable composition context
with the goal of helping developers to identify the most appropriate APIs for their composition tasks
and proposed a probabilistic matrix factorization approach to solve the recommendation problem
and enhance the recommendation diversity. Reference [24] suggested the MapReduce in skyline
query processing for optimizing composite web services in large scale cloud mashup applications
and proposed a block-elimination-based partitioning approach to shorten the process. Reference [34]
proposed a service-oriented approach to generate and manage mashups and also developed the
mashup services system to support users to create, use, and manage mashups with little or no
programming effort. All these approaches were developed for service discovery for creating the
mashup but cover only one aspect of the whole life cycle of the mashup development and suitable
for MSP/EUD but not for ordinary users because of some learning expectation and the complexity.
Searching the mashup or data services can be automatic, manual or semi-automatic. The method for
searching of the MSP/DSP and then selecting appropriate service is assumed to be manual in the
current work. There is no need of searching the DSP when a user would like to mashup his own
private data because its source is already known to him but it still requires selection of the right data
service among all the services available at DSP. In case of public data mashup, users are required to
search the right MSP/DSP and select the appropriate service thereafter.

2.3. Data Privacy and Security

The data mashup involves ordinary user as well as mashup service providers hence data privacy
and security has become the major concern of the researchers and the industries. Fung et al. [35]
proposed service-oriented architecture to resolve privacy problem in real life mashup applications.
According to it, there is always chance of revealing sensitive data of a user when third party MSP
is involved in data mashup. According to [36], REST is an abstract model for designing large-scale
distributed systems and can be adopted with suitable technologies of any kind, such as HTTP, CoAP,
or RACS, to build highly scalable service systems such as the web, IoT, SOA, or cloud applications.

Reference [37] developed an ID-based authentication algorithm to achieve a secure RESTful web
service using Boneh–Franklin ID-based encryption and REST URI which enables server to handle
client’s request by acknowledging client’s URI rather than storing client’s entire status for stateless
REST. Reference [38] proposed an extended UsernameToken-based approach for REST-style web
service by adding UsernameToken and secondary password into the HTTP header which makes
current security aspect of REST-style web services more secured. According to [39], instead of choosing
SOAP, the service providers nowadays are shifting to REST-based services but the same time it is
vulnerable to security. In our work, we have used the concept of transactions of mashup keys and
uniquely identified private Mashup Configuration Service Identifier (MCSI) and private Mashup Data
Service Identifier (MDSI) for private data mashup to make the mashup communication secured (See
Section 5.10).

2.4. Data Refreshing

Data mashup not only fetches the data from multiple data sources but also facilitate the end user
to integrate and view mashed up data in a single screen. Data to be mashed up are fetched instantly
by end users from MSP and DSP to get refreshed data, every time they visit their own mashed up
page/screen. According to [40], the refresh rate of the data made available to the user, depends on
pull or push strategies used for data mashup. Based on the pull/push strategies of request-response
pattern [41,42], the data mashup can be divided into two types, i.e., Pull Data Mashup and Push Data
Mashup. In pull data mashup, the data are fetched by end user on each and every request sent to
MSP/DSP hence refresh rate of mashed up data is high and it may also be called live data mashup.
However, in push data mashup, data are sent by MSP/DSP to end user, whenever there are some
updates on it. The refresh rate of push data mashup is not as high as pull data mashup but it consumes
fewer bytes of the network traffic as compared to pull data mashup. The data mashup approach used

Future Internet 2018, 10, 98 6 of 37

in the proposed work is based on pull data mashup which is highly recommended for public data
mashup but it can also be implemented for push data mashup. The public data mashup and private
data mashup are two different types of data mashup which can be discriminated by their nature of
data accessibility.

2.5. Data Mapping

Data mapping is the process needed to identify the correspondences between the elements
of the source data model and the internal data model [43]. Reference [44] discussed general data
mapping problem, which addresses two related data exchange scenarios. Like other steps of mashup
development, the data mapping can also be manual, semi-automatic or automatic. Reference [45]
presented the schema, data and query mapping algorithms for storing xml into relational database.
Reference [46] proposed method to solve schema mapping and data mapping both using mutual
enhancement mechanism and also described how prior knowledge of the schema mapping reduce
the complexity for the comparison between two data attributes. In data mashup, every stakeholder
(OU/MSP/DSP) should be independent to develop its own internal data schema and hence data
mapping has become the most important task while developing the data mashup. There is a need
of strategies to specify the correspondences between their internal data model and the desired data
sources [40]. Each stakeholder defines not only the different attributes but also different data types and
their formats independently which makes it more challenging while data mapping. In our proposed
work, SDXMapping algorithm (See Section 5.9) has been successfully developed for performing data
mapping between the data models of any two stakeholders of data mashup. SDXMapping works
as a bridge between them and allows to create data mapping based on the semantical meaning of
the attributes.

2.6. Standard Communication Protocol

Mashup communication is an important process to complete the life cycle of the data mashup
development. Data mashup techniques cannot be generalized and secured until the standard
communication protocol is commonly used. The proposed work uses the standard REST protocol
for communication purpose but other standard protocols like SMTP, HTTP etc. can also be used
for data mashup. References [47–49] discussed the use of REST/web services for data fetching,
integration and composition of data mashup and services. According to [47], REST has features of
light weight, scalability, multiple data format support, superior performance and popularity which
have made it a better approach for web service composition and communication. Reference [48]
focused on the need of service composition using REST and discussed six composition issues like
coordination, transaction, context, conversation modeling, execution monitoring and infrastructure.
Reference [49] presented overview of the life cycle of web services composition and also discussed
standards, research prototypes, and platforms with several research opportunities and challenges for
web services composition.

2.7. Data Accessibility

Data accessibility has been the major concern for all its stakeholders. MSPs/DSPs publish
their services for accessibility of public data and private data separately. Data resides in multiple
and heterogeneous data sources are accessed using web APIs, REST, SOAP, HTTP and XML RPC
techniques, RSS Feeds, Atom Feeds, SOAP Services, Restful Web Services, JSON, CSV, Web Page and
Annotated Web Pages etc. [1,8]. In our proposed work, the Mashup Configuration Service Identifier
(MCSI) and Mashup Data Service Identifier (MDSI) (See Sections 5.1, 5.2 and 5.10) have to be accessed
for pre-mashup configuration before performing the actual data mashup. In private data mashup,
MCSI and MDSI are accessible to only authorized users, which make it more secured.

Future Internet 2018, 10, 98 7 of 37

3. Motivational Scenario

When users are given facility of data mashup at their defined digital place, they will definitely
avoid visits of multiple webs/apps and thus network traffic would be reduced up to the certain level.
Data mashup fetches the required data from multiple data sources, does the mashup and presents
the integrated view to its users. For example, in a public data mashup, a student would like to see
all the admission notices of his interested universities/institutes in his personal mashed up page.
In case of private data mashup, he would like to see the transaction details of all his bank accounts,
review status of his research papers submitted to various journals and results of his all interviews of
various recruiters together in a single screen using Single Sign-on (SSO) policy. In such cases, instead
of information like various codes/scripts, advertisement, navigation links, menus, images etc., only
useful data would be flown in the network.

Above discussion for performing the public and private data mashup together and presenting
their views in a single screen, related to particular user is the main motivation behind this work.
The goals of this work are summarized as follows:

• To provide the public and private both kind of information related to particular user which are
scattered throughout the internet, to his/her defined digital location (web/desktop or mobile)

• To implement the single sign-on (SSO) scheme for private data mashup
• To enhance the network performance by allowing the flow of needed data only
• To develop the data mashup technique having user friendly approach for end to end data mashup

using standard REST protocol for mashup communication.

4. Our Contributions

As far as the authors know, this work is the first effort which has introduced the innovative concept
of Structured Data REST (SDRest) protocol which uses existing REpresentational State Transfer (REST)
protocol for end to end data mashup using the concept of Structured Data Mashup Box (SDMB) (See
Section 5.4) and SDX Mapping (See Section 5.9). REST protocol has now become the general-purpose
protocol for communication between the web client and the server and has been effectively explored in
this work to develop the user-friendly approach to perform data mashup by an ordinary user. REST is
universally accepted and hence its implementation for public and private data communication for data
mashup would not only be effective but may also be generalized for data mashup. Our contributions
in this paper are summarized as follows.

4.1. Contribution#1

Involvement of all the stakeholders and the development of hybrid data mashup are two most
important achievements of the proposed work. The data mashup can be classified as direct data
mashup, intermediate data mashup and hybrid data mashup, based on mashup communication
among stakeholders for performing data mashup. In the direct data mashup, end user directly
communicates with DSPs, which are the actual data sources and highly recommended for private data
mashup. In intermediate data mashup, MSPs are placed in between end user and the DSPs and is used
for public data mashup but may cause of security breach if it is used for private data mashup. We
have developed user friendly approach to develop hybrid data mashup in such a way that an ordinary
user can perform mashup to get the private data directly from the original data source without any
intervention of MSP and can perform public data mashup through MSP/DSP. The proposed work
recommends the standard REST protocol for communication between various stakeholders for both
the public and private data mashup. Hybrid data mashup shown in Figure 1 is most suitable for EU
because it not only involves MSPs for public data mashup but also allows mashing up the private data
directly from DSPs. In Figure 1, EU#01 is connected with MSP#01 and DSP#03 directly. MSP#01 is
communicating with DSP#01 and DSP#02 for providing mashed up data to EU#01.

Future Internet 2018, 10, 98 8 of 37

Future Internet 2018, 10, x FOR PEER REVIEW 7 of 36

status of his research papers submitted to various journals and results of his all interviews of various
recruiters together in a single screen using Single Sign-on (SSO) policy. In such cases, instead of
information like various codes/scripts, advertisement, navigation links, menus, images etc., only
useful data would be flown in the network.

Above discussion for performing the public and private data mashup together and presenting
their views in a single screen, related to particular user is the main motivation behind this work. The
goals of this work are summarized as follows:

• To provide the public and private both kind of information related to particular user which are
scattered throughout the internet, to his/her defined digital location (web/desktop or mobile)

• To implement the single sign-on (SSO) scheme for private data mashup
• To enhance the network performance by allowing the flow of needed data only
• To develop the data mashup technique having user friendly approach for end to end data

mashup using standard REST protocol for mashup communication.

4. Our Contributions

As far as the authors know, this work is the first effort which has introduced the innovative
concept of Structured Data REST (SDRest) protocol which uses existing REpresentational State
Transfer (REST) protocol for end to end data mashup using the concept of Structured Data Mashup
Box (SDMB) (See Section 5.4) and SDX Mapping (See Section 5.9). REST protocol has now become
the general-purpose protocol for communication between the web client and the server and has been
effectively explored in this work to develop the user-friendly approach to perform data mashup by
an ordinary user. REST is universally accepted and hence its implementation for public and private
data communication for data mashup would not only be effective but may also be generalized for
data mashup. Our contributions in this paper are summarized as follows.

4.1. Contribution#1

Involvement of all the stakeholders and the development of hybrid data mashup are two most
important achievements of the proposed work. The data mashup can be classified as direct data
mashup, intermediate data mashup and hybrid data mashup, based on mashup communication
among stakeholders for performing data mashup. In the direct data mashup, end user directly
communicates with DSPs, which are the actual data sources and highly recommended for private
data mashup. In intermediate data mashup, MSPs are placed in between end user and the DSPs and
is used for public data mashup but may cause of security breach if it is used for private data mashup.
We have developed user friendly approach to develop hybrid data mashup in such a way that an
ordinary user can perform mashup to get the private data directly from the original data source
without any intervention of MSP and can perform public data mashup through MSP/DSP. The
proposed work recommends the standard REST protocol for communication between various
stakeholders for both the public and private data mashup. Hybrid data mashup shown in Figure 1 is
most suitable for EU because it not only involves MSPs for public data mashup but also allows
mashing up the private data directly from DSPs. In Figure 1, EU#01 is connected with MSP#01 and
DSP#03 directly. MSP#01 is communicating with DSP#01 and DSP#02 for providing mashed up data
to EU#01.

Figure 1. Hybrid Data Mashup. Figure 1. Hybrid Data Mashup.

4.2. Contribution#2

Data mashup includes the complete life cycle of application development but most of the
research works cover only one or two aspects of mashup development, not the whole life cycle
steps. The proposed work has been designed in such way, which includes the complete cycle of
mashup development from the requirement definition to the generation of integrated user interface
view by ordinary user, mashup service provider and data service provider. (See Steps 1 to 8 in the
Section 5.2).

4.3. Contribution#3

We have introduced the novel protocol called Structured Data REST (SDRest) protocol with
an innovative concept of Structured Data Mashup Box (SDMB) which would be used by mashup
stakeholders to store and/or forward the mashed-up data after applying filter and transformation
algorithm. SDMB is defined by the schema called Data Mashup Definition (DMD) (See Section 5.3)
and used to store the relevant data as per requirement specified by Data Service Consumer (DSC)
(See Section 5.1). The main contribution of proposed model is that it promotes the data mashup as
a structured data communication which can easily be used by an ordinary user to fetch data from
multiple data sources without any technical knowledge.

4.4. Contribution#4

We have proposed SDRest system architecture based on the model called OTC-ATA i.e., One Time
Configuration-Any Time Access model (See Section 5.2). The one-time configuration is performed by
data service consumer once only but ATA model can be used by data service consumer at any time to
access required data from MSP/DSP. OTC model uses the Mashup Configuration Service Identifier
(MCSI) for getting the attributes for configuration of structured data mashup box and ATA model
uses the Mashup Data Service Identifier (MDSI) to access the data as per mashup request. OTC is
the pre-mashup configuration process and ATA is post mashup operation performed by stakeholders.
We have implemented the REST protocol for all types of communication (public, private and hybrid)
between the stakeholders of the data mashup using both mashup strategies i.e., pull and push. Thus,
the proposed work covers all ranges of data mashup i.e., public, private, hybrid, and push and pull
data mashup as compared to previous works.

4.5. Contribution#5

Data mapping is the most important contribution of this paper. We developed the concept of the
configuration of data service consumer using MCAttributes (See Section 5.8) received through mashup
configuration service identifier to generate Structured Data eXchange Mapping (SDXMapping) which
is used further for ATA communication with MSP/DSP for performing data mashup.

4.6. Contribution#6

Mashup Data Service (MDS) which may also be called Structured Data as a Service (SDaaS) is
identified by mashup data service identifier (MDSI) and provides data to data service consumer on
request. Public MDSI and private MDSI both can be implemented using REST protocol for public

Future Internet 2018, 10, 98 9 of 37

data mashup and private data mashup respectively. It is also possible to discriminate the MDSI for
filtering the data service consumer’s request for providing the different data as per the need of the
data consumer. Structured Data Module (SDM) (See Section 5.13) has been implemented using JSON
format which makes the whole data mashup process easy and generalized for data communication
using REST.

The details of the proposed work have been described in the following sections. The sample
data like URLs, emails etc. used in this paper are intended for example purpose only and these have
nothing to do with the real-world entities.

5. Structured Data Rest Protocol

This section describes model and architecture of the proposed protocol along with algorithms
required to develop end to end data mashup.

5.1. The Model of Proposed SDRest Protocol

The model of the proposed protocol called Structured Data REST Protocol (SDRest) has been
shown in Figure 2 which is the extension of existing REpresentational State Transfer [5] (REST) protocol
for end to end data mashup. Here, the term “end to end data mashup” implies performing the data
mashup directly between any two stakeholders (EU, MSP and DSP).

Future Internet 2018, 10, x FOR PEER REVIEW 9 of 36

5. Structured Data Rest Protocol

This section describes model and architecture of the proposed protocol along with algorithms
required to develop end to end data mashup.

5.1. The Model of Proposed SDRest Protocol

The model of the proposed protocol called Structured Data REST Protocol (SDRest) has been
shown in Figure 2 which is the extension of existing REpresentational State Transfer [5] (REST)
protocol for end to end data mashup. Here, the term “end to end data mashup” implies performing
the data mashup directly between any two stakeholders (EU, MSP and DSP).

Figure 2. Model of Structured Data REpresentational State Transfer (REST) (SDRest) Protocol.

The SDRest protocol has two entities called Data Service Producer/Provider (DSP) and Data
Service Consumer (DSC). DSP will produce structured data which would be consumed by DSC
using the proposed SDRest protocol. In our proposed work, the entity which takes services of MSP
or DSP would be called DSC and entity which provides data services to DSC would be called DSP.
Thus, end user or MSP may play the role of DSC and MSP/DSP may play the role of DSP. In Figure 1,
EU#01 is DSC for MSP#01 and DSP#03 both and MSP#01 is further DSC for DSP#01 and DSP#02. The
DSP is required to publish the data services through Mashup Data Service Identifier (MDSI) so that
DSC can access the data in the structured format using standard REST protocol. Mashup Data
Service Identifier (MDSI) is the unique REST URI used by DSC to fetch the required data from DSP.
The major contribution in this model is introducing the concept of one or more Structured Data
Mashup Box (SDMB) which would be used by Data Service Consumer (DSC) to view, store or
forward required mashed up data.

The data service consumer as end user will use Structured Data Mashup Box (SDMB) to store
and view the required mashed up data whereas data service consumer as MSP will perform mashup
on the data received from various DSPs/MSPs and forward it to respective data service consumer.
Further, the group of SDMBs called End User Data Mashup (EUDM) would be explored by end user
to see the integrated UI view of mashed up data (fetched from multiple MSPs/DSPs) in a single
screen which is the main objective of the proposed work. According to our proposed model, DSC
(the REST client) will read all the Structured Data Records (SDRs) made available by DSP through
Mashup Data Service Identifier (MDSI) and filter component will parse each SDR to check whether it
is a valid SDR or not. Transformation component will transform each valid SDR into proper format
so that it can be populated into Structured Data Mashup Box. The structured data records, which are
successfully populated into SDMB would be called Mashed up Data Records (MDRs).

Valid SDR would be transformed and populated into appropriate SDMB at DSC’s end using
proposed algorithm (See Section 5.15) whereas invalid SDRs would be ignored. Cloud computing
paradigm called Structured Data as Service (SDaaS) or Mashup Data Service (MDS) at MSP’s/DSP’s
end will generate (compose) one or more structured data records and publish them so that they can
be accessed by DSCs for data mashup. Each publication of MSP/DSP would be identified by mashup
data service identifier. It can be seen from Figure 2 that there are p SDMBs at DSC’s end and q

Figure 2. Model of Structured Data REpresentational State Transfer (REST) (SDRest) Protocol.

The SDRest protocol has two entities called Data Service Producer/Provider (DSP) and Data
Service Consumer (DSC). DSP will produce structured data which would be consumed by DSC using
the proposed SDRest protocol. In our proposed work, the entity which takes services of MSP or DSP
would be called DSC and entity which provides data services to DSC would be called DSP. Thus, end
user or MSP may play the role of DSC and MSP/DSP may play the role of DSP. In Figure 1, EU#01
is DSC for MSP#01 and DSP#03 both and MSP#01 is further DSC for DSP#01 and DSP#02. The DSP
is required to publish the data services through Mashup Data Service Identifier (MDSI) so that DSC
can access the data in the structured format using standard REST protocol. Mashup Data Service
Identifier (MDSI) is the unique REST URI used by DSC to fetch the required data from DSP. The major
contribution in this model is introducing the concept of one or more Structured Data Mashup Box
(SDMB) which would be used by Data Service Consumer (DSC) to view, store or forward required
mashed up data.

The data service consumer as end user will use Structured Data Mashup Box (SDMB) to store
and view the required mashed up data whereas data service consumer as MSP will perform mashup
on the data received from various DSPs/MSPs and forward it to respective data service consumer.
Further, the group of SDMBs called End User Data Mashup (EUDM) would be explored by end user
to see the integrated UI view of mashed up data (fetched from multiple MSPs/DSPs) in a single screen
which is the main objective of the proposed work. According to our proposed model, DSC (the REST

Future Internet 2018, 10, 98 10 of 37

client) will read all the Structured Data Records (SDRs) made available by DSP through Mashup Data
Service Identifier (MDSI) and filter component will parse each SDR to check whether it is a valid SDR
or not. Transformation component will transform each valid SDR into proper format so that it can
be populated into Structured Data Mashup Box. The structured data records, which are successfully
populated into SDMB would be called Mashed up Data Records (MDRs).

Valid SDR would be transformed and populated into appropriate SDMB at DSC’s end using
proposed algorithm (See Section 5.15) whereas invalid SDRs would be ignored. Cloud computing
paradigm called Structured Data as Service (SDaaS) or Mashup Data Service (MDS) at MSP’s/DSP’s
end will generate (compose) one or more structured data records and publish them so that they can be
accessed by DSCs for data mashup. Each publication of MSP/DSP would be identified by mashup
data service identifier. It can be seen from Figure 2 that there are p SDMBs at DSC’s end and q SDMBs
at DSP’s end. Here, p and q may or may not be equal to each other and SDMB at DSP’s end is optional
but SDMB at DSC’s end is compulsory to implement this protocol. Following section describes the
system architecture and the working of this model in detail.

5.2. SDRest System Architecture

The system architecture of the proposed SDRest protocol is based on One Time Configuration-Any
Time Access (OTC-ATA) model. The SDRest system architectures based on OTC and ATA models are
shown in Figures 3 and 4 respectively.

Future Internet 2018, 10, x FOR PEER REVIEW 10 of 36

SDMBs at DSP’s end. Here, p and q may or may not be equal to each other and SDMB at DSP’s end is
optional but SDMB at DSC’s end is compulsory to implement this protocol. Following section
describes the system architecture and the working of this model in detail.

5.2. SDRest System Architecture

The system architecture of the proposed SDRest protocol is based on One Time
Configuration-Any Time Access (OTC-ATA) model. The SDRest system architectures based on OTC
and ATA models are shown in Figures 3 and 4 respectively.

Figure 3. SDRest System Architecture for One Time Configuration (OTC).

Figure 4. SDRest System Architecture for Any Time Access (ATA).

In OTC model, every user who needs mashed up data at his defined digital address (web
page/desktop client etc.) searches for appropriate MSP/DSP to collect Mashup Configuration
Attributes (MCA) made available through Mashup Configuration Service Identifier (MCSI). MCSI is
the unique identification of REST URI available at MSP/DSP which provides mashup configuration
attributes on DSC’s request. Mashup Configuration Attributes (MCA) is the set of attributes
required to perform one-time configuration of DSC at its end so that later on, data can be fetched
from MSP/DSP for the purpose of data mashup. DSC collects mashup configuration attributes of
Mashup Services (MS) from MSP and collects mashup configuration attributes of Data Services (DS)
from DSP. Accessing the mashup configuration service identifier by DSC can be manual or
automatic. In manual approach, the user needs to visit each and every mashup service configuration
identifier as per his requirement and use the MCA (Mashup Configuration Attributes) once only to
create Structured Data eXchange (SDX) mapping (See Sections 5.7–5.9).

In automatic approach, DSC calls mashup configuration service identifier i.e., REST URI, which
returns MCA as a response. This mashup configuration attributes should be in well-structured data

Figure 3. SDRest System Architecture for One Time Configuration (OTC).

Future Internet 2018, 10, x FOR PEER REVIEW 10 of 36

SDMBs at DSP’s end. Here, p and q may or may not be equal to each other and SDMB at DSP’s end is
optional but SDMB at DSC’s end is compulsory to implement this protocol. Following section
describes the system architecture and the working of this model in detail.

5.2. SDRest System Architecture

The system architecture of the proposed SDRest protocol is based on One Time
Configuration-Any Time Access (OTC-ATA) model. The SDRest system architectures based on OTC
and ATA models are shown in Figures 3 and 4 respectively.

Figure 3. SDRest System Architecture for One Time Configuration (OTC).

Figure 4. SDRest System Architecture for Any Time Access (ATA).

In OTC model, every user who needs mashed up data at his defined digital address (web
page/desktop client etc.) searches for appropriate MSP/DSP to collect Mashup Configuration
Attributes (MCA) made available through Mashup Configuration Service Identifier (MCSI). MCSI is
the unique identification of REST URI available at MSP/DSP which provides mashup configuration
attributes on DSC’s request. Mashup Configuration Attributes (MCA) is the set of attributes
required to perform one-time configuration of DSC at its end so that later on, data can be fetched
from MSP/DSP for the purpose of data mashup. DSC collects mashup configuration attributes of
Mashup Services (MS) from MSP and collects mashup configuration attributes of Data Services (DS)
from DSP. Accessing the mashup configuration service identifier by DSC can be manual or
automatic. In manual approach, the user needs to visit each and every mashup service configuration
identifier as per his requirement and use the MCA (Mashup Configuration Attributes) once only to
create Structured Data eXchange (SDX) mapping (See Sections 5.7–5.9).

In automatic approach, DSC calls mashup configuration service identifier i.e., REST URI, which
returns MCA as a response. This mashup configuration attributes should be in well-structured data

Figure 4. SDRest System Architecture for Any Time Access (ATA).

Future Internet 2018, 10, 98 11 of 37

In OTC model, every user who needs mashed up data at his defined digital address (web
page/desktop client etc.) searches for appropriate MSP/DSP to collect Mashup Configuration
Attributes (MCA) made available through Mashup Configuration Service Identifier (MCSI). MCSI is
the unique identification of REST URI available at MSP/DSP which provides mashup configuration
attributes on DSC’s request. Mashup Configuration Attributes (MCA) is the set of attributes required to
perform one-time configuration of DSC at its end so that later on, data can be fetched from MSP/DSP
for the purpose of data mashup. DSC collects mashup configuration attributes of Mashup Services
(MS) from MSP and collects mashup configuration attributes of Data Services (DS) from DSP. Accessing
the mashup configuration service identifier by DSC can be manual or automatic. In manual approach,
the user needs to visit each and every mashup service configuration identifier as per his requirement
and use the MCA (Mashup Configuration Attributes) once only to create Structured Data eXchange
(SDX) mapping (See Sections 5.7–5.9).

In automatic approach, DSC calls mashup configuration service identifier i.e., REST URI, which
returns MCA as a response. This mashup configuration attributes should be in well-structured data
format i.e., JSON, XML, CSV etc. The SDXMapping algorithm developed for DSC helps the user to
create Structured Data eXchange (SDX). The processing of the mashup configuration attributes to
create Structured Data eXchange (SDX) is performed by DSC once only and later on, used to access
MSP’s/DSP’s data for performing data mashup. It is clear from Figure 3 that DSC#01 requests for
MCA(MS) from MSP and MCA(DS) from DSP which return mashup configuration attributes as a
response for performing one time configuration which resulted into creation of SDX Mapping so that
mashup can be performed any time by DSC#01. All MSPs are also required to perform one time
configuration for each and every DSP as per their service needs before providing mashup services to its
users. After performing OTC for each and every MSP/DSP, data service consumer is ready to perform
data mashup by sending data request any time to MSPs/DSPs through mashup data service identifier.

It can be seen from Figure 4 that DSC#01 sends mashup request to MSPs and data request to DSPs
and performs data mashup after getting mashup response and data response from them. All MSPs
also send the data request to DSPs and perform data mashup on receiving data response from them.
When a DSC sends mashup request to MSP then MSP further sends the data request to respective
DSPs and resultant data response received by MSP are mashed up and are sent back to DSC as a
mashup response. Let us understand how major stakeholders (EU, MSP and DSP) of data mashup,
communicate with each other.

The diagram as shown in Figure 5 has three types of stakeholders i.e., end users, MSPs and DSPs.
Each user will define his requirement of data mashup by creating one or more SDMBs as per his data
need. Similarly, each MSP will also create one or more SDMBs as per the service need. DSPs need
not have SDMBs but should have Mashup Data Service Identifier (MDSI) to provide structured data
to its clients. It is clear from Figure 5 that the user can access mashed up data from MSPs and MSPs
can further communicate with other MSPs/DSPs to access required data. The user can also directly
communicate with DSPs to fetch the required data and then perform mashup at his end.

Table 1 depicts the role of DSC, MSP and DSP for various mashup communications as shown
in Figure 5. SDMB#1 of EU#1 is taking mashup services of MSP#1(SDMB#2). MSP#1(SDMB#2) is
further taking mashup services of MSP#2(SDMB#3) and also taking the data services of DSP#1, DSP#2
and DSP#3. MSP#2(SDMB#3) is not connected with any mashup service but taking data services of
DSP#k and DSP#r. SDMB#2 of EU#1 is connected with MSP#2(SDMB#3) and directly to DSP#4. All the
stakeholders are free to connect to any MSP or DSP but there could be the problem of multi-path data
mashup resulting into redundant data mashup if services are not carefully chosen. The minimum
requirement of this architecture is that each user should have SDMB, OTC and REST enabled machine
to communicate with the REST services of DSPs/MSPs.

Future Internet 2018, 10, 98 12 of 37

Future Internet 2018, 10, x FOR PEER REVIEW 11 of 36

format i.e., JSON, XML, CSV etc. The SDXMapping algorithm developed for DSC helps the user to
create Structured Data eXchange (SDX). The processing of the mashup configuration attributes to
create Structured Data eXchange (SDX) is performed by DSC once only and later on, used to access
MSP’s/DSP’s data for performing data mashup. It is clear from Figure 3 that DSC#01 requests for
MCA(MS) from MSP and MCA(DS) from DSP which return mashup configuration attributes as a
response for performing one time configuration which resulted into creation of SDX Mapping so
that mashup can be performed any time by DSC#01. All MSPs are also required to perform one time
configuration for each and every DSP as per their service needs before providing mashup services to
its users. After performing OTC for each and every MSP/DSP, data service consumer is ready to
perform data mashup by sending data request any time to MSPs/DSPs through mashup data service
identifier.

It can be seen from Figure 4 that DSC#01 sends mashup request to MSPs and data request to
DSPs and performs data mashup after getting mashup response and data response from them. All
MSPs also send the data request to DSPs and perform data mashup on receiving data response from
them. When a DSC sends mashup request to MSP then MSP further sends the data request to
respective DSPs and resultant data response received by MSP are mashed up and are sent back to
DSC as a mashup response. Let us understand how major stakeholders (EU, MSP and DSP) of data
mashup, communicate with each other.

The diagram as shown in Figure 5 has three types of stakeholders i.e., end users, MSPs and
DSPs. Each user will define his requirement of data mashup by creating one or more SDMBs as per
his data need. Similarly, each MSP will also create one or more SDMBs as per the service need. DSPs
need not have SDMBs but should have Mashup Data Service Identifier (MDSI) to provide structured
data to its clients. It is clear from Figure 5 that the user can access mashed up data from MSPs and
MSPs can further communicate with other MSPs/DSPs to access required data. The user can also
directly communicate with DSPs to fetch the required data and then perform mashup at his end.

Figure 5. Stakeholder’s Communication Model.

Table 1 depicts the role of DSC, MSP and DSP for various mashup communications as shown in
Figure 5. SDMB#1 of EU#1 is taking mashup services of MSP#1(SDMB#2). MSP#1(SDMB#2) is
further taking mashup services of MSP#2(SDMB#3) and also taking the data services of DSP#1,
DSP#2 and DSP#3. MSP#2(SDMB#3) is not connected with any mashup service but taking data
services of DSP#k and DSP#r. SDMB#2 of EU#1 is connected with MSP#2(SDMB#3) and directly to
DSP#4. All the stakeholders are free to connect to any MSP or DSP but there could be the problem of
multi-path data mashup resulting into redundant data mashup if services are not carefully chosen.
The minimum requirement of this architecture is that each user should have SDMB, OTC and REST
enabled machine to communicate with the REST services of DSPs/MSPs.

Figure 5. Stakeholder’s Communication Model.

Table 1. Roles of Stakeholders.

DSC MSP DSP

EU#1(SDMB#1) MSP#1(SDMB#2) -

MSP#1(SDMB#2) MSP#2(SDMB#3)
DSP#1
DSP#2
DSP#3

MSP#2(SDMB#3) - DSP#k
DSP#r

EU#1(SDMB#2) MSP#2(SDMB#3) DSP#4

One Time Configuration-Any Time Access Model

OTC-ATA model as shown in Figure 6 follows OTC-ATA communication between Data Service
Consumer (DSC) and MSP/DSP. In order to perform complete life cycle of data mashup, DSC first
sends One Time Configuration (OTC) request to Mashup Configuration Service (MCS) available at
MSP/DSP to get mashup configuration attributes before fetching required data for the mashup. After
the completion of OTC, DSC can access mashed up data at any time by calling Mashup Data Service
(MDS) available at respective MSP/DSP.

Future Internet 2018, 10, x FOR PEER REVIEW 12 of 36

Table 1. Roles of Stakeholders.

DSC MSP DSP
EU#1(SDMB#1) MSP#1(SDMB#2) -

MSP#1(SDMB#2) MSP#2(SDMB#3)
DSP#1
DSP#2
DSP#3

MSP#2(SDMB#3) -
DSP#k
DSP#r

EU#1(SDMB#2) MSP#2(SDMB#3) DSP#4

One Time Configuration-Any Time Access Model

OTC-ATA model as shown in Figure 6 follows OTC-ATA communication between Data Service
Consumer (DSC) and MSP/DSP. In order to perform complete life cycle of data mashup, DSC first
sends One Time Configuration (OTC) request to Mashup Configuration Service (MCS) available at
MSP/DSP to get mashup configuration attributes before fetching required data for the mashup. After
the completion of OTC, DSC can access mashed up data at any time by calling Mashup Data Service
(MDS) available at respective MSP/DSP.

Figure 6. One Time Access Any Time Access (OTC-ATA) Model.

Let us understand how OTC-ATA model works in the proposed system architecture. The steps
required to perform data mashup in OTC-ATA model are described below. Each step is either
manual or automatic which needs to be performed either once or at any time.

Step-1(Manual-Once): DSC(EU/MSP) defines its data requirement using the schema called Data
Mashup Definition (DMD) for mashing up structured data (See Section 5.3).

Step-2(Manual-Once): DSC creates a logical entity called Structured Data Mashup Box (SDMB)
to store Mashed up Data Records (MDRs) based on the schema called data mashup definition as
defined in step-1 (See Sections 5.4 and 5.5).

Step-3(Manual-Once): DSC defines the association between structured data mashup box and
data mashup definition (See Section 5.6).

Creating DMD, SDMB and association between them as mentioned in Step-1, 2 and 3 include
simple manual GUI operations like filling data in the table of a web form, word processor, worksheet
or database client tools etc.

Step-4(Manual-Once): DSC searches for right MSP/DSP as per its need and thereafter selects the
appropriate mashup configuration service identifier available at MSP/DSP. This step is manual and
needs to be performed once only.

Step-5(Manual-Once): DSC performs one time configuration after fetching Mashup
Configuration Attributes (MCA) from MSP/DSP through mashup configuration service identifier.
Upon receiving MCA, EU/MSP configures the mapping between SDMB attributes and
MCAttributes, which results in the creation of Structured Data eXchange (SDX) and the association
between structured data mashup box and mashup data service (See Sections 5.7–5.11).

Step-6(Manual-Any Time): After completion of one time configuration by DSC for various
mashup configuration service identifiers provided by MSPs/DSPs, data mashup can be performed
any time by accessing data through mashup data service identifier. When a user clicks on any of the

Figure 6. One Time Access Any Time Access (OTC-ATA) Model.

Let us understand how OTC-ATA model works in the proposed system architecture. The steps
required to perform data mashup in OTC-ATA model are described below. Each step is either manual
or automatic which needs to be performed either once or at any time.

Future Internet 2018, 10, 98 13 of 37

Step-1(Manual-Once): DSC(EU/MSP) defines its data requirement using the schema called Data
Mashup Definition (DMD) for mashing up structured data (See Section 5.3).

Step-2(Manual-Once): DSC creates a logical entity called Structured Data Mashup Box (SDMB) to
store Mashed up Data Records (MDRs) based on the schema called data mashup definition as defined
in step-1 (See Sections 5.4 and 5.5).

Step-3(Manual-Once): DSC defines the association between structured data mashup box and data
mashup definition (See Section 5.6).

Creating DMD, SDMB and association between them as mentioned in Step-1, 2 and 3 include
simple manual GUI operations like filling data in the table of a web form, word processor, worksheet
or database client tools etc.

Step-4(Manual-Once): DSC searches for right MSP/DSP as per its need and thereafter selects the
appropriate mashup configuration service identifier available at MSP/DSP. This step is manual and
needs to be performed once only.

Step-5(Manual-Once): DSC performs one time configuration after fetching Mashup Configuration
Attributes (MCA) from MSP/DSP through mashup configuration service identifier. Upon receiving
MCA, EU/MSP configures the mapping between SDMB attributes and MCAttributes, which results in
the creation of Structured Data eXchange (SDX) and the association between structured data mashup
box and mashup data service (See Sections 5.7–5.11).

Step-6(Manual-Any Time): After completion of one time configuration by DSC for various mashup
configuration service identifiers provided by MSPs/DSPs, data mashup can be performed any time by
accessing data through mashup data service identifier. When a user clicks on any of the SDMB to view
mashed up data then DSC automatically calls mashup data service identifier of MSPs/DSPs which
were configured at the time of OTC (See Section 5.12).

Step-7(Automatic-Any Time): MSPs return mashed up data as a response and DSPs return normal
structured data (without mashup) as a response whenever their services (MDSIs) are called by DSC.
The data received from MSP/DSP would be validated and transformed into the proper format before
populating into SDMBs at DSC’s end (See Sections 5.13–5.15).

One time configuration mentioned in Step-5 is manual but is as simple as solving the “Match
Column Problems”. Step 6 is manual but is as simple as clicking the mouse.

Step-8(Manual-Any Time): A user can view mashed up data of each SDMB by just clicking on
it and can also make the group of two or more SDMBs to create End User Data Mashup (EUDM).
EUDM can be explored by a user by clicking on it to open single mashed up screen which contains
the integrated UI views of multiple SMDBs. This step is the final output of the proposed work (See
Sections 6.1 and 6.2).

Let us understand details of above Steps 1 to 8 in the following sections.

5.3. Data Mashup Definition (DMD)

Defining the requirement of the data by an ordinary user is really challenging because it cannot
be fixed in advance. The requirement of users has been defined in various ways such as service
composition [40], document specification [23], scripts [8], plans [13] etc. in the past. In this proposed
work, we are introducing simple approach of defining data requirement which are called Data
Mashup Definition (DMD) and Structured Data Mashup Box (SDMB). DSCs are required to define the
configuration of each SDMB before mashing up the desired structured data in it. This definition is
called Data Mashup Definition (DMD) and is the way of defining requirement of data by DSC. Thus,
DMD is defined as the collection of metadata and the relation of attributes defined by DSC for filtering,
transforming and populating the Structured Data Module (SDM) received from MSP/DSP into various
Structured Data Mashup Boxes (SDMBs).

Future Internet 2018, 10, 98 14 of 37

Following Table 2 describes attributes of the Data Mashup Definition (DMD) created by DSC.
Here, xij represents jth attribute of ith DMD. DSC can define any number of DMDs as per its need.
Thus, Data Mashup Definition (DMD) can be defined as

DMD = (Dmd#Id, DMDAttributes)

For example,
DMDAttributes = (xi1, xi2, xi3, . . . xij)

Table 2. Data Mashup Definition (DMD).

DMD#Id DMDAttributes

Dmd#1 x11 x12 . . . x1k
Dmd#2 x21 x22 . . . x2l

.
Dmd#i xi1 xi2 . . . xij

.
Dmd#n xn1 xn2 . . . xns

Here, Table 2 shows n DMDs, each with the different number of attributes. It should be noted
that k, l, j, s etc. show the total number of attributes defined in the DMDs #1, #2, #i . . . #n respectively.
The value of k, l, j, s etc. may or may not be equal to each other. The scope of this paper is limited
to the number and name of attributes of the DMD. The data schema (data types and formats) of
these attributes has not been covered in this paper. By default, all the data items are considered as
text/string for implementation purpose. After defining DMD, DSC will create SDMB as explained in
the next section.

5.4. Structured Data Mashup Box (SDMB)

Structured Data Mashup Box (SDMB) is the logical entity which contains the mashed-up data,
defined by DSCs at their end under the schema called Data Mashup Definition (DMD) and has been
introduced to store and/or to forward the mashed up data. According to Figure 2, DSC contains one
or more SDMBs along with local data. DSC has the filter, transformation and population components
so that structured data module received from MSP/DSP can be filtered, transformed into the proper
format and populated into appropriate SDMB. Generally, the user will use SDMB for storing and
viewing mashed up data but MSP will use the SDMB to perform data mashup and forward them to
respective DSCs to support the live (instant) data mashup. There could be any number of SDMBs as
per requirement of DSC. Let us understand the composition of SDMB in the next section.

5.5. Composition of SDMB and MDRs

5.5.1. SDMB Composition

Each DSC receives Structured Data Module (SDM) through mashup data service identifier from
MSP/DSP and uses SDMB to store and/or forward mashed up data. Structured Data Module (SDM)
is the collection of Structured Data Records (SDRs) in the standard format like XML, JSON or CSV etc.
Each SDR is filtered and transformed into DSC’s defined Mashup Data Record (MDR) and is stored
in SDMB using the proposed algorithms (See Section 5.15). Thus, SDMB is the collection of unique
Sdmb#Id, Sdm#Id, Msp#Id/Dsp#Id, Mds#Id and one or more MDRs.

SDMB = (Sdmb#Id, Sdm#Id, Msp#Id/Dsp#Id, Mds#Id, MDRs)

Sdmb#Id is generated when DSC creates new SDMB. Mds#Id is contained in MCAttributes
received via mashup configuration service identifier. Msp#Id and Dsp#Id are nothing but URLs of

Future Internet 2018, 10, 98 15 of 37

MSP and DSP respectively. Mds#Id is the unique id of mashup data service identifier through which
structured data module would be made available at MSP’s/DSP’s end.

5.5.2. Mashup Data Records (MDRs)

MDRs are the collection of one or more mashup data record stored in SDMB. Structured data
(unmashed) is provided by DSP whereas structured data (mashed up) is provided by MSP. The record
provided by MSP/DSP is called Structured Data Record (SDR) but when it is populated into SDMB
then it is called Mashup Data Record (MDR). SDR of each structured data module is transformed into
DSC’s MDR by applying the SDXMapping algorithm. Each MDR consists of unique Mdr#Id and MDR
values. Thus, it can be defined as follows:

MDR = (Mdr#Id, MDRValues)

5.5.3. MDRAttributes and MDRValues

MDRAttributes are the collection of attributes of mashup data record. MDRValues are the
collection of one or more Name-Value (N-V) pairs. Thus,

MDRAttributes = (x1, x2, x3, . . . , xn)

MDRValues = (x1 = ?, x2 = ?, x3 = ?, . . . , xn = ?)

where x1, x2, x3 . . . xn are the name of attributes defined by DSC using Dmd#Id which is further
associated with Sdmb#Id. The symbol “?” shows the value of the attribute which has to be extracted
from structured data module by applying filter and transformation algorithm at DSC’s end. The next
step is to establish the association between structured data mashup box and data mashup definition.

5.6. SDMB-DMD Association

After defining Data Mashup Definition (DMD) and creation of SDMB, an association should be
established between them. Each SDMB is associated with one DMD but the reverse is not true (i.e.,
one DMD may be associated with more than one SDMB).

Thus, association between SDMB and DMD would be defined as:

SDMB-DMD = (Sdmb#Id, Dmd#Id)

For example, association

SDMB-DMD#01 = (Sdmb#01, Dmd#i)

SDMB-DMD#02 = (Sdmb#02, Dmd#k)

show that attributes of Sdmb#01 are defined by Dmd#i and attributes of Sdmb#02 are defined by
Dmd#k. It can be observed here that DSC defines its requirement in terms of DMD, SDMB and
association between them. After defining data requirement for mashup, DSC is required to fetch
mashup configuration attributes from MSP/DSP for one time configuration which has been explained
in the next section.

5.7. One Time Configuration (OTC) Algorithm

After determining the right MSP/DSP, DSC is required to get Mashup Configuration Attributes
(MCA) by calling mashup configuration service identifier of those MSPs/DSPs. The MCA is the set of
attributes required to configure DSC so as to perform the data mashup later on, as and when needed.
This is the one time process and can be performed manually or through the pre-defined algorithm.
MSP/DSP provides structured data through cloud computing feature like Structured Data as a Service

Future Internet 2018, 10, 98 16 of 37

(SDaaS). Thus, MCA is nothing but the container of data and service attributes and can be identified
by Mashup Configuration Service Id i.e., MCS#Id. In order to get mashup configuration attributes,
DSC should know MCS#Id of the service provided by MSP/DSP. The mashup configuration service of
MSP/DSP will return MCA as a response to DSC. It should also be noted that SDMB should be created
and associated with DMD before configuring DSC client. Table 3 shows mashup configuration service
and their attributes published by various MSPs/DSPs.

Table 3. MSP’s/DSP’s Mashup Configuration Service Publication.

Msp#Id/Dsp#Id Mcs#Id MCAttributes

www.p.com Mcs#1 (p1, p2, p3, p4 . . . pa)
www.q.com Mcs#2 (q1, q2, q3, q4 . . . qb)
www.r.com Mcs#3 (r1, r2, r3, r4 . . . rc)

Thus, Mashup Configuration Service (MCS) can be defined as:

MCS = (Msp#Id/Dsp#Id, Mcs#Id, MCAttributes)

For example, MCS = (www.p.com, Mcs#1, (p1, p2, p3, p4, . . . , pa)) where Mcs#1 = www.p.com/mcs1.
The Algorithm 1 is based on one time mashup configuration which would be performed by DSC

to send the request to MSP/DSP to get mashup configuration attributes to configure its SDMB so that
data can be fetched, transformed and populated into it.

It is clear from the Algorithm 1 that data service consumer selects one or more MSPs/DSPs as per
its need and configures SDMB using Mashup Configuration Attributes (MCAttributes) after receiving
it from Mashup Configuration Service Identifier (MCSI) calls. The method selectMCAttibute (z, w) will
return one of MCAttribute h which will be semantically matched with DMDAttribute z from the list of
MCAttributes w. Structured Data eXchange (SDX) would be created at DSC’s end as a result of the
mashup configuration and identified by SDX#Id. Thus, SDXMapping is the pair of DMDAttribute and
MCAttribute which is semantically equal to each other. Table 4 describes DSC’s mashup configuration
done after receiving MCAttributes and is the one time process performed by data service consumer
at its end. In order to perform one time configuration for private data mashup, mashup key is also
provided through mashup configuration attributes by private mashup configuration service identifier.
It can be noticed here that private mashup configuration service identifier is accessible to authorized
data service consumer after proper authentication. In Table 4, Mds#1 and Mds#2 are providing public
data mashup and Mds#3 is providing private data mashup through MKey#3 mashup key. The data
service consumer can access private mashup data service identifier only after sending this mashup key
to MSP/DSP while requesting through the Any Time Access (ATA) model.

Future Internet 2018, 10, 98 17 of 37

Algorithm 1. One Time Mashup Configuration Algorithm

Let say p be the DSC which wants to configure its own
SDMBs for data mashup

q = getSDMBs(p)
For each SDMB r ∈ q
begin1

x = createSDX()
x.Sdx#Id = getUniqueID()
x.Dmd#Id = SDMB-DMD.getDmdId(r)
s = selectDSP_MSP(r)
For each DSP_MSP t ∈ s
begin2

u = selectMCSI(t)
w = getMCAttributes(u)
y = DMD.getDMDAttributes(x.Dmd#Id)
For each DMDAttribute z ∈ y
begin3

h = selectMCAttibute(z, w)
x.SDXMapping.add(z = h)

end3

end2

end1

Table 4. DSC’s Mashup Configuration.

Msp#Id/Dsp#Id Mcs#Id SDX#Id Mds#Id Mashup#Key

www.p.com Mcs#1 Sdx#1 Mds#1 -
www.q.com Mcs#2 Sdx#2 Mds#2 -
www.r.com Mcs#3 Sdx#3 Mds#3 MKey#3

Let us understand the attributes, which are required to configure DSC in the following section.

5.8. Mashup Configuration Attributes (MCA)

MCAttributes is the collection of name of the attributes of the data to be mashed up and is
associated with unique mashup data service identifier of MSP/DSP. Hence,

For public data mashup,

MCAttributes = (Mds#1, (p1, p2, p3, p4 . . . , pm))

For private data mashup,

MCAttributes = (Mds#3, (r1, r2, r3, r4 . . . rn), MKey#3)

Mds#Id is the unique REST URI of mashup data services available at MSP/DSP and would be
used by DSC, later on, to send the request to get data from MSP/DSP. Similar to DMDAttributes,
MCAttributes mentioned in this paper is limited to name of the attributes only and does not cover
its data type and format etc. By default, all the attributes of mashup configuration are of type
text/string for implementation purpose. Let us explore the Algorithm 1 to understand the processing
of MCAttributes to create Structured Data eXchange (SDX) as per requirement of the DSC.

Future Internet 2018, 10, 98 18 of 37

5.9. SDX Mapping

The data exchange is the process where the data structured under one schema (the source schema)
must be restructured and translated into an instance of a different schema (the target schema) [50].
According to them [50], a data exchange setting consists of a source schema S, a target schema T, a set
of source-to-target dependencies, and a set t of target dependencies. They also explained that the input
to a data exchange problem is a source instance only; the data exchange setting itself (source schema,
target schema, and dependencies) is considered fixed. In our proposed work, we have developed
SDXMapping in such a way that source to target and target to source mapping is fixed and unique.
This process is performed at DSC’s end upon receiving MCAttributes which creates Structured Data
eXchange (SDX). The SDX is the logical entity which contains the mapping between attributes of
DMD and that of MCA. It is used to validate and transform the structured data records received from
MSP/DSP and populate them into appropriate SDMB.

Thus, SDX can be defined as follows:

SDX = (Sdx#Id, Dmd#Id, SDXMapping)

where Sdx#Id is the unique id of SDX, Dmd#Id is the id of DMDAttributes and SDXMapping is the
collection of a pair of DMDAttribute and MCAttribute semantically equal to each other. For example,

SDXMapping = (x1 = p3, x2 = pn, x3 = p2, . . . , xn = p1)

where x1, x2, . . . xn are the name of DMD attributes defined by data service consumer and p1, p2, . . . pn

are the name of attributes of MCAttributes received from MSP/DSP for one time configuration. Here,
pair x1 = p3 shows that DMDAttribute x1 is semantically equal to MCAttribute p3. There should be
one to one mapping between these attributes. The Algorithm 1 explains how MCAttribute is processed
to create SDX.

Let us understand the output of Algorithm 1 (i.e. SDXMapping) using sample data in tabular
format. Table 5 shows the mapping between DMD attributes and MCAttributes which looks like
‘Column Matching Problem’. It is clear that the attribute “x1” defined in DMD is mapped with the
attribute “p3” in MCA.

Table 5. Structured Data eXchange (SDX) Mapping between DMD and MCAttributes.

Future Internet 2018, 10, x FOR PEER REVIEW 17 of 36

Mds#Id is the unique REST URI of mashup data services available at MSP/DSP and would be
used by DSC, later on, to send the request to get data from MSP/DSP. Similar to DMDAttributes,
MCAttributes mentioned in this paper is limited to name of the attributes only and does not cover its
data type and format etc. By default, all the attributes of mashup configuration are of type text/string
for implementation purpose. Let us explore the Algorithm 1 to understand the processing of
MCAttributes to create Structured Data eXchange (SDX) as per requirement of the DSC.

5.9. SDX Mapping

The data exchange is the process where the data structured under one schema (the source
schema) must be restructured and translated into an instance of a different schema (the target
schema) [50]. According to them [50], a data exchange setting consists of a source schema S, a target
schema T, a set of source-to-target dependencies, and a set t of target dependencies. They also
explained that the input to a data exchange problem is a source instance only; the data exchange
setting itself (source schema, target schema, and dependencies) is considered fixed. In our proposed
work, we have developed SDXMapping in such a way that source to target and target to source
mapping is fixed and unique. This process is performed at DSC’s end upon receiving MCAttributes
which creates Structured Data eXchange (SDX). The SDX is the logical entity which contains the
mapping between attributes of DMD and that of MCA. It is used to validate and transform the
structured data records received from MSP/DSP and populate them into appropriate SDMB.

Thus, SDX can be defined as follows:

SDX = (Sdx#Id, Dmd#Id, SDXMapping)

where Sdx#Id is the unique id of SDX, Dmd#Id is the id of DMDAttributes and SDXMapping is the
collection of a pair of DMDAttribute and MCAttribute semantically equal to each other. For
example,

SDXMapping = (x1 = p3, x2 = pn, x3 = p2,…, xn = p1)

where x1, x2,… xn are the name of DMD attributes defined by data service consumer and p1, p2,… pn
are the name of attributes of MCAttributes received from MSP/DSP for one time configuration. Here,
pair x1 = p3 shows that DMDAttribute x1 is semantically equal to MCAttribute p3. There should be
one to one mapping between these attributes. The Algorithm 1 explains how MCAttribute is
processed to create SDX.

Let us understand the output of Algorithm 1 (i.e. SDXMapping) using sample data in tabular
format. Table 5 shows the mapping between DMD attributes and MCAttributes which looks like
‘Column Matching Problem’. It is clear that the attribute “x1” defined in DMD is mapped with the
attribute “p3” in MCA.

Table 5. Structured Data eXchange (SDX) Mapping between DMD and MCAttributes.

DMDAttributes MCAttributes
x1 p1
x2 p2
x3 p3
… …
xn pn

SDX table shown on Table 6 contains unique Sdx#Id, Dmd#Id and SDXMapping.

Table 6. SDX Mapping between DMD and MCAttributes.

Sdx#Id Dmd#Id SDXMapping
Sdx#01 Dmd#02 (x1 = p3, x2 = pn,…, xn = p1)
Sdx#02 Dmd#04 (y1 = q4, y2 = qm,…, ym = q1)

… … …

SDX table shown on Table 6 contains unique Sdx#Id, Dmd#Id and SDXMapping.

Table 6. SDX Mapping between DMD and MCAttributes.

Sdx#Id Dmd#Id SDXMapping

Sdx#01 Dmd#02 (x1 = p3, x2 = pn, . . . , xn = p1)
Sdx#02 Dmd#04 (y1 = q4, y2 = qm, . . . , ym = q1)

.
Sdx#n Dmd#01 (z2 = r6, z3 = rk, . . . , zk = r1)

Future Internet 2018, 10, 98 19 of 37

After the creation of SDX by data service consumer, the association between structured data
mashup box and mashup data service should be updated. Let us understand Mashup Data Service
(MDS) first and then its association with SDMB in the next section.

5.10. Mashup Data Service (MDS)

Mashup Data Service (MDS) is the essential feature of MSP/DSP which is nothing but cloud
computing paradigm called Structured Data a Service (SDaaS) to provide structured data in the
standard format like XML, JSON, CSV etc. on DSC’s request. Data as a Service (DaaS) enables multiple
users to access data simultaneously on demand but reliability to store and manage data securely
is always required to gain customer trust to use data service [51]. The mashup data service of any
MSP/DSP is identified by REST URI called Mashup Data Service Identifier (MDSI). Every MSP/DSP
is required to publish its mashup services/data services to make the MDSI available to its users. The
information about MDSI is made available to DSC through mashup configuration service identifier
while performing one time configuration. The MSP/DSP may have one or more mashup data service
identifiers as per data available with them. Based on accessibility features of services, mashup data
service could be of two types namely private mashup data service and public mashup data service.
Private mashup data service provides the data to DSC after proper authentication and authorization of
mashup keys whereas public mashup data service provides the data without any verification. Thus,
private mashup data service results in private data mashup and public mashup data service results in
public data mashup.

5.11. SDMB-MDS Association

Each Structured Data Mashup Box (SDMB) of DSC should be associated with Mashup Data
Services (MDS) of MSP/DSP and structured data exchange so that structured data records of structured
data module received at DSC’s end would be validated and transformed into proper mashup data
record format before populating into structured data mashup box. Association between structured
data mashup box and mashup data services would be as follows

SDMB-MDS for public data mashup = (Sdmb#Id, Sdx#Id, Mds#Id, Msp#Id/Dsp#Id)

SDMB-MDS for private data mashup = (Sdmb#Id, Sdx#Id, Mds#Id, Msp#Id/Dsp#Id, Mashup#Key)

Table 7 shows one of the snapshots of sample SDMB-MDS association.

Table 7. Structured Data Mashup Box Mashup Data Services (SDMB-MDS) Association.

Sdmb#Id Sdx#Id Mds#Id Msp#Id/Dsp#Id Mashup#Key

Sdmb#2 Sdx#1 Mds#1 www.p.com -
Sdmb#2 Sdx#4 Mds#2 www.q.com -
Sdmb#4 Sdx#6 Mds#2 www.r.com Key#3

It is clear from Table 7 that Sdmb#2 is associated with www.p.com for Mds#1 using Sdx#1 and
it is also associated with www.q.com using Sdx#4 but for Mds#2. Once SDMB-MDS association is
determined by DSC, One Time Configuration (OTC) is over for an SDMB. The second phase of the
proposed work is based on the ATA model, which includes the Any Time Access (ATA) algorithm,
which has been described below.

5.12. Any Time Access (ATA) Algorithm

After defining the association between SDMB and mashup data service, DSC is ready to access
data any time by sending service/data request to respective MSP/DSP. Following Algorithm 2 is used

Future Internet 2018, 10, 98 20 of 37

by any DSC at any time by just calling Mashup Data Service Identifier (MDSI) to access Structured
Data Module (SDM) which is generated by mashup data service.

Here, DSC will select one SDMB and will receive SDM by calling each Mashup Data Service
Identifier (MDSI) associated with SDMB. The SDM t received from MDSI would be validated thereafter
transformed and populated into SDMB q using the algorithm (See Section 5.15). Let us understand
Structured Data Module and its components in the next section.

Algorithm 2. Any Time Access (ATA) Algorithm

Let p be the DSC which sends request to MSPs/DSPs through one SDMB q for data mashup

q = selectSDMB(p)
r = getMDSIs(q)
For each MDSI s ∈ r
begin1

t = getSDM(s)
if (validate(t))
transform&populate(t, q)

end1

5.13. Structured Data Module (SDM)

The data made available to data service consumer through mashup data service identifier would
be called Structured Data Module (SDM). This paper proposes novel structured data processing system
in which structured data module consisting of one or more structured data records would be further
filtered, transformed and populated by algorithms mentioned in the Section 5.15 and resultant mashed
up data would be placed in Structured Data Mashup Box (SDMB). Let us understand a few terms used
in this section.

5.13.1. SDM

The SDM is the well-structured content provided by MSP/DSP through mashup data service
identifier calls. It is a module because it may contain multiple structures of data as per the specification
mentioned in mashup configuration service identifier. It provides not only structured data but may
also contain other information like mashup keys, SDMB details and many other information. Currently,
SDM used in this paper is limited to provide structured data record in the standard format like JSON.
Every MSP/DSP has one or more mashup data services which generate Structured Data Records
(SDRs) to be made available to its users. Thus, each SDM contains Sdm#Id, Mds#Id and one or more
SDRs generated by mashup data service. Thus,

SDM = (Sdm#Id, Mds#Id, SDRs)

5.13.2. Structured Data Records (SDRs)

The SDRs can be defined as the collection of one or more structured data record generated by
mashup data service and each SDR contains Sdr#Id and one or more SDR values. Thus,

SDR = (Sdr#Id, SDRValues)

5.13.3. SDRAttributes and SDRValues

SDRAttributes can be defined as the collection of attributes of structured data record.
For example,

SDRAttributes = (p1, p2, p3, . . . , pn)

SDRValues can be defined as the collection of one or more Name-Value (N-V) pairs.

Future Internet 2018, 10, 98 21 of 37

For example,
SDRValues = (p1 = v1, p2 = v2, . . . , pn = vn)

where p1, p2, . . . pn are name of attributes of SDR and v1, v2, . . . vn are values of those attributes. Next
section explains how Structured Data Module would be composed using JSON.

5.14. JSON Composition of Structured Data Module

In our proposed system, various mashup data services of MSP/DSP generate many SDRs and
put them together in an SDM. The mashup data service generates SDM on each data request made
by DSC. Thus, the refresh rate of SDM provided to DSC is high. The mashup data service composes
JSON-SDM as given in Algorithm 3.

Algorithm 3. JSON Composition of SDM

p = newSDM()
q = getSDRs(p)
r = newJSONArray()

For each SDR s ∈ q
begin1

t = getJSONObject(s)
r.add(t)

end1

Thus, each SDR generated by mashup data service would be converted into JSONObject and
JSONObject would be added to JSONArray to make it available to DSC through mashup data
service identifier.

For example, SDR = (Sdr#01, (p1 = v1, p2 = v2, . . . , pn = vn)) would be converted into JSON Object
as follows

{“sdrId”:“Sdr#01”, “p1”:“v1”, “p2”:“v2”, . . . , “pn”:“vn”}

Next section explains how SDR would be validated, transformed and populating into SDMB.

5.15. SDR Validation, Transformation and Population Algorithm

Data Mashup Definition (DMD) is defined by DSC at its end whereas SDR is generated at
MSP’s/DSP’s end and provided to DSC through mashup data service identifier. Numbers of attributes
in DMD and that of mashup data service may differ or may be equal. The SDR, which is supposed to be
populated, may be ignored, if it is not matched with the specification of SDX defined for the SDMB. SDR
would be valid if all of its attributes are matched with DMDAttributes of targeted SDMB. Valid SDR is
transformed into mashup data record and populated into relevant SDMB. The Algorithm 4 depicts
how each SDR is validated and transformed into Mashup Data Record (MDR) before populating into
proper SDMB.

The transformation of structured data record into mashup data record requires fetching
DMDAttribute of the corresponding SDRAttribute from SDXMapping and value of SDRAttribute is
assigned to DMDAttribute. Created MDRValues (name-value pair) is added to MDRs of SDMB as
mentioned in line SDMB.MDRValues.add(h=z.value).

Future Internet 2018, 10, 98 22 of 37

Algorithm 4. Validation, Transformation and Population of SDR

Let p be the DSC receives SDM t through MDSI s from DSP r in SDMB q

t = getSDM(s)
v = getSDRs(t)
For each SDR w ∈ v
begin1

y = getSDRAttributes(w)
if (valid(y))
begin2

[fetch Sdx#Id from Table 7]
Sdx#Id = getSDXId(r, s, q)
[fetch SDX Mapping from Table 6]
x = getSDXMapping(Sdx#Id)
For each SDRAttribute z ∈ y
begin3

[fetch DMDAttribute from SDXMapping]
h = getDMDAttribute(z, x)
[populate SDMB q]
SDMB.Dsp#Id = r
SDMB.Mds#Id = s
SDMB.Sdmb#Id = q
SDMB.MDRValues.add(h=z.value)

end3

end2

end1

6. DSC’s Data Mashup

DSC may be either a user or an MSP. The user does mashup for viewing the required mashed up
data in a single screen whereas MSP fetches data from DSPs or from other MSPs and forward them
to its user after performing the data mashup. The following section explains how data mashup is
performed by MSP and EU.

6.1. MSP’s Data Mashup

MSPs generally do not require creating views of mashed up data but need to integrate mashed up
data and forward the resultant structure data module to its users. Algorithm 5 processes JSON based
structure data module to integrate and forward the resultant mashed up JSON-SDM to its users.

The line v.replaceJSONAttribute(x, z) shows that each JSON attribute of JSONObject of the
structured data module is replaced by corresponding DMDAttribute while composing the new
structured data module. Thus, the value of an attribute of JSON object is assigned to DMDAttribute
which is semantically equal as per definition of SDXMapping.

Future Internet 2018, 10, 98 23 of 37

Algorithm 5. MSP’s Data Mashup Algorithm

p = getSDMB()
q = getMDSIs(p)
h = new JSON_SDM()
For each MDSI s ∈ q
begin1

r = getDSP(p, s)
t = getJSON_SDM(s)
u = getJSONObjects(t)
For each JSONObject v ∈ u
begin2

w = getJSONAttributes(v)
For each JSONAttribute x ∈ w
begin3

[fetch Sdx#Id from Table 7]
Sdx#Id = getSDXId(r, s, p)
[fetch SDX Mapping from Table 6]
y = getSDXMapping(Sdx#Id)
z = getDMDAttribute(x, y)
v.replaceJSONAttribute(x, z)

end3

h.add(v)
end2

end1

6.2. EU’s Data Mashup

The Algorithm 6 explains how end user can explore the integrated UI view of data mashup by
grouping various SDMBs in a single screen.

Algorithm 6. Integrated UI View of End User Data Mashup

p = getEUDM()
q = getSDMBs(p)
r = getScreen()
For each SDMB s ∈ q
begin1

t = getView(s)
r.addView(t)

end1

showScreen(r)

When a user selects End User Data Mashup (EUDM) by clicking on it then the view of each SDMB
is added to the screen and shown to the user after traversing all the SDMBs of respective end user
data mashup.

7. Implementation

7.1. Experimental Setup

In order to implement the proposed work, the experimental setup of the data mashup service
network was developed, which has been shown in Figure 7. It includes three services namely admission
services, job services and lodging services and the end users.

Future Internet 2018, 10, 98 24 of 37

Future Internet 2018, 10, x FOR PEER REVIEW 22 of 36

structured data module. Thus, the value of an attribute of JSON object is assigned to DMDAttribute
which is semantically equal as per definition of SDXMapping.

6.2. EU’s Data Mashup

The Algorithm 6 explains how end user can explore the integrated UI view of data mashup by
grouping various SDMBs in a single screen.

Algorithm 6. Integrated UI View of End User Data Mashup

 p = getEUDM()
 q = getSDMBs(p)
 r = getScreen()
 For each SDMB s ∈ q
 begin1

 t = getView(s)
 r.addView(t)
 end1
 showScreen(r)

When a user selects End User Data Mashup (EUDM) by clicking on it then the view of each
SDMB is added to the screen and shown to the user after traversing all the SDMBs of respective end
user data mashup.

7. Implementation

7.1. Experimental Setup

In order to implement the proposed work, the experimental setup of the data mashup service
network was developed, which has been shown in Figure 7. It includes three services namely
admission services, job services and lodging services and the end users.

Figure 7. Data Mashup Service Network.

Each service has some MSPs and DSPs connected to each other. For experimental purpose, we
developed one MSP and two DSPs of job services, one MSP and three DSPs of admission services
and one MSP and three DSPs of lodging services. In our implementation, admission services provide
admission notices to students, job services provide job alerts to job seekers and lodging services
provide rooms available in various hotels to their travelers. Here the student, the job seeker and the
traveler may be the same person who would like to view all the information (admission notices, job
alerts and availability of rooms) together in a single screen which may be called mashed up screen.

Figure 7. Data Mashup Service Network.

Each service has some MSPs and DSPs connected to each other. For experimental purpose, we
developed one MSP and two DSPs of job services, one MSP and three DSPs of admission services
and one MSP and three DSPs of lodging services. In our implementation, admission services provide
admission notices to students, job services provide job alerts to job seekers and lodging services
provide rooms available in various hotels to their travelers. Here the student, the job seeker and the
traveler may be the same person who would like to view all the information (admission notices, job
alerts and availability of rooms) together in a single screen which may be called mashed up screen.
All the stakeholders in our data mashup network used REST protocol and JSON data format for
mashup communication.

7.2. Pre-Mashup Configuration (OTC Model)

This section describes how the ordinary user can define mashup requirement of the data in
user-friendly manner and what kinds of outputs are generated after pre-mashup configuration. Here,
not only the output of pre-mashup configuration is important but also the user-friendly approach used
by ordinary user needs to be observed. The success of any mashup tool depends on output of the
pre-mashup configuration and the way this output is generated by ordinary user. In our proposed
work, a very simple approach (i.e., filling the web forms/selecting the radio buttons) is used by an
ordinary user to create the SDXMapping which is the output of pre-mashup configuration.

In the proposed work, defining mashup requirement of the data is as simple as making the list of
the name of attributes. Structured data mashup box can also be associated with data mashup definition
soon after the declaration of the requirement of the data mashup.

We took the following sample data set to execute proposed work for experimental purpose only
and it has nothing to do with real world’s data.

Suppose, Data Mashup Definition (DMD) defined by EU#01 are as follows

DMD for SDMB#01 (Admission Services) =
(notice_id, notice_title, name_of_university,
contact_no, link_to_apply, name_of_course, last_date)
DMD for SDMB#02 (Job Services) =
(job_id, job_title, job_description, salary, contact_no,
link_to_apply, years_of_exp, last_date)
DMD for SDMB#03 (Lodging Services) =
(hotel_name, hotel_address, total_rooms,
room_charges, contact_no, booking_link)

Future Internet 2018, 10, 98 25 of 37

Let us understand the SDXMapping of lodging services between various stakeholders of hybrid
data mashup as shown in Figure 1 where EU#01 works as data service consumer for MSP#01 and
DSP#03.MSP#01 further works as data service consumer for DSP#01 and DSP#02.

Suppose in Figure 1,

EU#01 = www.user1.com
MSP#01 = www.msp1.com
DSP#01 = www.hotel1.com
DSP#02 = www.hotel2.com
DSP#03 = www.hotel3.com

According to above assumptions, Figure 1 can be redrawn as given in the Figure 8.

Future Internet 2018, 10, x FOR PEER REVIEW 23 of 36

All the stakeholders in our data mashup network used REST protocol and JSON data format for
mashup communication.

7.2. Pre-Mashup Configuration (OTC Model)

This section describes how the ordinary user can define mashup requirement of the data in
user-friendly manner and what kinds of outputs are generated after pre-mashup configuration.
Here, not only the output of pre-mashup configuration is important but also the user-friendly
approach used by ordinary user needs to be observed. The success of any mashup tool depends on
output of the pre-mashup configuration and the way this output is generated by ordinary user. In
our proposed work, a very simple approach (i.e., filling the web forms/selecting the radio buttons) is
used by an ordinary user to create the SDXMapping which is the output of pre-mashup
configuration.

In the proposed work, defining mashup requirement of the data is as simple as making the list
of the name of attributes. Structured data mashup box can also be associated with data mashup
definition soon after the declaration of the requirement of the data mashup.

We took the following sample data set to execute proposed work for experimental purpose only
and it has nothing to do with real world’s data.

Suppose, Data Mashup Definition (DMD) defined by EU#01 are as follows

DMD for SDMB#01 (Admission Services) =
(notice_id, notice_title, name_of_university, contact_no, link_to_apply,
name_of_course, last_date)
DMD for SDMB#02 (Job Services) =
(job_id, job_title, job_description, salary, contact_no, link_to_apply, years_of_exp,
last_date)
DMD for SDMB#03 (Lodging Services) =
(hotel_name, hotel_address, total_rooms, room_charges, contact_no,
booking_link)

Let us understand the SDXMapping of lodging services between various stakeholders of hybrid
data mashup as shown in Figure 1 where EU#01 works as data service consumer for MSP#01 and
DSP#03.MSP#01 further works as data service consumer for DSP#01 and DSP#02.

Suppose in Figure 1,

EU#01 = www.user1.com
MSP#01 = www.msp1.com
DSP#01 = www.hotel1.com
DSP#02 = www.hotel2.com
DSP#03 = www.hotel3.com

According to above assumptions, Figure 1 can be redrawn as given in the Figure 8.

Figure 8. Hybrid Data Mashup for Lodging Services.

Figure 8. Hybrid Data Mashup for Lodging Services.

The graphical interface, which we developed in the proposed work for pre-mashup configuration
has been shown in Figure 9. This interface easily creates the SDXMapping between EU #01 and MSP#01
and looks like ‘Column Match Problem’.

Future Internet 2018, 10, x FOR PEER REVIEW 24 of 36

The graphical interface, which we developed in the proposed work for pre-mashup
configuration has been shown in Figure 9. This interface easily creates the SDXMapping between EU
#01 and MSP#01 and looks like ‘Column Match Problem’.

Figure 9. SDXMapping between EU#01 and MSP#01.

It can be noticed in Figure 9 that attribute “hotel_name” of EU#01’s data mashup definition is
mapped with attribute “hotlName” of MSP#01’s mashup service. Similarly, the other attribute’s
mapping can also be observed. The SDXMapping is created as a result of pre-mashup configuration
between data service consumer and MSP/DSP but once only. Similar kinds of user-friendly graphical
interfaces were also developed for pre-mashup configuration between other stakeholders in this
example. It can be observed here that this kind of graphical approach for pre-mashup configuration
is easier for any kind of ordinary user because it simply includes clicking on the radio buttons. Other
kinds of user-friendly graphical interfaces can also be designed for an ordinary user for pre-mashup
configuration. Attributes of data service consumer are shown in leftmost vertical column and
attributes of MSP/DSP are shown in horizontal top rows in Figure 9.

Let us consider the data set taken for end to end SDXMapping between EU#01 and other
stakeholders (i.e., MSP#01 and DSP#03) in Table 8. It is called end to end SDXMapping because there
is a direct mapping between DMDAttributes of EU#01 and MCAttributes of MSP#01 as well as a
direct mapping between DMDAttributes of EU#01 and MCAttributes of DSP#03.

Table 8. End to End SDXMapping between EU#01 and (MSP#01 and DSP#03).

EU#01
(www.user1.com)

MSP#01
(www.msp1.com)

DSP#03
(www.hotel3.com)

hotel_name hotlName nameOfHotel
hotel_address hotlAddress addressHotel
total_rooms totalRooms roomsAvailable

room_charges rmCharges chargeOfRooms
contact_no conNo moNumber

booking_link bookingUrl clickForBook

Let us also consider the data set taken for end to end SDXMapping between MSP#01 and other
stakeholders (i.e., DSP#01 and DSP#02) in Table 9. It is clear from Figure 9 that MSP#01 directly
interacts with DSP#01 and DSP#02 hence there is need of end to end SDXMapping between them.

Figure 9. SDXMapping between EU#01 and MSP#01.

It can be noticed in Figure 9 that attribute “hotel_name” of EU#01’s data mashup definition
is mapped with attribute “hotlName” of MSP#01’s mashup service. Similarly, the other attribute’s
mapping can also be observed. The SDXMapping is created as a result of pre-mashup configuration
between data service consumer and MSP/DSP but once only. Similar kinds of user-friendly graphical
interfaces were also developed for pre-mashup configuration between other stakeholders in this
example. It can be observed here that this kind of graphical approach for pre-mashup configuration is
easier for any kind of ordinary user because it simply includes clicking on the radio buttons. Other
kinds of user-friendly graphical interfaces can also be designed for an ordinary user for pre-mashup
configuration. Attributes of data service consumer are shown in leftmost vertical column and attributes
of MSP/DSP are shown in horizontal top rows in Figure 9.

Future Internet 2018, 10, 98 26 of 37

Let us consider the data set taken for end to end SDXMapping between EU#01 and other
stakeholders (i.e., MSP#01 and DSP#03) in Table 8. It is called end to end SDXMapping because
there is a direct mapping between DMDAttributes of EU#01 and MCAttributes of MSP#01 as well as a
direct mapping between DMDAttributes of EU#01 and MCAttributes of DSP#03.

Table 8. End to End SDXMapping between EU#01 and (MSP#01 and DSP#03).

EU#01
(www.user1.com)

MSP#01
(www.msp1.com)

DSP#03
(www.hotel3.com)

hotel_name hotlName nameOfHotel
hotel_address hotlAddress addressHotel
total_rooms totalRooms roomsAvailable

room_charges rmCharges chargeOfRooms
contact_no conNo moNumber

booking_link bookingUrl clickForBook

Let us also consider the data set taken for end to end SDXMapping between MSP#01 and other
stakeholders (i.e., DSP#01 and DSP#02) in Table 9. It is clear from Figure 9 that MSP#01 directly
interacts with DSP#01 and DSP#02 hence there is need of end to end SDXMapping between them.

Table 9. End to End SDXMapping between MSP#01 and (DSP#01 and DSP#02).

MSP#01
(www.msp1.com)

DSP#01
(www.hotel1.com)

DSP#02
(www.hotel2.com)

hotlName hotelName htlName
hotlAddress hotelAddress hotelAddr
totalRooms totalRooms nosRooms
rmCharges roomCharges perDayCharge

conNo contactNo mobileNo
bookingUrl bookingLink linkForBook

The Tables 8 and 9 show the output of pre-mashup configuration in form of SDXMapping for
lodging services which would be used by any time access model by an ordinary user to fetch the
required data from multiple data sources and populate them into structured data mashup box. Similar
kind of end to end SDXMapping can also be generated for other services (admission services and job
services) as mentioned above. The output of post data mashup operation has been explained in the
next section.

7.3. SDMB and End User Data Mashup (Any Time Access Model)

This section describes how end user will see the result of the mashed-up data. The web-based UI
was developed to implement the proposed work. The mashed-up views of various SDMBs (admission
services, job services and lodging services) have been shown in Figures 10–12. Each SDMB is also
showing Dsp#Id which is the source of mashed up data and its data service identifier which was used
to fetch the structured data module.

Figure 13 shows End User Data Mashup (EUDM) created by end user after grouping various
SDMBs at its end. It is the integrated screen of three SDMBs i.e., Admission Notices, Job Alerts and
Lodging Services as shown in Figures 10–12 respectively. It can be observed here that SDMB contains
similar kind of data, which have been mashed up for the same purpose. For example, SDMB of
admission notices contains admission notices sent by various universities or institutes.

It is clear from Figure 13 that the integrated user screen of hybrid kind of mashed up data (fetched
from multiple data sources) has been successfully created by end user without applying any technical
skills. It can easily be observed that EUs need not to know underlying technologies for data mashup in
overall process used in the implementation of the proposed work.

Future Internet 2018, 10, 98 27 of 37

Future Internet 2018, 10, x FOR PEER REVIEW 25 of 36

Table 9. End to End SDXMapping between MSP#01 and (DSP#01 and DSP#02).

MSP#01
(www.msp1.com)

DSP#01
(www.hotel1.com)

DSP#02
(www.hotel2.com)

hotlName hotelName htlName
hotlAddress hotelAddress hotelAddr
totalRooms totalRooms nosRooms
rmCharges roomCharges perDayCharge

conNo contactNo mobileNo
bookingUrl bookingLink linkForBook

The Tables 8 and 9 show the output of pre-mashup configuration in form of SDXMapping for
lodging services which would be used by any time access model by an ordinary user to fetch the
required data from multiple data sources and populate them into structured data mashup box.
Similar kind of end to end SDXMapping can also be generated for other services (admission services
and job services) as mentioned above. The output of post data mashup operation has been explained
in the next section.

7.3. SDMB and End User Data Mashup (Any Time Access Model)

This section describes how end user will see the result of the mashed-up data. The web-based
UI was developed to implement the proposed work. The mashed-up views of various SDMBs
(admission services, job services and lodging services) have been shown in Figures 10–12. Each
SDMB is also showing Dsp#Id which is the source of mashed up data and its data service identifier
which was used to fetch the structured data module.

Figure 13 shows End User Data Mashup (EUDM) created by end user after grouping various
SDMBs at its end. It is the integrated screen of three SDMBs i.e., Admission Notices, Job Alerts and
Lodging Services as shown in Figures 10–12 respectively. It can be observed here that SDMB
contains similar kind of data, which have been mashed up for the same purpose. For example,
SDMB of admission notices contains admission notices sent by various universities or institutes.

Figure 10. SDMB#01 (Admission Notices). Figure 10. SDMB#01 (Admission Notices).

Future Internet 2018, 10, x FOR PEER REVIEW 26 of 36

Figure 11. SDMB#02 (Job Alerts).

Figure 12. SDMB#03 (Lodging Services).

Figure 13. Integrated UI View using EU Data Mashup.

Figure 11. SDMB#02 (Job Alerts).

Future Internet 2018, 10, x FOR PEER REVIEW 26 of 36

Figure 11. SDMB#02 (Job Alerts).

Figure 12. SDMB#03 (Lodging Services).

Figure 13. Integrated UI View using EU Data Mashup.

Figure 12. SDMB#03 (Lodging Services).

Following points evaluate the result of the implementation of the proposed work by analyzing
the approach and output of experiments with the goals which were set in the beginning (See Section 3)
of the proposed work.

• Developed the integrated UI after performing the hybrid data mashup from multiple disparate
data sources

• Explored the Single Sign-on (SSO) scheme for private data mashup using mashup keys.

Future Internet 2018, 10, 98 28 of 37

• Only required data were fetched from the MSP/DSP which eliminates the unwanted flow of data
between the DSC and MSP/DSP and thus enhance the network performance.

• Simple user-friendly approach used in all steps to perform data mashup
• The REST protocol implemented for all mashup communication

Future Internet 2018, 10, x FOR PEER REVIEW 26 of 36

Figure 11. SDMB#02 (Job Alerts).

Figure 12. SDMB#03 (Lodging Services).

Figure 13. Integrated UI View using EU Data Mashup.

Figure 13. Integrated UI View using EU Data Mashup.

8. Work Evaluation

Now, the turn has come to evaluate the proposed work, which includes the complete life cycle of
the data mashup development by ordinary user using SDRest protocol for end to end data mashup.
As already mentioned, the data mashup is the set of techniques and approaches developed in such
a way that an ordinary user can use it to fetch their required data from multiple data sources and
mash them up in single place without any programming or technical skills. The data mashup always
intends to involve the ordinary user throughout the mashup development process and provides a
user-friendly approach so that whole process can be adopted by everyone without any technical
assistance. The main motivation behind the proposed work is to develop user-friendly approach using
the existing technologies and the communication protocol for developing the data mashup between
any two stakeholders (Ordinary User/Mashup Service Provider/Data Service Provider) and hence
called end to end data mashup.

In order to evaluate the proposed work, there is need of selecting some of the related tools,
techniques and approaches developed previously and the parameters to be fixed to compare the
proposed work with them. We selected some tools, which were developed by few IT giants and
other related works to compare with our proposed work. The comparison of the output of the data
mashup only, is not enough to evaluate the work because output covers only one aspect of the whole
mashup development process. The techniques and approaches used in each step of the mashup
development needs to be evaluated using various parameters. Let us discuss the parameters, which

Future Internet 2018, 10, 98 29 of 37

should be selected for the evaluation of the work then the observations based on these parameters
would be summarized.

The ordinary user has been the focus of the industries and the researchers for the mashup
development since last two decades but a killer mashup application like email is still waiting for
structured data communication for data mashup. Other than ordinary users, there are end user
developers, mashup service providers and data service providers who use the data mashup. We
have chosen “the targeted users” as a first primary parameter for evolution of the proposed work
because it is really a challenging task to make the ordinary user as a major stakeholder of the IT
system development. If any of the tools or technique targets the ordinary user then the development
of user-friendly UI approach becomes a compulsory feature.

After the popularity of service-oriented architecture, many organizations started providing the
data services and mashup services to their users but due to the availability of large numbers of services,
it became cumbersome for the user to select the appropriate services from reliable service provider.
Hence, selection of mashup service provider or data service provider is another important parameter
for evaluating the data mashup approach and technique. The selection of data/service providers
could be manual, semi-automatic or automatic. The mashup data or services made available by
MSP/DSP could be private, public or hybrid, which have already been discussed previously, is the
third parameter for comparison. The method of pulling or pushing the data in request-response
pattern is also an important parameter because the bandwidth consumption by data mashup is an
important factor to study. Data source, which is another important parameter of this comparative
study, plays important role because data source and its interface decides the success of the mashup
tools and approaches.

The users are given some GUI based tools like visual editors, web browser etc. and drag and
drop like user-friendly approach to allow them to define their own data mashup before fetching the
actual data from various disparate data sources. Hence, the mashup development tool and approach
has been included as a major parameter to evaluate the proposed work. Pre-mashup configuration
is compulsory steps of any mashup development tools or techniques because its output defines the
requirement of the user which would be used by mashup algorithm/tools to complete the remaining
task of data mashup in automatic mode. Although, the output of mashup can be made available in any
desirable form but it is important to know whether this output can be shared, forwarded and reused
by same/other user or not. The End User Data Mashup (EUDM) which we discussed in Section 7.3 is
also included as one of the parameters which tells whether output of various mashups itself can be
combined further to create integrated UI view or not.

Based on above discussions, we have chosen the following nine parameters to evaluate the
proposed work

(A) Targeted End Users
(B) End User Data Mashup (EUDM)
(C) Selection of MSPs/DSPs
(D) Types of Mashups
(E) Mashup Strategies
(F) Data Sources
(G) Mashup Development Tools/Approaches
(H) Output of the Pre-Mashup Configuration
(I) Output of the Mashup

We have chosen few reference works and tools developed previously and compared their features
with the proposed work using the above parameters as shown in Table 10.

Future Internet 2018, 10, 98 30 of 37

Table 10. The Comparisons of mashup tools, techniques and approaches.

SN References (A) Targeted EUs
(B) EUDM

(C) Sel. of MSPs/DSPs
(D) Types of Mashup
(E) Mashup Strategy

(F) Data Source
(G) Mashup Development

Tools and Approaches

(H) Output of Pre-Mashup Config.
(I) Output of Mashup

1. Query Form. Language [52] EUD(Type-2)/No Manual/Public/Pull RDF/MashQL Ed./Drag and Drop Graph Sign. and MashQL/SPARQL

2. IBM:Damia [53] EUD(Type-1)/No Manual/Public/Pull RSS,ATOM,XML/Damia GUI/Drag and Drop XML document/Damia Feed

3. Yahoo!Pipes [40] EUD(Type-1)/No Manual/Public/Pull HTML,JSON,XML,CSV,RSS,
ATOM,RDF/Visual YPipe Ed./Drag and Drp. Wired Services (Pipes)/Web Widgets

4. Intel Mash Maker [11,40] EUD(Type-2)/No Manual/Public/Pull XML,JSON,RSS,RDF,Annotated Web/Browser
Extn./Drag and Drop Tagged Widgets/Web Widgets

5. IBM Mashup Center [8] EUD(Type-1)/No Manual/Public/Pull REST API/Vis. Mashup Builder/Drag and Drop Pre-fabricated widgets, feeds/Data Feeds

6. Microsoft Popfly [40] EUD(Type-2)/No Manual/Public/Pull Web Page/Popfly Editor/Drag and Drop Connected Blocks/Visual. Data Widget

7. Google Mash. Editor [8] EUD(Type-1)/No Manual/Public/Pull APIs,RSS,Atom/GME/Programming Source Code/Feeds, Scripts

8. Building by Demo [16] OU/No Manual/Public/Pull Web Page/Browser/Drag and Drop Karma Framework/Worksheet

9. Configurable RESTful [23] MSP,EUD(Type-1)/No Manual/Public/Pull XML,JSON/PAW mashup engine SDD, MD/Web Widgets

10. SOA for High Dim. Prv. Data
Mashup [35] MSP/No Manual/Private/Pull NA/Privacy Preserved Algorithm Service Integration Privacy/Preserved Mashed up Data

11. Dataflow Patt. Frame. [30] MSP/No Semi-Auto./Public/Pull Nested relational model/Pattern b. frame. Data Mashup Plan/Mixed Graph

12. FlexMash [13] EUD(Type-1)/No Manual/Public/Pull Business Objects/Mashup Plan Ed./Drag Drop Mashup Plan/Executable Representations

13. EFESTO [54] EUD(Type-1)/No Manual/Public/Pull Web Page/Visual Editor/Drag Drop UI Templates/Visualized Data

14. Marmite [55] EUD(Type-1)/No Manual/Public/Pull Web Page/Vis. Web Ed. Drag and Drop Data Extraction Tool/Spreadsheet View

15. D-Mash [56] MSP/No Manual/Public/Pull DaaS/Cloud-based computing platform SOAP API/Mashed up Tables

16. Mashroom+ [57] EUD(Type-2)/No Manual/Public/Pull HTML,XML,JSON,rel. db/Interactive Data Int.
Env./Drag Drop Matching Algorithm and GUI Tool/Nested Table

17. End to End Service [34] MSP,EUD(Type-2)/No Semi-Auto./Public/Pull Web Services/MSQL Editor MSQL/Mashed up Service

18. Proposed Work OU,MSP,DSP,EUD/Yes Manual/Public, Private,
Hybrid/Pull,Push

JSON through REST/Browser,Web Form Entry
or Selecting Radio Buttons SDMB and SDXMapping/Auto Populated SDMB

Future Internet 2018, 10, 98 31 of 37

The following points may be summarized after analyzing the above table data.
(A) We can analyze by observing this parameter that the most of the previous works could target

to end user developers (type-1 and type-2) and but only few of them got success in developing the
data mashup platform for ordinary user. Here, the EUD(type-1) is the technical person who knows
some programming skills with script editing and capable to use the mashup tools. The EUD(type-2) is
not fully technical person but he/she is more computer savvy than the ordinary user and have some
knowledge of browser configuration, plug-ins etc. The ordinary user is completely a not technical
person and knows browsing, web form entry, selecting the radio buttons and clicking the submit
button only and even one cannot expect operations like drag and drop of some widgets on canvas and
connecting them together. The proposed work supports end to end data mashup which facilitates the
mashup communication between any two stakeholders, thus it can be used by any of the stakeholder
i.e., ordinary user, mashup service provider, data service provider and end user developer. It is obvious
that anything, which is developed for ordinary user, can also be used by other technical persons. There
are five values taken for the parameter called ‘targeted user’ i.e., EUD(type-1), EUD(type-2), ordinary
user (OU), MSP or DSP. We have explained the reasons about the values assigned to this parameter in
the point ‘F’ i.e., Mashup Development Tool/Approach.

(B) The integrated UI is an important parameter, which integrates the various mashup outputs
together to create a single screen of hybrid data mashup. It indicates that output of different data
mashups can also be integrated so that user can view them together in single place. This feature has
been easily implemented in the proposed work as compared to previous works.

(C) The method of selection of the MSPs/DSPs is the next parameter to evaluate the mashup
development works. There are three ways to select MSP/DSP for data mashup i.e., manual,
semi-manual and automatic. It can be seen from value of this parameter that the most of the works for
selecting the MSP/DSP are manual. Refs. [30,34] could achieve the semi-automatic mode of selection
of mashup/data services but are limited to be used by MSP only. The proposed work is also limited
to the manual selection of MSP/DSP. It is one of the most challenging steps of mashup development
because it involves methods and techniques to transform user’s requirement in terms of services or
in some other forms. In case of private data mashup, the user already knows the source of the data
and hence searching the MSP/DSP is not needed, but it still requires selection of the right services
available within that MSP/DSP. In manual approach of selecting MSPs/DSPs in the proposed work,
the user will choose one of the MSP/DSP just as he/she selects one email service among all the email
service providers.

(D) The fourth parameter is the type of mashup, which has three possible values i.e., private,
public, and hybrid. Actually, this parameter describes the accessing modes of the data available with
MSP/DSP. It can be seen that most of the previous works focused their work on public data mashup.
But, the mashup is generally more towards personal data mashup hence private and hybrid data
mashup need to be developed to make this technology more popular among end users. Our proposed
work and [35] focused to perform mashup for private data. Study [35] is used to preserve the privacy
aspect of user’s data before providing it to third party and targets to MSP but our work can be used to
perform the data mashup directly by ordinary user without any involvement of third party mashup
service provider hence there is no question of preserving privacy of the user’s data.

(E) The mashup strategies based on pull and push pattern are important to study because these
decide the consumption of the bandwidth of the network and should be carefully chosen. It can be
observed here that almost all mashup techniques and approaches focused on pull data mashup but
our proposed work recommends both patterns (pull/push) while performing the data mashup as per
the nature of the data.

(F) The source of data that is chosen by mashup service provider or the end user is an important
aspect of the whole data mashup process. The web pages were the target data source for most of the
mashup developers at the initial stage of mashup development and thereafter developers targeted to
data in well-structured format. The proposed work supports data in well-structured format provided

Future Internet 2018, 10, 98 32 of 37

by standard REST protocol only. It can easily be observed that the data sources mentioned here, can be
categorized into four categories. The first category is the well-structured data source, which contains
data in ATOM, JSON, XML, CSV, RSS, RDF etc. format. The second category is the customized data
source like nested relational model, business objects etc. Some works directly used HTML, Web Page,
Annotated Web, Web Page APIs to fetch the required data and can be placed in third type category and
in fourth category, cloud computing paradigm and web service as DaaS, SOAP Web Services, REST
calls, REST API etc. were used as data source. The proposed work has been currently implemented to
support JSON data format but it can also be easily implemented to support data in well-structured
format which would be provided by REST protocol.

(G) The mashup tool, technique and approach is the core thought of the whole mashup
development process because it decides not only the UI approach adopted for development of
data mashup by ordinary user but also decides the values of all other parameters as mentioned
above. The Google Mashup Editor [8] is an ajax based framework and runs in Mozilla Firefox and
Microsoft Internet Explorer without any plug-ins and the source code is generated as a result of
pre-mashup configuration in XML, Javascript API etc. The script generated by this editor can be used
by EUD(type-1) only. Yahoo Pipes [40] is a web-based tool, which allows the end user to drag, and
drop pipes (some kind of UI components) and connect them with other pipes to create sequence of
pipes as pre-mashup configuration which would be accessed by unique URL to get RSS or JSON etc.
Yahoo pipes is suitable for EUD(type-2) user. Intel mash maker [11,40] is also web-based tool, which
works directly with web page and suggests the end user whether there is some mashups/widgets in
the visited page or not. The Microsoft popfly [40] is very much similar to Yahoo Pipes which uses the
term ‘block’ instead of pipes and used to integrated different services as a pre-mashup configuration
by making chain of blocks. Reference [52] developed a graphical Interface to use MashQL with some
assumption to generate SPARQL. The approach and technologies used in MashQL editor is limited to
be used by EUD(type-1) only.

Damia [53] provides a browser-based client interface with powerful collection of set-oriented feed
manipulation operators for importing, filtering, merging, grouping, and otherwise manipulating feeds
to accommodate various feed formats such as RSS and ATOM, as well as other XML formats. Again,
this tool is limited to be used by EUD(type-1) because the involvement of various operators cannot
be easily understood by ordinary user. As far as ordinary user is concerned, the building mashup
by demonstration [16] is really a simple approach, which can be used by ordinary user, but major
challenge in this work is the extraction of required data from web page whose DOM is not in the proper
shape. Reference [23] uses the PAW mashup engine which generates Service Description Document
(SDD), Mashup Document (SD) which can be used by the mashup service provider and EUD(type-1)
level users only because specification of documents generated here cannot be easily understood by
either the ordinary user or the EUD(type-2). Reference [30] targets to mashup service provider which
allows to analyze the relationship among data services for discovering mashup patterns based on the
history records of data mashup plans. This approach recommends data mashup patterns by analyzing
the input and output parameters of the data services if pattern is not found but it is also suitable
for MSP.

Reference [13] proposed a flexible execution of data processing and integration scenarios to solve
the Extract-Transform-Load processes related issues for end users. They presented an approach for
modeling and pattern-based execution of data mashups based on mashup plans, a domain-specific
mashup model which can be suitable for EUD(type-1) because the mapping from non-executable
model onto different executable ones depending on the use case scenario cannot be performed by
ordinary user. Reference [54] uses the graphical interface for visual mapping between data attributes
and UI templates which is not easily be used by ordinary user and suitable for EUD(type-1) because it
also includes implicit control flow.

Marmite [55] is an end-user programming tool for creating web-based mashups. It uses a set of
operators to extract and process data from web pages and uses data flow to create spreadsheet view

Future Internet 2018, 10, 98 33 of 37

that shows the current values of the data. Reference [56] used the cloud computing paradigm Data
as a Service (DaaS) to develop mashup framework using SOAP API and limited to be used by MSP.
Mashroom+ [57] was developed to support users to easily process and combine data with visualized
tables. This work focuses on an interactive matching algorithm which is designed to synthesize the
automatic matching results from multiple matchers as well as user feedbacks. It can be studied in detail
that it can be found suitable for EUD(type-2) because of complexity of defining the user’s requirement,
data mapping and the output supported.

There is always need of pre-mashup configuration before performing actual data mashup.
Pre-mashup configuration is used to define data requirement of the user. Most of the previous
works tried to develop user-friendly graphical interface because of the involvement of ordinary users.
The proposed work recommends to use the existing web browser without any extension or plug-ins
installation or configuration. Alternatively, mobile app screen or desktop application can also be used
for pre-mashup configuration. It can be seen from Figure 9 that it simply requires skill of web form
entry, selection of radio buttons etc. to complete the pre-mashup requirement, which is easier than any
other tools/approaches developed previously. It can be observed here that every mashup developer
has generated pre-mashup configuration before performing the actual data mashup but approaches
used by them were not much suitable for ordinary user.

(H) Output of pre-mashup configuration is the one of evaluation parameter which would be
used to perform data extraction, filtering, data mapping and population etc. The success of the
data mashup depends on the algorithm and output of pre-mashup configuration. The outputs of
pre-mashup configuration of the proposed work are DMD, SDMB, SDXMapping and data validation,
transformation and population algorithm which would automate the task of fetching required data
from multiple data sources and populate them into SDMB which can be viewed by ordinary user in
any desired format.

(I) Output of the mashup can be a web widget, purely structured data or in some other formats
which depends upon the tools and technologies used to perform the data mashup. Till now, there
is no standard format of output of data mashup but it would be better if one can provide data in
well-structured format so that it can be consumed and viewed in user’s preferable format.

In brief, the following points may be considered as improvements in the proposed work over the
previous works.

i. The proposed work supports all stakeholders of mashup development i.e., Ordinary User, End
User Developer, Mashup Service Provider, Data Service Providers by providing user-friendly
end user configurable approach at every stage of the mashup development.

ii. The integration of structured data mashup box helps the ordinary user to produce integrated
view of his mashed-up data in single screen.

iii. The proposed work includes all kinds of data mashups i.e., public, private and hybrid data
mashup with both mashup strategies i.e., push and pull.

iv. It supports mashup of data in any structured format which would be made available by
REST protocol.

v. It uses simple web browser without any extensions or plug-ins and involves the user interface
events like selecting the radio buttons, fill the web form and submit the button which is most
suitable for an ordinary user.

vi. Outputs of pre-mashup configuration (i.e., structured data mashup box and structured data
exchange mapping) are used to populate the data in auto mode.

Currently, followings are few limitations of the proposed work which need to be
investigated further.

i. The manual intervention on structured data exchange mapping
ii. The manual searching of mashup and data services

Future Internet 2018, 10, 98 34 of 37

iii. The schema mapping is not covered in the current work while performing structured data
exchange mapping

9. Conclusions and Future Scope

The largest group of internet users belongs to ordinary users who would like to view all their
required information at one digital place instead of visiting multiple webs/apps because of the
exponential growth of data and its services. The data mashup is the set of techniques and approaches
which have always been on the focus of researchers and industries for last 2 decades because it
facilitates its users to develop their own application for viewing required information from multiple
data sources at one digital place defined by them. The data mashup targets to ordinary users and their
involvement cannot be avoided but most of the works previously published expect some technical
skills from them hence data mashup could not become as popular as email communication. This work
eliminates the need of technical skills from users and provides user-friendly approach to develop end
to end data mashup, even by ordinary users.

In this paper, we have introduced the concept of Structured Data REST (SDRest) protocol which
includes the innovative concept of Structured Data Mashup Box to store, view and integrate structured
data from multiple data sources using standard REST communication between Data Service Consumer
and Data Service Provider. SDRest protocol has been explored using two models namely One Time
Configuration (OTC) Model and Any Time Access Model (ATA).

The one time configuration model includes the pre-mashup configuration which is the essential
process of any data mashup. The success of the data mashup depends on the algorithm and output of
pre-mashup configuration, which would be used by data service consumer to fetch and mashup
the required data from multiple data sources. Our implementation shows that the outputs of
pre-mashup configuration of the proposed work are data mashup definition, structured data mashup
box, SDXMapping and other supporting algorithms and a very simple approach (i.e., filling the web
forms/selecting the radio buttons) has been developed to involve ordinary user to generate the desired
output. The Any Time Access (ATA) model shows that the integrated UI view of hybrid kind of
mashed up data (fetched from multiple data sources) has been successfully created by an ordinary
user without applying any technical skills.

The proposed work has been evaluated by comparing it with other related works and it concludes
that the proposed work supports all stakeholders of mashup development i.e., Ordinary User, End
User Developer, Mashup Service Provider, Data Service Providers by providing user-friendly end
user configurable approach at every stage of the mashup development. It not only includes public,
private and hybrid data mashup but also supports push and pull mashup strategies. Thus, the main
objective to develop user-friendly approach using the existing technologies and the communication
protocol for developing the data mashup between any two stakeholders which may also be called end
to end data mashup, has been successfully achieved in the proposed work. In future, this protocol
can be generalized to develop end to end data mashup with unified approach between any two
entities of the internet. Data schema mapping has not been covered in this paper and can be explored
as future research work. Further, there is much scope to generalize this work for Structured Data
Communication among IoT devices in future.

Author Contributions: This paper is the collaborative efforts of both the authors. Both have read and approved
the final manuscript.

Acknowledgments: Authors are thankful to Barkatullah University, Bhopal, India for providing platform for
research work, research centre (NITTTR, Bhopal, India) for providing research lab & other resources for completing
the research work and reviewers for their valuable comments.

Conflicts of Interest: The authors declare no conflicts of interest.

Future Internet 2018, 10, 98 35 of 37

References

1. Beemer, B.; Dawn, G. Mashups: A Literature Review and Classification Framework. Future Internet 2009, 1,
59–87. [CrossRef]

2. Imran, M. An Effective End-User Development Approach through Domain-Specific Mashups for Research
Impact Evaluation. arXiv, 2013; arXiv:1312.7520.

3. Cheng, B.; Zhai, Z.; Zhao, S.; Chen, J. LSMP: A Lightweight Service Mashup Platform for Ordinary Users.
IEEE Commun. Mag. 2017, 55, 116–123. [CrossRef]

4. Khokhar, R.H.; Benjamin, C.M.F.; Farkhund, I.; Dima, A.; Jamal, B. Privacy-Preserving Data Mashup Model
for Trading Person-Specific Information. Electron. Commer. Res. Appl. 2016, 17, 19–37. [CrossRef]

5. Fielding, R.T.; Richard, N.T. Architectural Styles and the Design of Network-Based Software Architectures.
Ph.D. Dissertation, University of California, Irvine, CA, USA, 2000.

6. Díaz, O.; Aldalur, I.; Arellano, C.; Medina, H.; Firmenich, S. Web mashups with WebMakeup. In Rapid
Mashup Development Tools; Springer: Cham, Switzerland, 2016; pp. 82–97.

7. Aghaee, S.; Pautasso, C.; De Angeli, A. Natural end-user development of web mashups. In Proceedings
of the 2013 IEEE Symposium on Visual Languages and Human Centric Computing, San Jose, CA, USA,
15–19 September 2013; pp. 111–118.

8. Taivalsaari, A. Mashware: The Future of Web Applications; Sun Microsystems, Inc.: Mountain View, CA,
USA, 2009.

9. Desolda, G.; Carmelo, A.; Maria, F.C.; Maristella, M. End-User Composition of Interactive Applications
through Actionable UI Components. J. Vis. Lang. Comput. 2017, 42, 46–59. [CrossRef]

10. Yu, J.; Benatallah, B.; Casati, F.; Daniel, F. Understanding Mashup Development. IEEE Internet Comput. 2008,
5, 44–52. [CrossRef]

11. Ennals, R.; Brewer, E.; Garofalakis, M.; Shadle, M.; Gandhi, P. Intel Mash Maker: Join the web. ACM SIGMOD
Rec. 2007, 36, 27–33. [CrossRef]

12. Stolee, K.T.; Elbaum, S. Identification, impact, and refactoring of smells in pipe-like web mashups. IEEE Trans.
Softw. Eng. 2013, 39, 1654–1679. [CrossRef]

13. Hirmer, P.; Mitschang, B. FlexMash–flexible data mashups based on pattern-based model transformation. In
Rapid Mashup Development Tools; Springer: Cham, Switzerland, 2016; pp. 12–30.

14. Ghiani, G.; Fabio, P.; Lucio, D.S.; Pintori, G. An Environment for End-User Development of Web Mashups.
Int. J. Hum.-Comput. Stud. 2016, 87, 38–64. [CrossRef]

15. Paternň, F. End user development: Survey of an Emerging Field for Empowering People. ISRN Softw. Eng.
2013, 2013, 532659. [CrossRef]

16. Tuchinda, R.; Knoblock, C.A.; Szekely, P. Building mashups by demonstration. ACM Trans. Web (TWEB)
2011, 5, 16. [CrossRef]

17. Ferrara, E.; De Meo, P.; Fiumara, G.; Baumgartner, R. Web data extraction, applications and techniques: A
survey. Knowl.-Based Syst. 2014, 70, 301–323. [CrossRef]

18. Yang, J.; Wittern, E.; Ying, A.T.; Dolby, J.; Tan, L. Automatically Extracting Web API Specifications from
HTML Documentation. arXiv, 2018; arXiv:1801.08928.

19. Lee, Y.J. Semantic-Based Web API Composition for Data Mashups. J. Inf. Sci. Eng. 2015, 31, 1233–1248.
20. Dojchinovski, M.; Vitvar, T. Linked web APIs dataset. Semant. Web. 2018, 9, 381–391. [CrossRef]
21. Fischer, T.; Fedor, B.; Andreas, N. An Overview of Current Approaches to Mashup Generation. Available

online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.567.349 (accessed on 12 September 2018).
22. Hoang, D.D.; Paik, H.Y.; Benatallah, B. An analysis of spreadsheet-based services mashup. In Proceedings

of the Twenty-First Australasian Conference on Database Technologies, Brisbane, Australia, 18–22 January
2010; Volume 104, pp. 141–150.

23. Ma, S.P.; Huang, C.Y.; Fanjiang, Y.Y.; Kuo, J.Y. Configurable RESTful service mashup: A process-data-widget
approach. Appl. Math. Inf. Sci. (AMIS) 2015, 9, 637–644.

24. Zhang, F.; Hwang, K.; Khan, S.; Malluhi, Q. Skyline Discovery and Composition of Inter-Cloud Mashup
Services. IEEE Trans. Serv. Comput. 2016, 1, 72–83. [CrossRef]

25. Liu, X.; Ma, Y.; Huang, G.; Zhao, J.; Mei, H.; Liu, Y. Data-driven composition for service-oriented situational
web applications. IEEE Trans. Serv. Comput. 2015, 8, 2–16. [CrossRef]

http://dx.doi.org/10.3390/fi1010059
http://dx.doi.org/10.1109/MCOM.2017.1600309
http://dx.doi.org/10.1016/j.elerap.2016.02.004
http://dx.doi.org/10.1016/j.jvlc.2017.08.004
http://dx.doi.org/10.1109/JIOT.2017.2765359
http://dx.doi.org/10.1145/1361348.1361355
http://dx.doi.org/10.1109/TSE.2013.42
http://dx.doi.org/10.1016/j.ijhcs.2015.10.008
http://dx.doi.org/10.1155/2013/532659
http://dx.doi.org/10.1145/1993053.1993058
http://dx.doi.org/10.1016/j.knosys.2014.07.007
http://dx.doi.org/10.3233/SW-170259
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.567.349
http://dx.doi.org/10.1109/TSC.2015.2449302
http://dx.doi.org/10.1109/TSC.2014.2304729

Future Internet 2018, 10, 98 36 of 37

26. Zhai, Z.; Cheng, B.; Tian, Y.; Chen, J.; Zhao, L.; Niu, M. A Data-Driven Service Creation Approach for
End-Users. IEEE Access 2016, 4, 9923–9940. [CrossRef]

27. Nečaský, M.; Helmich, J.; Klímek, J. Platform for automated previews of linked data. In Proceedings of the
19th ACM International Conference on Information Integration and Web-Based Applications & Services,
Salzburg, Austria, 4–6 December 2017; pp. 395–404.

28. DiFranzo, D.; Graves, A.; Erickson, J.S.; Ding, L.; Michaelis, J.; Lebo, T.; Patton, E.; Williams, G.T.; Li, X.;
Zheng, J.G.; et al. The web is my back-end: Creating mashups with linked open government data. In Linking
Government Data; Springer: New York, NY, USA, 2011; pp. 205–219.

29. Salminen, A.; Tommi, M. Mashups-Software Ecosystems for the Web Era. In Proceedings of the Fourth
International Workshop on Software Ecosystems 2012, Boston, MA, USA, 18 June 2012; pp. 18–32.

30. Wang, G.; Han, Y.; Zhang, Z.; Zhang, S. A Dataflow-Pattern-Based Recommendation Framework for Data
Service Mashup. IEEE Trans. Serv. Comput. 2012, 8, 889–902. [CrossRef]

31. Liang, T.; Chen, L.; Wu, J.; Xu, G.; Wu, Z. SMS: A Framework for Service Discovery by Incorporating Social
Media Information. IEEE Trans. Serv. Comput. 2016. [CrossRef]

32. Xia, B.; Fan, Y.; Tan, W.; Huang, K.; Zhang, J.; Wu, C. Category-Aware API Clustering and Distributed
Recommendation for Automatic Mashup Creation. IEEE Trans. Serv. Comput. 2015, 8, 674–687. [CrossRef]

33. Yao, L.; Wang, X.; Sheng, Q.Z.; Benatallah, B.; Huang, C. Mashup Recommendation by Regularizing Matrix
Factorization with API Co-Invocations. IEEE Trans. Serv. Comput. 2018. [CrossRef]

34. Bouguettaya, A.; Nepal, S.; Sherchan, W.; Zhou, X.; Wu, J.; Chen, S.; Liu, D.; Li, L.; Wang, H.; Liu, X.
End-to-End Service Support or Mashups. IEEE Trans. Serv. Comput. 2010, 3, 250–263. [CrossRef]

35. Fung, B.C.; Trojer, T.; Hung, P.C.; Xiong, L.; Al-Hussaeni, K.; Dssouli, R. Service-Oriented Architecture for
High-Dimensional Private Data Mashup. IEEE Trans. Serv. Comput. 2012, 5, 373–386. [CrossRef]

36. Nguyen, H.V.; Iacono, L.L. RESTful IoT Authentication Protocols. In Mobile Security and Privacy; Syngress:
Rockland, MA, USA, 2016; pp. 217–234.

37. Lee, S.; Jo, J.Y.; Kim, Y. Method for Secure RESTful Web Service. In Proceedings of the 2015 IEEE/ACIS 14th
International Conference on Computer and Information Science (ICIS), Las Vegas, NV, USA, 28 June–1 July
2015; pp. 77–81.

38. Peng, D.; Li, C.; Huo, H. An Extended Usernametoken-based Approach for REST-Style Web Service
Security Authentication. In Proceedings of the 2nd IEEE International Conference on Computer Science and
Information Technology, Beijing, China, 8–11 August 2009; pp. 582–586.

39. Serme, G.; de Oliveira, A.S.; Massiera, J.; Roudier, Y. Enabling Message Security for Restful Services. In
Proceedings of the IEEE 19th International Conference on Web Services, Honolulu, HI, USA, 24–29 June
2012; pp. 114–121.

40. Di, L.G.; Hacid, H.; Paik, H.Y.; Benatallah, B. Data Integration in Mashups. ACM SIGMOD Rec. 2009, 38,
59–66.

41. Bhide, M.; Deolasee, P.; Katkar, A.; Panchbudhe, A.; Ramamritham, K.; Shenoy, P. Adaptive Push-Pull:
Disseminating Dynamic Web Data. IEEE Trans. Comput. 2002, 51, 652–668. [CrossRef]

42. Wang, G.; Zhang, S. Freshness-Aware Data Service Mashups. In Proceedings of the Asia-Pacific Services
Computing Conference, Zhangjiajie, China, 16–18 November 2016; pp. 435–449.

43. Rahm, E.; Bernstein, P.A. A survey of approaches to automatic schema matching. VLDB J. 2001, 10, 334–350.
[CrossRef]

44. Del Fabro, M.D.; Bézivin, J.; Jouault, F.; Valduriez, P. Applying Generic Model Management to Data Mapping.
Available online: https://www.semanticscholar.org/paper/Applying-Generic-Model-Management-
to-Data-Mapping-1-Fabro-B%C3%A9zivin/503d665eb6c99f9f7200712365f47edb362d7ecc (accessed on
12 September 2018).

45. Atay, M.; Chebotko, A.; Liu, D.; Lu, S.; Fotouhi, F. Efficient schema-based XML-to-Relational data mapping.
Inf. Syst. 2007, 32, 458–476. [CrossRef]

46. Guo, M.; Yu, Y. Mutual Enhancement of Schema Mapping and Data Mapping. Available
online: https://www.semanticscholar.org/paper/Mutual-Enhancement-of-Schema-Mapping-and-Data-
Guo-Yu/491cc554f774337c0bfae8f7ff9e8d546b42f3e7 (accessed on 12 September 2018).

47. Zhao, H.; Doshi, P. Towards Automated Restful Web Service Composition. In Proceedings of the IEEE
International Conference on Web Services, Los Angeles, CA, USA, 6–10 July 2009; pp. 189–196.

http://dx.doi.org/10.1109/ACCESS.2017.2647838
http://dx.doi.org/10.1109/TSC.2015.2471307
http://dx.doi.org/10.1109/TSC.2016.2631521
http://dx.doi.org/10.1109/TSC.2014.2379251
http://dx.doi.org/10.1109/TSC.2018.2803171
http://dx.doi.org/10.1109/TSC.2010.34
http://dx.doi.org/10.1109/TSC.2011.13
http://dx.doi.org/10.1109/TC.2002.1009150
http://dx.doi.org/10.1007/s007780100057
https://www.semanticscholar.org/paper/Applying-Generic-Model-Management-to-Data-Mapping-1-Fabro-B%C3%A9zivin/503d665eb6c99f9f7200712365f47edb362d7ecc
https://www.semanticscholar.org/paper/Applying-Generic-Model-Management-to-Data-Mapping-1-Fabro-B%C3%A9zivin/503d665eb6c99f9f7200712365f47edb362d7ecc
http://dx.doi.org/10.1016/j.is.2005.12.008
https://www.semanticscholar.org/paper/Mutual-Enhancement-of-Schema-Mapping-and-Data-Guo-Yu/491cc554f774337c0bfae8f7ff9e8d546b42f3e7
https://www.semanticscholar.org/paper/Mutual-Enhancement-of-Schema-Mapping-and-Data-Guo-Yu/491cc554f774337c0bfae8f7ff9e8d546b42f3e7

Future Internet 2018, 10, 98 37 of 37

48. Dustdar, S.; Schreiner, W. A Survey on Web Services Composition. Int. J. Web Grid Serv. 2005, 1, 1–30.
[CrossRef]

49. Sheng, Q.Z.; Qiao, X.; Vasilakos, A.V.; Szabo, C.; Bourne, S.; Xu, X. Web Services Composition: A Decade’s
Overview. Inf. Sci. 2014, 280, 218–238. [CrossRef]

50. Mecca, G.; Papotti, P.; Santoro, D. Schema Mappings: From Data Translation to Data Cleaning. In A
Comprehensive Guide through the Italian Database Research over the Last 25 Years; Springer: Berlin, Germany,
2018; pp. 203–217.

51. Aftab, S.; Afzal, H.; Khalid, A. An approach for secure semantic data integration at data as a service (DaaS)
layer. Int. J. Inf. Educ. Technol. 2015, 2, 124. [CrossRef]

52. Jarrar, M.; Dikaiakos, M.D. A Query Formulation Language for the Data Web. IEEE Trans. Knowl. Data Eng.
2012, 24, 783–798. [CrossRef]

53. Simmen, D.E.; Altinel, M.; Markl, V.; Padmanabhan, S.; Singh, A. Damia: Data mashups for intranet
applications. In Proceedings of the ACM SIGMOD International Conference on Management of Data,
Vancouver, BC, Canada, 9–12 June 2008; pp. 1171–1182.

54. Desolda, G.; Ardito, C.; Matera, M. EFESTO: A platform for the end-user development of interactive
workspaces for data exploration. In Rapid Mashup Development Tools; Springer: Cham, Switzerland, 2016;
pp. 63–81.

55. Wong, J. Marmite: Towards end-user programming for the web. In Proceedings of the IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC 2007), Coeur d’Alene, ID, USA,
23–27 September 2007; pp. 270–271.

56. Arafati, M.; Dagher, G.G.; Fung, B.C.; Hung, P.C. D-mash: A framework for privacy-preserving
data-as-a-service mashups. In Proceedings of the IEEE 7th International Conference on Cloud Computing,
Anchorage, AK, USA, 27 June–2 July 2014; pp. 498–505.

57. Liu, C.; Wang, J.; Han, Y. Mashroom+: An interactive data mashup approach with uncertainty handling.
J. Grid Comput. 2014, 12, 221–244. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1504/IJWGS.2005.007545
http://dx.doi.org/10.1016/j.ins.2014.04.054
http://dx.doi.org/10.7763/IJIET.2015.V5.488
http://dx.doi.org/10.1109/TKDE.2011.41
http://dx.doi.org/10.1007/s10723-013-9280-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work and Challenges
	Involvement of Stakeholders
	Searching the Right MSP/DSP
	Data Privacy and Security
	Data Refreshing
	Data Mapping
	Standard Communication Protocol
	Data Accessibility

	Motivational Scenario
	Our Contributions
	Contribution#1
	Contribution#2
	Contribution#3
	Contribution#4
	Contribution#5
	Contribution#6

	Structured Data Rest Protocol
	The Model of Proposed SDRest Protocol
	SDRest System Architecture
	Data Mashup Definition (DMD)
	Structured Data Mashup Box (SDMB)
	Composition of SDMB and MDRs
	SDMB Composition
	Mashup Data Records (MDRs)
	MDRAttributes and MDRValues

	SDMB-DMD Association
	One Time Configuration (OTC) Algorithm
	Mashup Configuration Attributes (MCA)
	SDX Mapping
	Mashup Data Service (MDS)
	SDMB-MDS Association
	Any Time Access (ATA) Algorithm
	Structured Data Module (SDM)
	SDM
	Structured Data Records (SDRs)
	SDRAttributes and SDRValues

	JSON Composition of Structured Data Module
	SDR Validation, Transformation and Population Algorithm

	DSC’s Data Mashup
	MSP’s Data Mashup
	EU’s Data Mashup

	Implementation
	Experimental Setup
	Pre-Mashup Configuration (OTC Model)
	SDMB and End User Data Mashup (Any Time Access Model)

	Work Evaluation
	Conclusions and Future Scope
	References

