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Abstract: Cocrystal formation rates during dry grinding and liquid-assisted grinding were 
investigated by X-ray powder diffractometry and Raman spectroscopy. Two polymorphic 
forms of piracetam were used to prepare known piracetam cocrystals as model substances, 
i.e.,piracetam-citric acid and piracetam-tartaric acid cocrystals. Raman spectroscopy in 
combination with principal component analysis was used to visualize the cocrystal 
formation pathways. During dry grinding, cocrystal formation appeared to progress via an 
amorphous intermediate stage, which was more evident for the piracetam-citric acid than 
for the piracetam-tartaric acid cocrystal. It was shown that liquid-assisted grinding led to 
faster cocrystal formation than dry grinding, which may be explained by the higher 
transformation rate due to the presence of liquid. The cocrystal formation rate did not 
depend on the applied polymorphic form of the piracetam and no polymorphic cocrystals 
were obtained. 
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1. Introduction  

Pharmaceutical cocrystals can be defined as stoichiometric multiple component substances formed 
by active pharmaceutical ingredients (API) and cocrystal formers. At least two components of a 
cocrystal must be solid under ambient conditions [1].  

Cocrystals are gaining increasing interest in the pharmaceutical community, because they differ in 
their physicochemical properties from single-component crystals, e.g., melting point [2], hydration 
stability [3], UV light stability [4], hygroscopic properties [5], dissolution behavior [6], and 
bioavailability [7].  

Although most cocrystals have been found by chance, an increased understanding of the cocrystal 
formation process during the last few decades has led to more systematic cocrystal design. Two 
approaches are common practice: one is based on a structural fit of the compounds, i.e., similarities in 
molecule packing, and the other is based on specific pair wise interactions, so-called supramolecular 
synthons [8]. The API and cocrystal former interact via non-ionic and non-covalent intermolecular 
interactions, such as van der Waals forces, π-π-interactions, and most importantly, hydrogen bonding. 
Hence, the presence of free hydrogen bond donors and acceptors is usually a prerequisite for cocrystal 
formation [2]. Supramolecular assemblies of cocrystals may be based on homosynthons, such as 
acid-acid interactions, and heterosynthons, for example acid–amide interactions [1].   

Piracetam (2-oxo-1-pyrrolidineacetamide, shown in Figure 1) is a nootropic substance, used for the 
treatment of memory and balance problems. Piracetam is a neutral molecule, containing two different 
amide moieties, which could form heterosynthons with carboxylic acid or hydroxyl groups. Five 
anhydrous polymorphic forms (forms I–V) and two hydratesof this drug have been reported [9,10]. 
Form III was found to be the thermodynamically stable polymorph at ambient conditions [11]. The 
presence of different polymorphic forms increases the chance for cocrystal formation because 
polymorphism is based on molecular flexibility. Hence, it may be easier to pack such a molecule in a 
different crystal lattice arrangement with another substance than is the case for structurally more rigid 
molecules [12].  

Figure 1. Chemical structure of piracetam. 

 

As a result of the ability to form heterosynthons on the one hand and structural flexibility on the 
other hand, piracetam is a suitable model substance for the investigation of cocrystal formation. It is 
thus not surprising that several piracetam cocrystals are described in the literature. In 2005, 
Vishweshwar et al. characterized piracetam cocrystals formed with 2,5-dihydroxybenzoic acid 
(Cambridge Structural Database (CSD) reference code: DAVPAS) and 4-hydroxybenzoic acid (CSD 
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reference code: DAVPEW) by slow evaporation of acetonitrile, slurrying in water, and dry-grinding 
using Fourier transformation infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), 
X-ray powder diffractometry (XRPD), and single-crystal X-ray diffractometry (SC-XRD) [13]. Liao et 
al. examined the formation of piracetam cocrystals with different isomers of dihydroxybenzoic acid by 
crystallization from acetonitrile and characterized the cocrystals by DSC, FTIR, and XRPD [14]. 
Recently, Viertelhaus et al. described a screening experiment for piracetam cocrystals, using Raman 
microscopy, FT-Raman spectroscopy, XRPD, SC-XRD, dynamic vapor sorption, thermogravimetry 
coupled with FTIR, and DSC as characterization techniques. Piracetam cocrystals with L-(+) tartaric 
acid (L-(+)-2,3-dihydroxybutanedioic acid) (CSD reference code: RUCDUP), racemic 2-hydroxy-2-
phenylacetic acid (CSD reference code: RUCFIF), L-2-hydroxy-2-phenylacetic acid (CSD reference 
code: XOZSOV), and citric acid (2-hydroxypropane-1,2,3-tricarboxylic acid) at molar ratios of 1:1 
(CSD reference code: RUCFAX) and 3:2 (CSD reference code: RUCFEB) as well as an ethanol 
solvate of the piracetam-2-hydroxypropane-1,2,3-tricarboxylic acid cocrystal (not published in the 
CSD) were detected. These cocrystals were prepared by solvent evaporation, solution crystallization, 
and liquid-assisted grinding [5].  

Cogrinding of an API and a cocrystal former is an important technique for cocrystal preparation and 
especially for cocrystal screening [5,15–17]. Three mechanisms are discussed for cocrystal formation 
by dry-grinding: molecular diffusion, intermediate formation of eutectic mixtures, and intermediate 
formation of an amorphous phase. Usually a more effective grinding method is liquid-assisted grinding 
[5,9,18], although the mechanism, and especially the role of the liquid, is not yet fully understood. 
Some authors suggest that a small amount of liquid may act as a lubricant for the reaction, while others 
state that the liquid provides a medium to enhance molecular diffusion [19]. While many research 
articles have been published regarding cocrystal characterization [5], screening [20], design [21], and 
storage stability [15],little work has been done to understand the kinetics of cocrystal formation during 
grinding. Chieng et al. followed the cocrystallization process of different solid-state forms of 
carbamazepine during dry-grinding with nicotine amide by combining XRPD with a multivariate data 
analysis approach [15], concluding that cocrystal formation using carbamazepine hydrate is faster than 
using the meta-stable polymorphic form I of the drug, which in turn was faster than using the stable 
polymorphic form III. Principal component analysis (PCA) provided a valuable tool to visualize the 
cocrystal formation process. 

The aim of this study was to gain a deeper insight into the formation of two known piracetam 
cocrystals, i.e. piracetam-citric acid and piracetam-tartaric acid, during grinding. In the first part of the 
study cocrystal formation was investigated as a function of the grinding technique and the polymorphic 
form of the API, using XRPD, DSC, and Raman spectroscopy. In the second part PCA of the Raman 
spectra was performed to provide a more detailed insight into the cocrystallization mechanism.  

2. Experimental Section  

2.1. Materials 

Piracetam (MW: 142.16 g/mol) was purchased from Hangzhou Dayangchem, China. Purity was 
confirmed by high performance liquid chromatography. The polymorphic form was determined to be 
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form III by XRPD and DSC. However, to exclude impurities of other piracetam polymorphs, form III 
was used after recrystallization from methanol at ambient conditions. Piracetam form I was obtained 
by heating form III at 160 °C for 5 min and subsequent cooling to room temperature. Citric acid  
(MW: 192.13 g/mol) was purchased from AppliChem, Germany, and L-(+)-tartaric acid  
(MW: 150.09 g/mol) was purchased from Ajax Chemicals, Australia; both compounds were of 
pharmaceutical grade and were used as received. 
 
2.2. Methods 
 
2.2.1. Physical mixing 

 
The cocrystal formers were ground before mixing to achieve the same particle size as the API. 

Physical mixtures were obtained by gently mixing API and cocrystal formers at a 1:1 molar ratio in a 
glass mortar with a glass pestle for 1 min. 
 
2.2.2. Grinding 
 
2.2.2.1. Dry-grinding 

 
Dry-grinding was performed by co-milling piracetam with citric acid and tartaric acid, respectively, 

at a 1:1 molar ratio in 25 mL stainless steel milling jars using an oscillatory ball mill (Retsch MM301, 
Germany). Each jar contained three 9 mm stainless steel balls. Milling was carried out for predefined 
time periods from 1 min to 30 min at a frequency of 30 Hz.  
 
2.2.2.2. Liquid-assisted grinding 

 
For liquid-assisted grinding, the same process parameters as for dry-grinding were used. 

Additionally, 16.6 µL of water and 166 µL of ethyl acetate were added to prepare the piracetam-citric 
acid cocrystal before the milling process was started. For piracetam-tartaric acid cocrystal preparation, 
16.6 µL of water were added [5]. 
 
2.2.3. Characterization methods 
 
2.2.3.1. X-ray powder diffractometry (XRPD) 

 
Differences in crystal lattice configuration were examined using a PANalytical X’Pert PROMD 

diffractometer (PW3040/60, Philips, The Netherlands), with CuKα radiation at a wavelength of 1.54 Å 
in continuous scanning mode. The step size was 0.0084 °2θ and the scanning rate was 0.1285 °2θ/min. 
Powder samples were analyzed in aluminium sample holders and scanned at 40 kV and 30 mA from  
5 to 35 °2θ. The powder diffraction patterns were analyzed with X’Pert Highscore software (version 
2.2.0) and plotted with OriginPro 7.5. The theoretical cocrystal patterns were calculated on the basis of 
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the Cambridge Structural Data base (CSD 5.32, November 2010) [22] using ConQuest 1.13 [23] by 
Mercury software CSD 2.4 [24] (Cambridge Crystallographic Data Centre, UK). 
 
2.2.3.2. Differential scanning calorimetry (DSC)  
 

To confirm the XRPD results, DSC was performed. Each sample was analyzed in triplicate. The 
material was weighed (1–5 mg) into a TA instruments standard aluminium pan using a micro balance 
and tweezers. The pan was covered with a lid and crimped using a TA crimper. The reference pan was 
crimped similarly to the sample pans but without any substance.  

Thermograms were recorded on a Q100 V8.2 Build 268, (TA Instruments, USA) under a constant 
nitrogen gas flow of 50 mL/min. The DSC apparatus was calibrated with regard to temperature and 
enthalpy using indium as a standard. The heating rate was set to 10 K/min in a range from 20 to  
180 °C. To determine any thermal events the TA Universal Analysis 2000 software (version 4.0c)  
was used. 
 
2.2.3.3. FT-Raman spectroscopy 
 

FT-Raman spectra were recorded using a Bruker FRA 106/S FT-Raman spectrometer (Bruker, 
Germany), equipped with a Coherent Compass 1064-500N laser (Coherent, USA), attached to a 
Bruker IFS 55 FT-IR interferometer, and a D 425 Ge diode detector. The laser wavelength was  
1064 nm and laser power 120 mW. To monitor the wave number accuracy sulfur was used as a 
reference standard. Measurements were performed in triplicate (each spectrum was averaged over  
64 scans) at a resolution of 4 cm–1. Spectra were displayed using the OPUS 5.0 software.  
 
2.2.3.4. Chemometrics 
 

Spectral changes due to cocrystal formation were visualized by performing principal component 
analysis (PCA) of the Raman spectra. The data were pre-treated with a standard normal variate 
algorithm and scaled by mean centering. Multivariate data analysis was performed with The 
Unscrambler X (version 10, Camo, Norway). The spectral regions between 1800 cm–1 and 2700 cm–1 
and above 3100 cm–1 were excluded. 

3. Results and Discussion  

The substances investigated in this study were characterized by XRPD, DSC, and Raman 
spectroscopy. The piracetam-citric acid and piracetam-tartaric acid cocrystal structure was thoroughly 
described by Viertelhaus et al. [5], a schematic overview over the interactions within the unit cells is 
presented in Figure 2 (Cambridge Structural Database 2011) [22,23].  
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Figure 2. (a) 3D structure of the piracetam-citric acid unit cell. (b) 3D structure of the 
piracetam-tartaric acid unit cell (Cambridge Structural Database 2011) [22,23]. 

 

The XRPD patterns, DSC thermograms, and the Raman spectra of the model API piracetam 
(polymorphic forms I and III), the cocrystal formers citric acid and tartaric acid, and the cocrystals are 
displayed in Figures 3–5. For clarity, only the data of the physical mixtures of piracetam form III and 
the cocrystal formers, rather than the individual components alone, are displayed. The calculated 
cocrystal XRPD patterns based on the single crystal data in the CSD are included in Figure 3. The 
characteristic peaks of the physical mixtures are highlighted by blue dotted lines. The patterns of the 
physical mixtures of piracetam form III and citric acid or tartaric acid, respectively, show 
combinations of the diffractograms of both compounds expressing API as well as cocrystal former 
peaks. In contrast, the cocrystal patterns are completely different to those of the physical mixtures, 
showing peaks which are not observable in the physical mixture patterns, because the crystal 
configuration differs significantly from the crystal lattices of the single components. The measured 
cocrystal patterns are in good agreement with the patterns calculated on the basis of the CSD (pink 
dotted lines).  

To confirm the XRPD results, DSC was performed. In Figure 4 the various DSC thermograms are 
displayed. Piracetam form III shows three endothermic events at onset temperatures of 125 °C, 140 °C, 
and 150 °C. According to Maher et al. [25], the first endothermic event at 125 °C is the result of a 
partial transformation of form III into form I, which melts at 150 °C, while form III melts at 140 °C. 
Citric acid melts at 154 °C and L-tartaric acid at 170 °C. The melting onset temperature of the 
piracetam-citric acid cocrystal is 105 °C, while the piracetam–tartaric acid cocrystal melts at 160 °C. 
The melting points of the pure substances and the cocrystals are in good agreement with the values 
published in the literature [5,9,11,25].  
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Figure 3. (a) XRPD patterns of piracetam form I (Pir I) and form III (Pir III), citric acid 
(CA), physical mixture of piracetam form III and citric acid (Pir III/CA PM),  
piracetam-citric acid cocrystal (Pir III CA), and calculated piracetam-citric acid cocrystal 
pattern (Pir III CA CP). (b) XRPD patterns of piracetam form I (Pir I) and form III  
(Pir III), tartaric acid (TA), physical mixture of piracetam form III and tartaric acid  
(Pir III/TA PM), piracetam-tartaric acid cocrystal (Pir III TA), and calculated  
piracetam-tartaric acid cocrystal pattern (Pir III TA CP). 

 

Figure 4. DSC thermograms of piracetam form I (Pir I) and form III (Pir III), citric acid 
(CA), tartaric acid (TA), piracetam-citric acid cocrystal(Pir III CA), and piracetam-tartaric 
acid cocrystal (Pir III TA). 
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Raman spectroscopy, which provides molecular level information, is a valuable technique for  
solid-state and cocrystal investigation [15,20].  

In Figure 5 the characteristic Raman bands of the pure substances and the physical mixtures are 
highlighted by blue dotted lines; the cocrystal peaks are highlighted by pink dotted lines. The cocrystal 
spectra can easily be differentiated from the physical mixtures’ spectra, since they show peaks which 
are not observed for the physical mixtures. 

Figure 5. (a) Raman spectra of piracetam form I (Pir I) and form III (Pir III), citric acid 
(CA), physical mixture of piracetam form III and citric acid (Pir III/CA PM), and 
piracetam-citric acid cocrystal (Pir III CA). (b) Raman spectra of piracetam form I (Pir I) 
and form III (Pir III), tartaric acid (TA), physical mixture of piracetam form III and tartaric 
acid (Pir III/TA PM), and piracetam-tartaric acid cocrystal (Pir III TA). 

 

In the first part of the study the formation speeds of piracetam-citric acid cocrystals and  
piracetam-tartaric acid cocrystals were investigated as a function of different grinding techniques on 
the one hand and different polymorphic forms of piracetam on the other hand. Therefore, piracetam 
form I or form III were co-ground with citric acid and tartaric acid, respectively, by dry-grinding as 
well as by liquid-assisted grinding. The samples, milled for predefined time periods, were examined 
using XRPD and Raman spectroscopy.  

In Figure 6, the XRPD patterns and the Raman spectra of the samples of piracetam form I and form 
III, dry-ground with citric acid, are shown. The patterns and spectra of the physical mixtures (blue 
dotted lines) and the cocrystal (pink dotted lines) are included as references.  
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Figure 6. (a) XRPD patterns of the physical mixture of piracetam form I and citric acid 
(Pir I/CA PM), dry-ground for predefined time periods. The piracetam form I-citric acid 
cocrystal (Pir I CA) reference pattern is included. (b)Raman spectra of the physical mixture 
of piracetam form I and citric acid (Pir I/CA PM), dry-ground for predefined time periods. 
The piracetam form I-citric acid cocrystal (Pir I CA) reference spectrum is included.  
(c) XRPD patterns of the physical mixture of piracetam form III and citric acid (Pir III/CA 
PM), dry-ground for predefined time periods. The piracetam form III-citric acid cocrystal 
(Pir III CA) reference pattern is included. (d) Raman spectra of the physical mixture of 
piracetam form III and citric acid (Pir III/CA PM), dry-ground for predefined time periods. 
The piracetam form III-citric acid cocrystal (Pir III CA) reference spectrum  
is included. 

 

Upon milling, significant changes in the XRPD patterns and in the Raman spectra can be detected. 
The intensity of the characteristic peaks of the physical mixture decreases, while that of the cocrystal 
peaks increases. After 10 min of milling, regardless of the piracetam polymorph used as starting 
material, the patterns and spectra only show characteristic cocrystal peaks, indicating complete 
cocrystal formation. Interestingly, the characteristic XRPD peaks and Raman bands of the cocrystals 
formed by bothpiracetam form I-citric acid and piracetam form III-citric acidmatch, indicating that the 
resulting cocrystals are identical.  

For all samples, a loss of crystallinity of piracetam and citric acid during grinding is observed in the 
XRPD diffractograms and in the Raman spectra, identifiable by the broader peaks with lower intensity. 
This is known to occur during grinding [26]. Co-grinding at room temperature leads to partial 
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amorphization, and further grinding can accelerate cocrystal formation. This cocrystal formation 
mechanism is typical for solids which are not volatile and which interact via hydrogen bonds. It has 
been suggested that cocrystal formation occurs via an intermediate amorphous stage of high energy 
and high molecular mobility [16]. Some samples were even completely amorphous after grinding, 
indicated by a broad halo in the XRPD pattern. These samples crystallized forming the cocrystal. 

Figure 7. (a) XRPD patterns of the physical mixture of piracetam form I and tartaric acid 
(Pir I/TA PM), dry-ground for predefined time periods. The piracetam form I tartaric acid 
cocrystal (Pir I TA) reference pattern is included. (b) Raman spectra of the physical 
mixture of piracetam form I and tartaric acid (Pir I/TA PM), dry-ground for predefined 
time periods. The piracetam form I tartaric acid cocrystal (Pir I TA) reference spectrum is 
included. (c) XRPD patterns of the physical mixture of piracetam form III and tartaric acid 
(Pir III/TA PM), dry-ground for predefined time periods. The piracetam form III tartaric 
acid cocrystal (Pir III TA) reference pattern is included. (d) Raman spectra of the physical 
mixture of piracetam form III and tartaric acid (Pir III/TA PM), dry-ground for predefined 
time periods. The piracetam form III tartaric acid cocrystal (Pir III TA) reference spectrum 
is included. 

 
 
In Figure 7, the XRPD patterns and the Raman spectra of piracetam form I and form III, dry-ground 

with tartaric acid at predefined milling times, are shown. Again, the intensity of the characteristic 
peaks of the physical mixture decreases, while the cocrystal peaks become more prominent with 
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increasing milling times. Independent of the polymorphic form of piracetam, the physical mixture 
peaks disappear after 10 min of grinding and cocrystal formation is completed. This observation is 
surprising, as Chieng et al. showed that the thermodynamically less stable polymorph of 
carbamazepine forms cocrystals with nicotine amide faster during dry-grinding than the stable 
polymorph because of its higher energy [15]. This trend is not observed in the present study. Again, 
the cocrystals formed by piracetam form I and form III do not show polymorphism. 

In the diffractograms, a loss of crystallinity, as it was shown for piracetam-citric acid cocrystals, 
cannot be observed with piracetam-tartaric acid. In addition, there was no evidence of amorphous 
material in the DSC thermograms (not shown) or Raman spectra detectable by the naked eye. 

Figure 8. (a) XRPD patterns of the physical mixture of piracetam form I and citric acid 
(Pir I/CA PM), after liquid-assisted grinding for predefined time periods. (b) Raman 
spectra of the physical mixture of piracetam form I and citric acid (Pir I/CA PM), after 
liquid-assisted grinding for predefined time periods. (c) XRPD patterns of the physical 
mixture of piracetam form III and citric acid (Pir III/CA PM), after liquid-assisted grinding 
for predefined time periods. (d) Raman spectra of the physical mixture of piracetam form 
III and citric acid (Pir III/CA PM), after liquid-assisted grinding for predefined time 
periods.  
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Figure 9. (a) XRPD patterns of the physical mixture of piracetam form I and tartaric acid 
(Pir I/TA PM), after liquid-assisted grinding for predefined time periods. (b) Raman 
spectra of the physical mixture of piracetam form I and tartaric acid (Pir I/TA PM), after 
liquid-assisted grinding for predefined time periods. (c) XRPD patterns of the physical 
mixture of piracetam form III and tartaric acid (Pir III/TA PM), after liquid-assisted 
grinding for predefined time periods. (d) Raman spectra of the physical mixture of 
piracetam form III and tartaric acid (Pir III/TA PM), after liquid-assisted grinding for 
predefined time periods.  

 
 
Cocrystal formation during grinding may be enhanced by small amounts of liquid added to the 

milling jar before the milling process [18]. To compare the rate of cocrystal formation during this 
liquid-assisted grinding with dry-grinding, the XRPD patterns and the Raman spectra of piracetam 
form I or form III, co-ground with citric acid and tartaric acid, respectively, were recorded after the 
same milling times (Figures 8 and 9). Already after 1 min of milling, the patterns and spectra differ 
significantly from those of the physical mixture. Peaks characteristic of the physical mixture disappear 
from the XRPD patterns and the Raman spectra and only cocrystal peaks are detected. Obviously, 
cocrystal formation is already completed after 1 min of liquid-assisted grinding for both the piracetam-
citric acid cocrystal and the piracetam-tartaric acid cocrystal. 
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On the one hand, the fast cocrystal formation may be explained by the higher molecular mobility of 
the API and the cocrystal formers as a result of their partial solubility in the liquids used in the 
experimental setup [18,19]. On the other hand, Viertelhaus et al. observed a loss of crystallinity in an 
equimolar mixture of piracetam and citric acid during liquid-assisted grinding [5]. This was not 
observed in the present study, probably because of the fast cocrystallization process. 

As observed with the dry-grinding process, no differences are found between the cocrystal 
formation rates of the different polymorphic forms of piracetam during liquid-assisted grinding. 
According to the XRPD patterns, the cocrystals of piracetam and citric acid or tartaric acid obtained by 
liquid-assisted grinding and dry grinding, respectively, are identical. Raman spectroscopy (Figures 8b, 
8d and 9b, 9d) and DSC (data not shown) support the XRPD findings. 

In summary, it was found with both cocrystal systems that liquid-assisted grinding results in very 
fast cocrystal formation, which is completed within the first minute of grinding. Cocrystal formation 
during dry-grinding is a slower process and is completed only after 10 min. In the present study, the 
type of polymorphic form does not have a significant influence on the cocrystal formation rate, which 
is in contrast to findings published by Chieng et al. in 2009 for carbamazepine cocrystals [15]. 
Different polymorphic cocrystals are not obtained by dry-grinding or liquid-assisted grinding.  
Dry-grinding of piracetam andcitric acid leads to partial amorphization, which is suggested to be the 
cocrystallization mechanism. Amorphization is not obvious for formation of the piracetam-tartaric  
acid cocrystal. 

To gain a deeper insight into the transformation of the physical mixture into the cocrystal during 
dry-grinding, principal component analysis (PCA) of the Raman spectra was performed. PCA is a 
valuable technique to visualize differences in the cocrystal formation rate and can help to provide 
insight into solid-state transformation processes taking place during grinding [15]. In Figure 10a, the 
PCA 2D score plot of piracetam-citric acid cocrystal formation is presented. Of the total variance, 70% 
is explained by the first two components. Principal component 1 (PC-1, 50% of the total variance) 
distinguishes between the cocrystal and non-cocrystal systems: It correlates negatively with  
non-cocrystal and positively with cocrystal systems. Comparison of the PC-1 loadings plot with the 
Raman spectra of the physical mixture and the cocrystal supports this interpretation of the score plot 
(Figure 10b). Scores of samples dry-ground for less than 5 min cluster in the left part of the score plot 
(black symbols). XRPD confirms that these samples remain as physical mixtures of the original 
crystalline components. Scores of samples ground for more than 5 min forming cocrystals (confirmed 
by XRPD) cluster on the right hand side of the score plot (blue symbols). In some cases, the samples 
are completely X-ray amorphous after different milling periods (red symbols). When these amorphous 
samples were stored for 24 h at ambient conditions, they crystallized and clustered with the cocrystal 
scores, indicating cocrystal formation (green symbols). PC-2 (20% of the total variance) describes 
spectral differences between the physical mixtures of citric acid and piracetam form I or form III (PC-2 
loadings plot Figure 10c). After completion of the cocrystal formation, no differences between the 
spectra of the cocrystals formed by form I and form III are detected with PCA.  
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Figure 10. (a) PCA 2D score plot of piracetam form I (circles) or form III (triangles)  
dry-ground with citric acid. Black symbols represent non-cocrystal systems ground for less 
than 5 min, blue symbols represent cocrystal systems, red symbols represent samples being 
X-ray amorphous after various grinding times, green symbols represent the amorphous 
samples after crystallization, forming the cocrystal. (b) Loadings plot of PC-1.  
(c) Loadings plot of PC-2. 

 

In Figure 11a the PCA 2D score plot of piracetam-tartaric acid cocrystal formation is displayed. The 
first two PCs explain 85% of the total variance: PC-1 with 58% and PC-2 with 27%. PC-1 
differentiates between cocrystal and non-cocrystal systems and correlates negatively with cocrystal and 
positively with non-cocrystal spectral information. This interpretation is confirmed if the PC-1 
loadings plot is compared with the Raman spectra of both the physical mixture and the cocrystal 
(Figure 11b). The differences in PC-2 space are harder to attribute, and are discussed below. 
Interestingly, the mixtures prepared with form I at less than one minute of milling occupy the same 
PCA space as those prepared with form III at the same period of milling. XRPD analysis revealed that 
form I crystallized to form III within this time period. With increasing milling time for form III, the 
score clusters move from the physical mixture cluster in quadrant IV towards the cocrystal cluster in 
quadrant III. After 10 min of grinding, the scores cluster with the cocrystal reference scores suggesting 
completed cocrystallization. Despite form I converting to form III, the mixtures originally consisting of 
forms I and III take different paths in PCA space and the rate of cocrystal formation is different, with 
the original form I mixtures taking longer than 30 min to form cocrystals. This suggests some sort of 
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residual structural differences (e.g., in morphology or degree of disorder) of the piracetam crystals in 
the samples even though both contained form III during the first minute of milling. 

XRPD analysis of the samples during milling while diverging in the PC-2 space was also 
performed. Interestingly, XRPD analysis did not reveal any solid-state differences between the 
mixtures prepared with the two different polymorphs during the milling process, and the PC-2 loadings 
of the Raman spectra did not provide evidence that the Raman spectra were the result of different 
solid-state forms. Therefore, the structural differences associated with this divergence in PCA space 
are subtle, and may be due to slight differences in the degree of disorder. Nevertheless, the differences 
in cocrystal formation kinetic are substantial, suggesting that subtle structural differences can have a 
significant impact on cocrystal formation kinetics. 

Figure 11. (a) PCA 2D score plot of piracetam form I or form III dry-ground with tartaric 
acid. (b) Loadings plots of PC-1 and PC-2, Raman spectra of Pir III/TA PM and Pir III TA 
for comparison. 

 

4. Conclusions 

Piracetam cocrystals containing citric acid and tartaric acid, respectively, can be prepared by  
dry-grinding as well as liquid-assisted grinding. The rate of cocrystal formation is independent of the 
polymorphic form of the API, but differs with the applied grinding technique. As expected, the 
cocrystal formation during liquid-assisted grinding is faster than that during dry-grinding.  
Piracetam-citric acid cocrystals are formed via an amorphous intermediate stage. This could not be 
confirmed for the piracetam-tartaric acid cocrystals. However, subtle structural differences were found 
to influence the piracetam-tartaric acid cocrystal formation process. This study shows that Raman 
spectroscopy in combination with principal component analysis is a valuable tool to follow 
cocrystallization processes during different milling techniques.   
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