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Abstract: Nine diclofenac salts prepared with alkyl-hydroxy amines were analyzed for 
their properties to form polymorphs by DSC and HSM techniques. Thermograms of the 
forms prepared from water or acetone are different in most cases, suggesting frequent 
examples of polymorphism among these salts. Polymorph transition can be better 
highlighted when analysis is carried out by thermo-microscopy, which in most cases made 
it possible to observe the processes of melting of the metastable form and re-crystallization 
of the stable one. Solubility values were qualitatively related to the crystal structure of the 
salts and the molecular structure of the cation. 
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1. Introduction  

A number of papers dealing with the preparation or the structure of some diclofenac salts revealed 
that some of them precipitate as hydrates when crystallized from water. Thermal and 
thermogravimetry study or X-ray diffractograms showed that in these salts hydration occurs to 
different extents, as a function of the counterion, and that also polymorphs are formed. These facts 
cannot be without consequences when a salt is employed as an active agent in commercial 
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formulations, as is the case of sodium, potassium, diethylamine and pyrrolidine ethanol diclofenac 
salts. These salts are widely used in oral and topical formulations, and it is important to define the 
nature of the active agent concerning its molecular weight or the capacity to absorb water and/or to 
transform as a consequence of its contact with environmental humidity.  

A large series of diclofenac salts with a variety of amines was prepared and tested for solubility [1] 
and the factors affecting the solubility were examined [2]. However, the interesting behavior of 
diclofenac/pyrrolidine ethanol salt, which forms polymorphs with different extents of hydration [3,4]; 
and the easiness of dehydration of some alkaline diclofenac salts [5] suggested better examination of 
the nature of the solid state of these salts soon after their preparation or after equilibration with water 
in order to state the formation of hydrates and their stoichiometry or the presence of polymorphs, by 
suitable techniques. Most salts of this series were in fact previously prepared and examined by means 
of their melting point using traditional techniques: this parameter, which suffers from subjectivity, 
often offers uncorrected and partial information on the nature of the solid salt and ignores possible 
transitions driven by temperature scanning. Therefore thermal analysis in terms of DSC, HSM and 
TGA furnishes better investigation tools. Moreover, solubility values were previously determined 
without examining the nature of the solid in equilibrium with the saturated solution. Due to the 
possibility of changes of the solid state of these diclofenac salts when in contact with water, it can be 
expected that the samples used to prepare saturated solutions (often obtained from organic solvents) 
could in many instances be different from those obtained in water. This was found in the case of the 
pyrrolidine ethanol diclofenac salt; this salt also revealed how complex the behavior of a diclofenac 
salt can be: the form obtained from organic solvents and that obtained from water are polymorphs and 
this last form is also bi-hydrate; the first form equilibrates very slowly in water and tends to form 
relatively stable supersaturated solutions. Since most of the salts were previously prepared in organic 
solvents to obtain crystalline material, in this paper we prepared a series of these salts in water and, by 
means of thermal analysis (differential scanning calorimetry - DSC and thermomicroscopy - HSM), 
assessed the formation of polymorphs, measured the solubility in water and related the solubility to the 
physical form of the salt present at the equilibrium. 

Some years ago we started a project to characterize diclofenac salts prepared with aliphatic amines 
in order to make a chemical form with high solubility in water available for this potent NSAID and to 
test their possible new applications [6–8]. The behavior in water solution of the salt prepared with 
pyrrolidine ethanol revealed an interesting aspect that suggested carrying out a systematic examination 
of the salts prepared with structurally related amines. 

Aliphatic bases considered for the preparation of the salts are both linear and cyclic: the parent 
compound, diethylamine and pyrrolidine respectively for the two series, were chosen as references for 
an open or cyclic molecular structure. In the present paper we are concerned only with linear aliphatic 
hydroxy bases. The linear bases in this study carry progressive structural variants, such as increasing 
number of hydroxy groups (mono-, di- and tri-ethanolamine; TRIS); or combination of ethyl, methyl 
and hydroxy-ethyl groups (methyl-, dimethyl-, ethyl-, diethyl-monoethanolamine; methyl-, ethyl-
diethanolamine). The thermal analysis of these salts was discussed in a previous paper [9]: differences 
in the thermograms were considered only for few cases. A more systematic examination is carried out 
in this paper on the differences caused by two different solvents of crystallization.  
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2. Results and Discussion  

2.1. Diclofenac salts 

The formation of a pharmaceutical salt can modify the physicochemical as well as the biological 
properties of an ionizable drug, which cannot be predicted from the properties of the parent drug and 
of the counterion: the final salt in fact represents in most cases a “unicum”, and as a consequence 
needs a complete pre-formulation study to reveal its peculiarities. The studies carried out on the 
relationships between the nature of the salt forming agent and the resulting salt cannot be reliable, 
from this point of view. For instance, increasing hydrophilicity of the counterion can easily be 
suggested as a simple remedy to increase the solubility in water of the resultant salt and was proposed 
in the case of erythromycin salts [10]. Also in the case of diclofenac, the need for a soluble salt opened 
the large field of the aliphatic amines as salt forming agents, different from the usual sodium or 
potassium hydroxides and, particularly, of those carrying hydroxy groups: with the hypothesis that the 
higher the hydrophilicity of the counterion, the higher the hydrophilicity of the resulting salt could be 
[1,3,11,12]. Subsequent research showed that this idea is not completely correct in the case of the 
diclofenac salts with hydroxy amines [2]. In some cases, diclofenac salts prepared with hydroxy 
amines proved to be highly soluble in water [11]: however it was demonstrated that, in the case of the 
pyrrolidine ethanol diclofenac salt, the equilibrium solubility concerns the bi-hydrate polymorph form, 
the one which is stable in aqueous solution. High solubility values may possibly be found since 
aqueous solutions of this salt tend to oversaturate and the equilibrium is very slowly reached: in these 
cases the estimate of the solubility of the metastable forms could be obtained by means of 
measurement of the intrinsic dissolution rate [13]. Careful investigations on the nature of the solid 
state [14,4] as well as of the behavior in aqueous solution [6,13,15] of this salt have been described: 
this was found to depend on the particular structure of the molecule of diclofenac. 

2.2. The molecule of diclofenac  

The molecule of diclofenac, from a point of view of its structure, is a hybrid between a fenamic and 
an acetic acid class derivative; the characteristic feature is the presence of a secondary amino group 
(N-H) bridging two aromatic rings and representing the source of a series of intramolecular H-bonds 
towards a chlorine atom of one and the carboxyl group of the other aromatic ring of the diclofenac 
molecule. Other H-bonds exist between the carboxyl groups of two different molecules of diclofenac, 
which face together in a dimer: the dimer form represents a structural unit of the solid state of 
diclofenac, like that of most carboxylic acids. These aspects originate important consequences. All the 
H-bonds involve the hydrophilic groups inside the dimer inter- and intra-molecularly and therefore 
make the diclofenac molecule less available to intermolecular interaction with the environment, such 
as the water molecules of the solvent. This close association causes the high melting point and the poor 
solubility in water: the molecule does not form hydrates and only polymorphs have been described, 
with very limited conformational modification with respect to the more stable structure [16,17]. 

On the contrary, according to recent literature, diclofenac salts exhibit a variety of hydrates and 
polymorphs [3]. In particular, the crystal structure of some diclofenac salts prepared with hydroxy 
amines revealed that these salts exist as ion pairs in the solid state, where the hydroxy groups 
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participate in a network of H-bonds, in some cases together with water molecules of crystallization, 
that keep anion and cation in a close association: these structural aspects suggested it would be better 
to define these compounds as complexes rather than simple salts. The complexity of the structures 
observed made it possible to preview a frequent occurrence of polymorphs among these diclofenac 
salts as a function of the extent of hydration and/or the nature of the crystallization solvent. It was also 
reported that in some cases (the salt with 2-amino-2-methyl-1, 3, propanediol) hydration occurs very 
quickly on contact with water [11]; in some other cases (the salt with pyrrolidine ethanol) hydration is 
obtained very slowly [15]: both salts can be obtained in the anhydrate form by crystallization from 
organic solvents. As a consequence, measurement of the solubility in water of diclofenac salts must 
always be accompanied by a check of the nature of the solid residue in equilibrium with the saturated 
solution: water, in fact, promotes the formation of hydrates or improves polymorph transition. 
Similarly, it becomes important to know the experimental conditions where hydrated or de-hydrated 
forms are stable, as well as the correct molecular weight to be considered, either for dosage or for 
solubility/structure relationship.  

All these different situations outline the difficulties previously encountered in describing these salts 
[1], using the determination of a simple melting point. This parameter, in the light of recent results [9], 
demonstrated that it is impossible to describe the nature of the solid state of these compounds, 
especially when crystallization of the salts was carried out from different solvents: the melting point, 
as a parameter of purity of these salts, must therefore also be considered with caution: unforeseen 
formation of hydrate/solvate/polymorph makes the melting point dependent on the nature of the 
crystallization solvent. 
 
2.3. FT-IR and Raman micro-spectroscopy 
 

FT-IR and Raman spectra were recorded for all the salts considered here; only those concerning the 
DEA salt are shown in Figures 1 and 2. Spectra of sodium diclofenac are also reported in order to 
highlight differences concerning the two cations with differing H-bond capacity. 

The Raman spectra of sodium and DEA diclofenac salts are shown in Figure 1. In the Raman 
spectrum of sodium diclofenac salt, the most characteristic band is a triplet around 1600 cm-1: the 
bands at 1605 and 1586 cm-1 are attributed to ring stretching vibrations of the phenylacetate and 
dichlorophenyl ring, respectively, and the band at 1580 cm-1 is assigned to the asymmetric stretching 
vibration of the carboxylate. The symmetric stretching vibration of the carboxylate at 1399 cm-1 is very 
weak. The bands at 1072 and 1046 cm-1 are characteristic of ring breathing vibrations of the 
dichlorophenyl and phenylacetate ring, respectively. In the high wavenumber range, the most intense 
peaks are encountered at 3056 and 3069 cm-1, due to aromatic stretching modes. The NH stretching 
vibration was not detected.  
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Figure 1. Raman spectra of a) Na diclofenac salt and b) DEA diclofenac salt.  

 
In the case of the DEA salt, the Raman spectrum shows a red shift (towards lower wavenumbers) 

and a broadening of the above-mentioned bands: the phenylacetate ring stretching band shifts to  
1601 cm-1, whereas a single wide band is observed at 1581 cm-1. The symmetric stretching of 
carboxylate (not indicated) shifts at 1385 cm-1 and the ring breathing peaks undergo a red shift of  
3 cm-1. In the CH stretching region, the bands shift to 3048 and 3064 cm-1. The structure of the CH 
aliphatic stretching bands changes (peak position and intensity) due to the contribution of DEA. The 
NH stretching mode is not visible. 

The changes (peak position shifts and broadening) in the DEA salt spectrum are interpreted by the 
presence of intermolecular bridge bonds with NH+ or OH groups of the hydroxy cation, outlining the 
formation of an ion pair complex, as reported also by the crystal structures described for these salts 
(see below). 

The micro-FTIR spectra for sodium and DEA diclofenac salts are reported in Figure 2. The sodium 
diclofenac spectrum also shows two evident and identifying bands characteristic of the carboxylate 
stretching vibrations at 1575 cm-1 (asymmetric) and at 1399 cm-1 (symmetric). Phenyl rings stretching 
vibrations are intense in the 1600–1450 cm-1 range, particularly at 1604, 1587 and 1558 cm-1, whereas 
ring breathings are attributable at 1077 and 1046 cm-1 bands. 
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Figure 2. FT-IR (ATR mode) spectra of a) Na diclofenac salt and b) DEA diclofenac salt. 

 

The NH and NH-O stretching vibrations are visible at 3387 and 3260 cm-1, respectively. These 
bands, like CH stretching bands, are weaker than expected for a minor response of the ATR technique 
(employed here) to higher wavenumbers.  

In the DEA diclofenac salt spectrum, changes in peak position of the bands can be seen and are 
consistent with Raman results. In particular, the phenyl ring stretchings shift to 1601 and 1556 cm-1, 
whereas the band at 1587 cm-1 overlaps with the carboxylate asymmetric stretching at 1574 cm-1. The 
carboxylate symmetric stretching shifts to 1386 cm-1 and the ring breathings shift to 1069 and  
1045 cm-1. The NH stretching vibration of the amine group of diclofenac is not visible. At 3650 cm-1, 
the free OH of DEA is visible. 

IR spectra were collected also for MEA and TEA diclofenac salts: in these samples, the asymmetric 
stretching of carboxylate shifts to 1573 (MEA) and 1572 (TEA) cm-1. 

Therefore, also FT-IR micro-spectroscopy confirmed the shifts of the bands in the hydroxy base salt 
spectrum with respect to that of the sodium salt spectrum, due to H bridges between anion and cation, 
as already observed with Raman micro-spectroscopy. 

2.4. Thermal analysis  

The simplest thermogram of a diclofenac salt with aliphatic amines always shows two endotherms: 
one associated with the melting, the second one with decomposition accompanied by a loss of weight. 
A fusion between two endotherms is often observed in the temperature range 160–180 ºC, preventing 
reliable measurements of the parameters associated with each thermal event: these situations were 
encountered for the salts of this series prepared with MEA, MeMEA and TRIS bases: moreover for the 
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salts prepared with a low boiling amine there is the suspicion that the endotherm recorded at high 
temperature concerns also the melting of the starting diclofenac (see below). 

In some cases, a third endotherm, at temperatures around 100 ºC (such as the case of the salts 
prepared with MEA), is attributed to de-hydration of the hydrate form of the salt.  

Another type of thermogram additionally contains the complex profile of a polymorph transition: in 
this case, the thermogram for samples obtained from a single crystallization solvent could offer 
incomplete description of the compound, since crystallization from an organic solvent or from water 
could produce different forms, whose thermograms appear very different: water in fact promotes the 
formation of hydrates and could catalyze the formation of different polymorphs. This last type of 
thermogram was found [9] for the salt with MEA that exists as a hydrate polymorph. Despite the 
frequency of polymorphism in this series of compounds, this complex profile could only rarely be 
observed in DSC thermograms. This could be due to the very close melting temperature of the two 
forms, but also to the possibility of amorphization that slows down the crystallization process for the 
diclofenac salts. 

Other phenomena concur to complicate the thermal behavior of these salts. It was previously 
reported [9] that de-hydration in the oven leaves the sample in an (at least partially) amorphous state. 
In this case, until crystallinity is recovered by long and slow equilibration, ∆H associated with the 
melting is underestimated and the melting temperature progressively shifts.  

Associating HSM with DSC, each thermal event undergone by the salts on heating can be 
associated with the right endotherm, when the thermogram profile displays more than one peak. HSM 
proved useful in investigating the different polymorph forms since re-crystallization of the stable form 
from the molten mass of the low melting form could be clearly documented by a sequence of photos at 
the microscope.  

The melting point (m. p.) of the salts was found to be in the range 100–200 ºC, EtDEA having a m. 
p. lower than 100 ºC and TRIS a m. p. higher than 209 ºC (Table 1). A low m. p. is also displayed by 
EtMEA (101 ºC) and MeDEA (102 ºC). In most cases, the melting point of the form obtained from 
water is lower than that obtained from organic solvent. 

 
2.5. Tri-hydroxy cation 
 

The two bases used to prepare diclofenac salts with a tri-hydroxy counterion are very different: the 
TRIS base being a primary and the TEA a tertiary amine, but with almost similar pKa (7.76 and 8.06, 
respectively). The TRIS diclofenac salt has the highest melting point among the compounds of this 
series, and the melting endotherm overlaps that of the decomposition one and displays an irregular 
shape that prevents reliable thermal parameters being obtained from the thermogram (except peak 
temperature 209 ºC). The high melting point originates from the structure of the solid state, where a 
two-dimensional network of hydrogen bonded cations and anions is present, involving the carboxylate 
group of the anion, the ammonium and hydroxy groups of the cation. A third group of H-bonds 
between the OH and NH3

+ groups holds together neighboring cations, which could be responsible for 
the low solubility in water: in fact this close structure contains a dimer between two cations and the 
solute/solvent interactions do not appear to prevail over the solid state patterns, which are so strongly 
H-bonded [18]. 
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Also in the case of the TEA salt, the H-bonds keep the anion and cation close together: the O atom 
of the carboxylate accepts two H-bonds from two hydroxy groups of the cation, while the third OH 
group provides an H-bond with the same group of another cation, creating an infinite two-dimensional 
network [19]. A similar pattern of H-bond network was also reported for the same salt of mefenamic 
acid: the crystal structure of this salt is described as a sequence of cations and anions linked by 
hydrogen bonds [20].  

The difference in melting points (ΔTpeak = 71 ºC) clearly outlines how these H-bonded structures 
operate differently in building up a more compact crystal lattice in the case of diclofenac/TRIS salt. A 
partial explanation was offered by Castellari and Ottani [19], since these authors reported that, despite 
the ionic nature of the TEA salt, apparently no direct electrostatic interaction between the positively 
charged cation and the negatively charged diclofenac anion is observed. These authors attribute this 
fact to the shielding of the positive centre by the hydroxy ethyl arms of the cation from any 
intermolecular interaction; additionally an inductive effect due to the O atoms can delocalize the 
positive charge. The thermograms of these two salts do not change on changing the crystallization 
solvent from water to acetone, methanol or their mixtures. Whatever the more or less subtle 
differences between the crystal structures of these two salts, a description of the solid state emerges 
that agrees with the absence of hydrate forms (the hydroxy groups present on the cation provide all the 
H-bonds required for a single stable structure of the salt) and the absence of polymorphism (the strong 
embrace between anion and cation does not leave any freedom for alternative arrangements of the ions 
or of the hydrogen bonds). 

As a result, solubility in water was found to be relatively low in both cases, since to liberate the 
anion and cation a more complex crystal building must be destroyed than in the case of a simple ionic 
salt. Solubility is little higher in the case of the TEA salt; this last chemical form of diclofenac was 
recently proposed [9] as a reference for spectrophotometric determination of diclofenac salts, since it is 
easy to prepare, shows a simple thermogram and solubility in water (and also in organic solvent) is 
sufficiently high to prepare stock solution. 

The solubility in water of the meclofenamic/TEA salt was found to be almost the same as that of the 
diclofenac/TEA salt (9.32 vs. 7.58 mM), suggesting that a common mechanism operates in limiting 
solubility in water of these two compounds, whose anions are only slightly different. 
 
2.6. Di-hydroxy cation 
 

The structural unit of the DEA diclofenac salt (the form obtained from an organic solvent) has been 
described as a double-ion pair built up around a pair of cations [21]. The crystal structure of the salt 
showed an H-bridge between the hydroxy groups of two neighboring cations, by means of a head-to-
tail link. This ammonium di-cation generates a two-dimensional network, where each layer forms a 
sort of sandwich, whose inner part contains all the polar parts: the aromatic rings crowd the surface of 
the layers and a sequence of 2:2 ion pairs can be taken as descriptive of the solid state of the DEA salt. 
In this case too, the H-bond network extends over the entire crystal structure (likewise in the case of 
the TEA salt), but solubility in water appears decisively higher, perhaps for the possibility that 
unaltered dimer forms enter the dissolution medium. Permanence in solution of the patterns present in 
the solid state was also hypothesized for other diclofenac salts (e.g., pyrrolidine ethanol diclofenac 
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salt) [1]. Higher water solubility (with respect to the TEA salt) was also reported for the 
meclofenamic/DEA salt, despite the lower number of hydrophilic groups present in the cation. 

The DEA salt was found to exist in two different forms as a function of the crystallization solvent: 
both forms melt at a lower temperature than the TEA salt; the thermograms of the two forms are very 
simple and do not offer information of formation of hydrates (Figure 3). The form obtained from water 
has the lowest melting point (120 ºC), but, on heating, no evidence of the polymorph transition could 
be obtained from the thermogram profile. No information is available on the crystal differences of 
these two forms, since only the structure of the salt obtained from organic solvent was described [21]. 
In the case of the meclofenamic/DEA salt, only the form obtained from organic solvent was examined 
for its crystal structure [20]. Since the proton bonded to the N-atom of the cation is involved in the H-
bond network, as reported [21], it is expected that the alkyl substituent causes changes in the solid state 
of the alkyl-DEA salt, such as MeDEA and EtDEA diclofenac salts: the salts in fact display an even 
lower melting point than that of the parent compound formed with DEA.  

Figure 3. Thermal analysis of the DEA diclofenac salt obtained from acetone (A) and 
water (B). HSM photos at different temperatures of A (upper panel) and comparison of 
thermograms for A and B (lower panel). 

       

 

103 ºC 116 ºC 130 ºC

A 

B
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It appears that just this moiety is responsible for the polymorphism of the DEA salt. The 
substitution of an H atom with a methyl group prevents the formation of some H-bonds, but does not 
disturb the crystal packing. The salt melts at a lower temperature, as a consequence of a less close 
solid state structure, lacking some H-bonds, but the MeDEA salt still appears to exist in only one form: 
crystallization from water and acetone (as in the cases of salts of this series) does not produce 
polymorph forms. 

In fact, when the salts were equilibrated in water, as occurs during the determination of the 
solubility values, the thermograms appear unchanged in the case of the MeDEA derivative (Tpeak  
103 ºC). This aspect was also confirmed by the HSM examination of the two forms (Figure 4). 

On the contrary, the EtDEA salt, like the DEA one, exists in two forms: the one obtained from 
water melts at 76 ºC (Tpeak) with a broad and asymmetric endotherm; while the form obtained from 
acetone melts at 98 ºC: none of these forms are hydrated. 

In the case of the EtDEA cation, a longer chain not only disturbs the packing, but introduces the 
possibility of alternative arrangements of the ethyl substituent: as a consequence, the EtDEA salt can 
exist in two forms, melting at low temperatures. As in other cases, the form obtained from water melts 
at very low temperatures (Tpeak 76 ºC) with a large endotherm, suggesting the occurrence of multiple 
thermal events. 

Figure 4. Thermal analysis of the MeDEA diclofenac salt obtained from acetone (A) and 
water (B). HSM photos at different temperatures of A (top panel) and comparison of 
thermograms for A and B (bottom panel). 
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HSM, however, only makes it possible to observe melting, without any possible re-crystallization 
(even at low scanning rate of the temperature) (Figure 5). 

The solubility in water of the ethyl derivative is lower with respect to that of the methyl one, despite 
a lower melting point: this fact appears due more to the solute solvent interaction (different chain 
length) rather than to the nature of the solid state and the presence of an additional substituent around 
the N atom of the base decreases the solubility with respect to the DEA salt. 

Figure 5. Thermal analysis of the EtDEA diclofenac salt obtained from acetone (A) and 
water (B). HSM photos at different temperatures of A (top panel) and comparison of 
thermograms for A and B (bottom panel). 

 

       

 
 
2.7. Mono-hydroxy cation 
 
2.7.1. Mono-alkyl 
 

As previously reported, the MEA diclofenac salt exists as a hydrate polymorph. The crystal 
structure of this salt is not reported, but the literature offers the crystal structure of MEA salt with 
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meclofenamic and niflumic acids [22,23], whose molecules are structurally related to the  
diclofenac one.  

Figure 6. Thermal analysis of the MEA diclofenac salt obtained from acetone (A) and 
water (B). HSM photos at different temperatures of A, indicating the first melting of the 
metastable form, re-crystallization and melting of the stable form (top panel), and 
comparison of thermograms for A and B (bottom panel). 

. 

      

 
 

These structures can be taken as representative of the interactions present in the MEA diclofenac 
salt: the salt exists as an ionic structure, where each anion and cation is involved in multiple H-bonds: 
the MEA cation, which assumes a gauche conformation, faces the carboxylate group with both the 
hydrophilic moieties (NH3

+ and OH) and forms a third H-bond with a water molecule; another 
intramolecular N-H….O H-bond links one carboxylate oxygen with the amino group (Dhanaraj and 
Vijayan, 1983). 
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B
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This agrees with the formation of a monohydrate form. The water molecule does not appear to be 
important in the stability of the crystal structure MEA salt. As a consequence, an anhydrate form of the 
salt can be obtained either by careful de-hydration or by crystallization by a suitable solvent [22], 
without altering the original structure. Figure 6 shows the thermograms of the MEA salt as obtained 
directly from water and after de-hydration. The melting endotherm of the anhydrate form is clearly 
evident in the sample previously de-hydrated (Tpeak 101 ºC) that undergoes polymorph transition 
toward the stable form: re-crystallization starts at 120 ºC and terminates at about 140 ºC; a second 
melting can then be observed at HSM (156 ºC). The TGA profile suggests that a loss of weight, a sign 
of the occurring decomposition of the salt, starts during the second melting and, at the temperature 
peak of the melting endotherm, decomposition becomes important.  

The association of DSC, TGA and HSM makes it possible to add a few details to the thermal 
behavior of the MEA salt previously reported [9], since the endotherm above 100 ºC, previously 
associated with dehydration, must now, by HSM examination, be also associated with the melting of 
the metastable form; the small endotherm at higher temperature concerns the melting of the stable 
form. The last endotherm, which peaks at about 180 ºC, recalls that of the melting of diclofenac acid 
and was found for other diclofenac salts prepared with volatile amines. It can be hypothesized that 
during melting, the salt undergoes thermal dissociation, forming both the starting acid and base that 
evaporates and is responsible for the weight loss, documented by the TGA profile. The remaining 
diclofenac melts and originates an asymmetric endotherm: this thermal is not documented by HSM. It 
appears that changing MEA with its alkyl derivatives in the formation of diclofenac salts, an invariant 
feature is retained, since all the salts considered here were shown to exist in at least two polymorph 
forms, as demonstrated by DSC and HSM. 

The form previously described for the EtMEA salt was that obtained from acetone [9]; a more 
systematic examination suggested that a metastable polymorph is formed when this salt precipitates 
from water: this is indicated by an irregular endotherm in the thermogram (Tpeak 97 ºC) and, more 
clearly, by HSM, able to record the melting of the metastable form and re-crystallization of the stable 
form. In the HSM photos, the metastable form starts melting at about 95 ºC; above 100 ºC the stable 
form first crystallizes and then melts at 156 ºC, i.e., at the same temperature as the form obtained from 
acetone. In this case too, water promotes the formation of a low melting and anhydrate polymorph: 
however the two forms can be easily obtained by simply changing the crystallization solvent  
(Figure 7).  

The same situation can be practically encountered with the MeMEA salt: the melting endotherm of 
the metastable form is irregular when the salt is obtained from (not previously dried) acetone, probably 
due to the contemporary melting and re-crystallization reactions that could not be separated by DSC. 
To make this system even more complex, the TGA profile suggests a loss of weight in correspondence 
with the first melting that continues steadily up to 270 ºC [9].  
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Figure 7. Thermal analysis of the EtMEA diclofenac salt obtained from acetone (A) and 
water (B). HSM photos at different temperatures of A, indicating the first melting of the 
metastable form, re-crystallization and melting of the stable form (top panel), and 
comparison of thermograms for A and B (bottom panel). 

     

 
 

The form obtained from water presents a more regular thermogram with three endotherms peaking 
at 77, 122 and 172 ºC respectively (Figure 8). 

The MeMEA salt, like the reference MEA salt, also forms a hydrate polymorph. 
The first endotherm is associated with dehydration; the second one represents the melting of the 

anhydrate form that re-crystallizes soon after, and the stable form starts melting at 160 ºC. Differences 
can be related to the different experimental treatment of the two samples. Comparison with the 
thermogram of diclofenac could originate doubts about the attribution of the endotherm at high 
temperature: HSM photos, however document that it must be attributed to the melting of the salt. 
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Figure 8. Thermal analysis of the MeMEA diclofenac salt obtained from acetone (A) and 
water (B). HSM photos at different temperatures of A, indicating the first melting of the 
metastable form, re-crystallization and melting of the stable form (top panel), and 
comparison of thermograms for A and B (bottom panel). 

 

       

 
 
2.7.2. Di-alkyl 
 

The presence of two methyl groups carried by the N atom considerably modifies the thermogram of 
diMeMEA salt with respect to the monomethyl derivative (Figure 9). This salt was previously 
described [9,11] and it was presumed to exist in two polymorph forms. Two endotherms at relatively 
low temperature are present in the thermogram: the first one having a lower surface area (at about  
109 ºC) and the second one being more regular (Tpeak 123 ºC) that can be associated with the melting 
of the two forms.  
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Figure 9. Thermal analysis of the diMeMEA diclofenac salt obtained from acetone (A) and 
water (B). HSM photos at different temperatures of A, indicating first the darkening of the 
sample and then little morphological changes, indicated by the arrow (top panel), and 
comparison of thermograms for A and B (bottom panel). 

 

       

 
 

No sign of a typical polymorph transition could be observed from the thermogram profile, due to 
the proximity of the two temperature values. HSM showed changes (though not clearly evident) on the 
crystal surface under examination in the temperature range 112–113 ºC. A re-crystallization was 
however observed by HSM starting from 123 ºC (Figure 10), i.e., at the peak temperature of the 
melting of the stable form, but this thermal event is not documented by the thermograms and cannot be 
associated with the polymorph transition, since this new form melts at about 160 ºC.  
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Figure 10. Thermal analysis of the diMeMEA diclofenac salt. HSM photos at different 
temperatures indicating melting, re-crystallization and final melting of acidic diclofenac, 
formed by thermal dissociation of the diMeMEA diclofenac salt (top panel). Comparison 
of thermogravimetric profiles for acidic diclofenac (A) and diMeMEA diclofenac salt (B) 
(bottom panel). 

   

 
 

Since a loss of weight is evident in the TG profile (Figure 10, B), starting at the onset of the melting 
endotherms, from about 100 ºC (KF titration indicates absence of water molecules of crystallization), it 
can be hypothesized that the new solid form derives from the thermal dissociation of the salt during its 
melting that liberates the volatile diMeMEA (b.p. 133–135 ºC) to evaporate and leaves acidic 
diclofenac, which can re-crystallize inside the molten salt vesicles since its m. p. is 173 ºC, and then 
melt at a higher temperature: the TG profile suggests that also acidic diclofenac decomposes on 
melting (Figure 10, A). 

The diMeMEA diclofenac salt represents an example of how difficult the correct description of 
these diclofenac salts with aliphatic amines and their thermal behavior can be: the small endothermic 

122 ºC 160 ºC

A
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peak could be confused with the presence of an impurity and the loss of weight with dehydration. Only 
association of different techniques allowed the clarification of the formation of two anhydrate 
polymorph forms for the diMeMEA diclofenac salt. 
 

Figure 11. Thermal analysis of the diEtMEA diclofenac salt obtained from acetone (A) 
and water (B). HSM photos at different temperatures of B, indicating, first the melting of 
the salt, re-crystallization of the form melting at 151 ºC (top panel); and comparison of 
thermograms for A and B (bottom panel). 

       

 

These events can explain the differences between the two endotherms: the heat developed with the 
crystallization can almost compensate the heat required for the first fusion and the proximity of the two 
melting temperatures did not allow a thermogram profile expected for a polymorph transition. 

The diEtMEA diclofenac salt forms two polymorphs on crystallization from water or from acetone: 
the two forms have a melting point close together (101 and 112 ºC respectively): there was no 
evidence of polymorph transition in the thermogram (Figure 11); but in this case too, a weight loss of 

100 ºC 128 ºC 151 ºC 

B
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about 2% can be measured in the temperature range of the melting endotherm, again suggesting 
thermal instability. HSM analysis documents the occurrence of the decomposition reaction of the salt 
showing a melting followed by a re-crystallization of a form (128 ºC) that melts at 151 ºC: this 
situation recalls that described for the diMeMEA diclofenac salt. 

 
2.8. Solubility values 
 

On analyzing the solubility values in Table 1, a common aspect emerges for all the compounds 
examined: solubility of these diclofenac salts with aliphatic amines does not differ too much from the 
values found for the alkaline salts. Most of them are in the range 20–40 mM and the presence or not of 
hydroxy groups in the cation does not affect the solubility in water, as could be expected. On the 
contrary, in some cases it is dramatically depressed by the presence of hydroxy groups, such as that of 
the TRIS and TEA salts, which display the lowest solubility despite the presence of three hydroxy 
groups in the cations. Due to internal and strong (as documented by the ΔH values associated with the 
melting) inter-ion H-bonds, most of the hydrophilicity of the salt proves unfavorable to interact with 
water and solubility is negatively affected. Moreover, melting ΔS values suggest that the destruction of 
the crystal lattice of these salts on melting is accompanied by a great loss of order: this aspect can be 
(even though partially) attenuated, when solubility is considered, by the solvation of anions and 
cations in an aqueous medium. 

Solubility, which is well known to depend on the solid state structure and on the solute/solvent 
interaction, in this case appears to depend to a higher extent on the first factor. In the case of the TRIS 
salt this is evident from the highest melting point observed for this group of salts and also from a close 
network of hydrogen bonds, between anion and cation, as documented by the crystal structure, where 
the salts present an ion pair; this aspect is also present in the TEA salt, where the longer chains 
contribute to build up a less compact structure, decreasing the melting point, but not the ΔH of 
melting, with respect to TRIS salt. This aspect appears more complex for alkyl-hydroxy bases, whose 
salts have relatively lower melting points, but solubility is of the same order of magnitude. 

The solubility can be represented as a complex relationship among the number of substituents on 
the N atom, the length of their chain, the number of hydroxyl groups and the parameters associated 
with the solid state of the salt, and for these diclofenac salts it does not appear dependent on only one 
parameter but rather on a combination of parameters, even though relationships between properties of 
the salt-forming agents and those of the resulting salts were highlighted for some diclofenac salts with 
four-carbon primary amines [11]. 

However, comparing the solubility data for these salts with the melting points of the forms obtained 
from water it appears that no simple linear relationship can be found for these salts; in the same way 
no relationship could be observed for the ∆H associated with the melting: in fact, as previously 
observed, ∆H associated with the melting could be affected by heat evolved during the polymorph 
transition and therefore ∆H values, as calculated by the parameters of the thermograms, do not reflect 
only the enthalpy of fusion. As a conclusion, a multi-parameter relationship, recently reported [24] for 
a number of diclofenac salts, to highlight the factors underlying the solubility in water of these salts, 
can be considered of limited reliability, since the parameters considered (melting point and ∆H) are in 
most cases not those concerning forms obtained from water. 
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Table 1. Thermal parameters and solubility in water of the salt forms obtained from water. 
 Aliphatic base Acronym 

 
B. p.  
(free base) 
(°C) 

MW of the 
salt 
(anhydrous) 

Tpeak of 
the salt 
melting
(°C) 

ΔHm 
(Kcal.mol-1) 

ΔSm  
(cal.mol-1·K-1) 

Solubility 
 (mM) 

1 Mono-ethanolamine MEA 169 357.23 101* 2.6 7.0 26.5 
2 Di-ethanolamine DEA 269 401.29 130 6.8 16.8 45.0 
3 Tri-ethanolamine TEA 360 445.34 138 15.8 38.4 7.6 
4 Tris-methylol 

aminomethane 
TRIS 220 418.15 209 15.3 31.8 3.5 

5 Methyl-
monoethanolamine 

MeMEA 156 372.15 78 1.1 3.1 25.4 

6 Dimethyl-
monoethanolamine 

diMeME
A 

135 385.29 111 * * 54.4 

7 Ethyl-
monoethanolamine 

EtMEA 170 385.29 97 2.7 7.3 33.8 

8 Diethyl-
monoethanolamine 

diEtMEA 161 413.34 113 7.7 19.9 36.0 

9 Methyl-diethanolamine MeDEA 248 415.31 102 7.2 19.2 33.3 
10 Ethyl-diethanolamine EtDEA 246 430.15 76 6.6 18.9 25.2 

* see Figure 9: the area surface of the first peak cannot be reliably obtained. 

3. Experimental Section 

3.1. Materials 

Pharmaceutical grade Diclofenac was a gift (IBSA, Lugano, Switzerland). The following bases: 
mono-ethanolamine (MEA), di-ethanolamine (DEA), tri-ethanolamine (TEA), tris-methylolamino 
methane (TRIS); N-ethyl mono-ethanolamine (EtMEA), N,N-diethyl mono-ethanolamine (diEtMEA), 
N-methyl mono-ethanolamine (MeMEA), N,N-dimethyl mono-ethanolamine (diMeMEA); N-ethyl di-
ethanolamine (EtDEA) and N-methyl di-ethanolamine (MeDEA), were commercial samples (Aldrich 
Italia, Milan, Italy). 

Throughout the paper the salts are identified with an acronym of the starting amine. 
All the solvents used for crystallization were of pharmaceutical purity grade. 

3.2. Methods 

Preparation of the salts – Salts were prepared separately, dissolving equimolar amounts of acidic 
diclofenac and the appropriate base in acetone and then mixing the two solutions. The salts, according 
to their solubility in the solvent, either precipitate rapidly, or after cooling at -20 ºC, or after 
concentration of the final solution, removing excess solvent at room temperature. The products 
recovered by filtration under reduced pressure were initially dried at ambient conditions for 24 h and 
examined by DSC. The salts were crystallized both from an organic solvent (acetone or methanol) and 
from water, and thermograms were compared to show the presence of hydrate or polymorph forms. 

Solubility of the salt – Equilibrium solubility was determined by adding excess solid to 10 mL distilled 
water and placing the resulting systems into a water bath thermostated at 25 ºC. After a week, samples 
of the solution were spectrophotometrically examined at 278 nm. Determinations were carried out in 
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triplicate. Using the molar extinction coefficient for the diclofenac anion, absorbance values were 
converted into mM values of solubility, which are shown in Table 1. 

Determination of molar extinction coefficient – Accurately weighed amounts of TEA diclofenac salt 
were dissolved in water and absorbance of each solution was measured at 278 nm, which represents 
the maximum in UV diclofenac anion. Plot absorbance versus molar concentration is linear in both 
cases and from the slope the molar extinction coefficient was calculated (εM = 1.2.104 cm2 mole-1). 
This salt was chosen after having found that it does not form hydrates or polymorphs, so the molecular 
mass can be assessed without problems. 

Differential Scanning Calorimetry (DSC) – Thermal analysis using a DSC method was carried out 
employing an automatic thermal analyzer system (Mettler 821e). The data processing system (Mettler 
821e/500/847 thermo-cryostat) was connected to the thermal analyzer. Sealed and holed aluminum 
pans were used for the experiment for all the samples. Temperature calibrations were made using 
indium as standard. An empty pan, sealed in the same way as the sample, was used as reference. The 
thermograms were run at a scanning rate of 10 ºC/min, from 30 to 320 ºC. In many cases it was rather 
difficult to clearly assess the onset of the thermal event due to the irregular shape of the associated 
endotherm, therefore in this paper each thermal event is indicated with the peak temperature (Tpeak). 

Thermogravimetric analysis (TGA) – Thermogravimetric analysis was performed with a Mettler 
Toledo automatic thermal analyzer system TGA/SDTA851e/SF/1100). Open alumina crucibles were 
used for analysis in the temperature range 30–300 ºC at 10 ºC/min scanning rate under nitrogen stream. 

Thermomicroscopy (HSM) – The thermomicroscope (HSM) contains a heating apparatus (scanning 
rate: 10 ºC/min (Mettler –Toledo S.p.a., Novate Milanese, Italy) mounted on a microscope (Nikon 
UN2-PSE100; Nital S.p.a., Florence, Italy). Photos were captured by a Nikon DN100 digital 
photocamera.  

Μicro-Raman spectroscopy – Raman spectra were recorded by means of a Renishaw Raman Invia 
configured with a Leica DMLM microscope (spatial resolution 1–60 μm2), a notch filter to cut off 
Rayleigh scattering, a monochromator (1800 lines/mm) and a Charge-Coupled Device (CCD) 
thermoelectrically cooled (203 K) detector. The light sources available were an Ar+ laser (514.5 nm) 
and a diode-laser (780.0 nm). Experimental details: Ar+ laser, (λ = 514.5 nm), time of each scan: 20 s, 
number of scans: 4, Pout laser: 1.5 mW.  

Micro-FTIR – FT-IR (ATR, near-normal reflection-absorption) spectra were recorded by a Nicolet FT-
IR Nexus 470 connected to a Nicolet Continuum microscope: Experimental details: source globar (SiC 
candle); beam splitter m-IR: KBr; detector: MCT (CdTe, doped by Hg) (Hg/Cd); spectral window: 
4000–650 cm-1; side resolution: 7–80 μm; spectral resolution: 4 cm-1.  

4. Conclusions  

Diclofenac and its salts with alkyl hydroxy amines are stabilized by a number of hydrogen bonds in 
the solid state, in such a way that the anion and cation exist as ion pairs. Since in the salts considered 
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here the diclofenac anion is a constant, differences of the solid state can be attributed to the water 
molecules of crystallization (when present) and/or the hydroxy groups of the cation.  

Taking as a reference the behavior of the salt with TEA, it is possible to observe that three hydroxy 
groups are necessary to originate only one form in the solid state, without polymorphism and 
formation of hydrates; the same is encountered for the TRIS salt. Two hydroxy groups, as in the cation 
of the DEA salt, are sufficient to prevent the formation of hydrates: but the ion pair is kept not so close 
to prevent the formation of polymorphs. However, the two forms are very similar, as suggested by the 
only slightly different melting points. When the cation possesses only one hydroxy group (see the 
MEA salt) the salt needs an additional water molecule of crystallization to fulfill the diclofenac anion 
requirement of hydrogen bonds: the MEA salt forms a mono-hydrate and, when water is lost by de-
hydration, the salt, no longer stabilized by the hydrogen bonds, undergoes polymorph transition. 

Substitution of H atoms (linked to the N atom in the bases) with alkyl groups modify the H-bond 
network in the final salts, that melt at lower temperatures with respect to those formed with 
unsubstituted hydroxy bases. With the exception of the diMeDEA salt, all the diclofenac salts prepared 
with these alkyl hydroxy bases exhibit polymorphism. 

Hydrophilic groups present in the cations operate to depress the solubility of these salts since they 
originate a close association in the solid state that may be retained in aqueous solution, but they do not 
participate in promoting solute/solvent interaction. Formation of hydrates is rarely encountered among 
these diclofenac salts. 
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