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Abstract: As population aging becomes an increasingly critical global issue, the incidence
of central nervous system (CNS) diseases, including Alzheimer’s disease (AD), Parkinson’s
disease (PD), and stroke, has risen sharply. However, the blood–brain barrier (BBB) presents
a significant obstacle to the effective treatment of these CNS disorders, limiting the ability
of therapeutic agents to reach the brain. In this context, intranasal drug delivery, which
bypasses the BBB, has attracted considerable attention in recent years. By utilizing pathways
such as the olfactory and trigeminal nerves, intranasal drug delivery facilitates the rapid
transport of drugs to the brain, thereby enhancing both the bioavailability and targeting
efficiency of the drugs. This review provides an overview of the molecular mechanisms
underlying intranasal drug delivery, its advancements in the treatment of CNS diseases,
strategies to improve delivery efficiency, and a discussion of the challenges and potential
future directions in this field. The aim of this paper is to offer valuable insights and
guidance for researchers and clinicians working in the area of CNS disease treatment.

Keywords: intranasal drug delivery; central nervous system; blood–brain barrier; olfactory
nerve pathway; trigeminal nerve pathway; nanotechnology; hydrogels; Alzheimer’s
disease; small molecules

1. Introduction
Crossing the blood–brain barrier (BBB) has long been a significant challenge in the

development of novel therapeutics for central nervous system (CNS) diseases [1]. Tra-
ditional CNS drug delivery approaches, including oral and intravenous administration,
are hindered by several critical limitations. The BBB severely restricts drug penetration
into the central nervous system, while metabolic degradation and first-pass hepatic effects
reduce systemic bioavailability. Non-specific distribution often leads to off-target toxicity.
Additionally, poor CNS permeability, short half-life, narrow therapeutic windows, and
frequent dosing requirements further limit clinical efficacy and patient adherence. These
challenges underscore the necessity for more efficient and targeted CNS drug delivery
systems. Unlike traditional oral or intravenous routes, intranasal drug delivery facilitates
drug absorption through the nasal mucosa, allowing direct access to systemic circulation
and avoiding the first-pass metabolism in the liver and gastrointestinal tract, and offers a
promising solution for bypassing the BBB. This enhances the bioavailability of drugs [2,3].
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Consequently, identifying strategies to bypass the BBB has become a key area of sci-
entific inquiry. Intranasal drug delivery represents a promising, non-invasive approach
that circumvents the BBB, enabling direct drug delivery to the brain [4–6]. The nasal
mucosa is rich in blood vessels and microvilli, significantly increasing the surface area
for drug absorption and providing an efficient pathway for drugs to enter the blood-
stream [7–9]. Furthermore, the olfactory epithelium, connected to various brain regions
via the olfactory and trigeminal nerves, serves as a crucial route for drug transport to the
brain. This connection not only enables targeted delivery to specific brain regions but also
allows for precision treatment of various neurological diseases [4,10,11]. The non-invasive
nature of intranasal drug delivery alleviates the drawbacks associated with invasive pro-
cedures such as injections or surgery, thus improving patient compliance—especially in
the case of chronic diseases like neurodegenerative disorders, which require long-term
treatment. Additionally, intranasal delivery bypasses the first-pass metabolism in the liver,
thereby reducing systemic drug exposure and decreasing the potential for systemic side
effects [7,12,13]. This makes intranasal drug delivery particularly advantageous for drugs
with low bioavailability or poor stability [14]. In recent years, this method has gained
considerable attention in the treatment of CNS disorders and beyond [15–17]. Numerous
studies have now progressed to clinical trials, rigorously evaluating safety, efficacy, and
dosing to bridge preclinical findings with real-world therapeutic applications. For example,
in a phase 2/3 clinical trial, intranasal administration of zavegepant for the treatment of
migraine has achieved positive results, significantly improving patients’ pain freedom [18].
In addition, the FDA has approved the use of intranasal administration of Foralumab for
the first patient with moderate Alzheimer’s disease. Meanwhile, nalmefene nasal spray has
been approved for the emergency treatment of known or suspected opioid overdose [19,20].
Another clinical study has explored the esketamine nasal spray combined with a selective
serotonin reuptake inhibitor or a serotonin-norepinephrine reuptake inhibitor significantly
improved remission and reduced relapse in treatment-resistant depression compared to
quetiapine augmentation [21].

This paper provides a comprehensive review of the molecular mechanisms underlying
intranasal drug delivery, its advancements in treating CNS diseases, and strategies to
enhance its delivery efficiency. It also examines the challenges faced by intranasal delivery,
including issues related to unstable drug absorption, local irritation, and the development
of drug formulations. Finally, the paper discusses the future directions of intranasal drug
delivery systems and proposes strategies for improving drug permeability, stability, and
personalized treatment. This review synthesizes the latest research findings and technolog-
ical innovations in the field, offering valuable insights for researchers and clinicians.

2. Molecular Mechanisms of Intranasal Drug Delivery
Intranasal drug delivery primarily relies on the olfactory and trigeminal nerves, utiliz-

ing both intracellular and extracellular transport pathways to enable direct access to the
CNS [22]. Drugs administered via the olfactory route cross the cribriform plate to reach
the olfactory bulb and other brain regions, while those delivered through the trigeminal
nerve are transported to the brainstem via the anterior lacerated foramen [23]. Intracellular
transport involves endocytosis by olfactory sensory neurons followed by axonal transport,
whereas extracellular transport enables paracellular diffusion across the nasal epithelium
into the perineural space, eventually reaching the subarachnoid space via cerebrospinal
fluid (CSF) flow. The CSF, driven by arterial pulsations, distributes the drug throughout
the brain via the glymphatic system, facilitating brain-wide diffusion [24–26] (Figure 1).



Pharmaceutics 2025, 17, 775 3 of 29

 
Figure 1. This illustration shows various central nervous system diseases that can be treated via
intranasal drug delivery, including Alzheimer’s disease, Parkinson’s disease, meningitis, ischemic
stroke, hemorrhagic stroke, and other unspecified diseases. The areas marked by red stars or indicated
by arrows represent the sites of tissue damage or functional loss. (all or parts of the figures were
created using Servier Medical Art (https://smart.servier.com/), accessed on 5 April 2025, licensed
under CC BY 4.0.).

2.1. Olfactory Nerve Pathway

The olfactory nerve pathway is the most extensively studied mechanism for intranasal
drug delivery to the brain. Drugs absorbed by the olfactory epithelium are transported
along olfactory nerve fibers, bypassing the BBB and directly reaching the cerebral cortex,
hippocampus, and other brain regions. This provides a crucial foundation for the treatment
of CNS diseases such as stroke, epilepsy, and traumatic brain injury [8,9]. The olfactory
pathway supports the transport of not only small molecules but also peptides, proteins,
and macromolecules that are otherwise restricted by the BBB, achieving rapid absorption
and high brain concentrations [4,27] (Figure 2).

Upon entering the olfactory mucosa, drugs follow two primary routes to reach the
CNS: (1) Intracellular transport, wherein drugs undergo clathrin-mediated endocytosis by
olfactory receptor neurons, followed by microtubule-based axonal transport to the olfactory
bulb, where they are released into the cytoplasm. This process is relatively slow, typically
requiring hours to days. (2) Extracellular transport, which is faster and involves passive
transcellular or paracellular diffusion through epithelial tight junctions or membranes
into the extracellular space of olfactory nerve bundles. From there, drugs are carried by
bulk flow to the olfactory bulb and diffuse into the CSF, enabling widespread brain distri-

https://smart.servier.com/
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bution [22,23,28]. Nanoparticles exhibit enhanced diffusion along this route due to their
affinity for the lipid-rich environment, while hydrophilic compounds may require protein
carriers. Nanoparticles with sizes ranging from 50 to 200 nm, particularly those under
150 nm, are most suitable for nose-to-brain delivery. Liposomes with a particle size below
150 nm have demonstrated enhanced brain deposition and prolonged release (up to 96 h),
significantly improving drug bioavailability compared to conventional formulations [29,30].
Nanoemulsions typically sized between 20 and 200 nm (e.g., 106.8 nm) have shown a 1.68-
fold increase in brain permeation efficiency [31]. Solid lipid nanoparticles, often within the
100–300 nm range, with optimized sizes around 129 nm, allow for sustained drug release
and higher brain targeting [32]. Similarly, nanostructured lipid carriers around 190.98 nm
have achieved superior brain delivery efficacy, with intranasal administration yielding
higher AUC values than intravenous routes. Overall, particles within this nanometric range
ensure effective mucosal adhesion, enhanced permeability through olfactory and trigeminal
pathways, and minimized systemic side effects, making them ideal for central nervous
system targeting via nasal administration [33]. These unique anatomical and molecular
features render the olfactory pathway a key route for intranasal CNS drug delivery.

 

Figure 2. This illustration depicts the mechanisms of intranasal drug delivery. The therapeutics
can be transported from the nose to the brain through the olfactory and trigeminal nerves and
vascular transport across the BBB. The primary routes for nose-to-brain transport are olfactory
and trigeminal nerve pathways (all or parts of the figures were created using Servier Medical Art
(https://smart.servier.com/), accessed on 5 April 2025, licensed under CC BY 4.0.).

2.2. Trigeminal Nerve Pathway

In addition to the olfactory route, the trigeminal nerve serves as a significant non-
invasive conduit for direct drug transport to the brain. The trigeminal nerve regulates facial
sensory function and projects to the brainstem and thalamic regions [34–36] (Figure 2).

Drugs administered through the nasal mucosa are absorbed by epithelial cells and in-
teract with sensory neurons of the trigeminal nerve, facilitating their delivery to deeper CNS
structures. This pathway may involve activation of transient receptor potential (TRP) chan-
nels, such as TRPV1, which sensitize nerve endings and mediate receptor-dependent endo-
cytosis, followed by dynein-driven retrograde axonal transport to brainstem nuclei [37,38].
The maxillary and ophthalmic branches of the trigeminal nerve innervate the nasal res-

https://smart.servier.com/
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piratory mucosa and terminate in the pons and cribriform plate. Drug transport via the
trigeminal pathway may occur through both intra-axonal transport and extracellular diffu-
sion, operating independently of the olfactory route [24]. One major distinction lies in the
target site: while the olfactory pathway delivers drugs to the olfactory bulb, the trigeminal
route carries them to the pons, resulting in slower diffusion into the CSF due to the longer
anatomical distance to CNS targets [39,40]. Although both pathways have been validated
for brain delivery, the relative contribution of each remains to be elucidated. The trigemi-
nal nerve, as the fifth cranial nerve composed of ophthalmic, maxillary, and mandibular
branches converging at the trigeminal ganglion, originates from the pons and provides a
viable structural basis for CNS-targeted delivery. Drugs absorbed via the ophthalmic and
maxillary branches can reach the brainstem and ultimately the brain parenchyma. Similar
to the olfactory route, the trigeminal nerve supports nose-to-brain transport through both
intra-axonal and extracellular mechanisms, although intracellular transport along this
pathway tends to be slower [28,41,42]. These anatomical and physiological differences
underscore the importance of further studies to quantify the relative contributions of each
pathway and optimize intranasal formulations accordingly.

2.3. Transduction Mechanisms of Paracellular and Transcellular Pathways in Intranasal
Drug Delivery

Beyond the neural pathways, drugs may also traverse the neurovascular spaces sur-
rounding the olfactory and trigeminal nerves. These interstitial fluid-filled compartments
enable both paracellular and transcellular diffusion into the CNS, providing an additional
mechanism to enhance intranasal drug delivery efficiency [43,44]. This supplementary
route facilitates drug penetration into deeper brain structures, complementing neural
transport [4,35,45,46] (Figure 2).

Paracellular transport allows passive drug diffusion between epithelial cells, enter-
ing the perineural space and subsequently the subarachnoid space via CSF. Within the
CSF, arterial pulsations drive distribution through glymphatic (perivascular) pathways,
functioning similarly to a brain-specific lymphatic system and ensuring widespread drug
delivery [10,47]. Tight junction integrity, maintained by structural proteins such as claudin-
4, claudin-5, occludin, and zonula occludens-1 (ZO-1), plays a critical role in regulating this
transport route [35,48]. Notably, insulin and interferon-β have demonstrated effective CNS
targeting via the paracellular route, diffusing across epithelial junctions into the CSF [49,50].

Transcellular transport encompasses multiple mechanisms, including clathrin-mediated
endocytosis, caveolae-mediated endocytosis, macropinocytosis, carrier-mediated active
transport, and efflux systems. Small molecules, such as peptides and nanoparticles, com-
monly enter cells via clathrin-coated vesicles involving clathrin heavy chain and adaptor
protein complex 2. Lipophilic agents like paclitaxel in liposomes are predominantly ab-
sorbed via caveolae-mediated pathways, while macromolecular drugs, including exosomes
and proteins, are mainly internalized through micropinocytosis [49,50].

3. Advances in Intranasal Drug Delivery Applications
Intranasal drug delivery demonstrates broad therapeutic potential, encompassing

diverse agents such as chemical drugs, biomacromolecule drugs, and cell-derived drugs.
As a non-invasive alternative to injections or oral delivery, it enhances patient compliance
while enabling targeted therapeutic effects (Figure 3, Table 1).
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Figure 3. The diagram illustrates different types of drugs that can be delivered via the intranasal
route, including exosome-derived drugs, cell-derived drugs, drug delivery systems, chemical drugs
(in the form of solutions or dispersions), biological drugs, and nucleic acid drugs (all or parts of the
figures were created using Servier Medical Art (https://smart.servier.com/), accessed on 5 April
2025, licensed under CC BY 4.0.).

Table 1. Types of drugs for intranasal drug delivery.

Drug Category Specific Type Relevant Examples

Chemical drugs
Solution dispersion Solutions and suspensions

Nanocarriers/polymers Liposomes, nanoparticles,
micelles, and hydrogels

Biomacromolecule
drugs

Protein drugs
Recombinant proteins,

antibodies, hormones, cytokines,
and vaccines

Nucleic acid drugs DNA, RNA, and viruses

Cell-derived drugs
Cell-derived drugs Stem cells, immune cells, and

mitochondria

Exosome-derived drugs Exosomes from different sources

3.1. Progress in Intranasal Delivery of Small Molecule Drugs

Small molecule drugs are widely used in clinical practice due to their small molecular
weight and good oral absorption. Intranasal delivery of small molecule drugs has been
widely explored, particularly in the treatment of CNS diseases. For example, intranasal
delivery of galantamine, 9-cis retinoic acid, lacosamide, or isocyanomethane has shown
effectiveness in treating AD and epilepsy [51–54]. Furthermore, intranasal delivery has
also achieved significant results in pain management, sedation, and smoking cessation
therapy, such as intranasal ketamine, dexmedetomidine, lidocaine, and chloral hydrate,

https://smart.servier.com/
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which effectively alleviate postoperative pain and sedation [55–59]. Intranasal delivery
offers advantages such as rapid onset, ease of use, and good patient tolerance, especially
for advanced patients who have difficulty swallowing oral drugs [60]. In palliative care
and community hospice treatment, intranasal delivery of morphine or midazolam can
effectively treat pain and agitation, with simple administration and excellent suitability
for patients with swallowing difficulties or fear of needles [61]. Additionally, intranasal
drug delivery technology can be combined with nanotechnology or biomaterials to further
enhance drug penetration and immune response, providing new delivery strategies for
early intervention in neurodegenerative diseases such as AD [62–64] (Table 2). The above
research provides a non-invasive, convenient, and efficient therapeutic approach for the
intranasal delivery of small molecular chemical drugs.

Table 2. Research progress of intranasal delivery of small molecule drugs.

Drug/
System Name

Application/
Disease Research Model Key Findings Ref.

Mixed Nanoparticle
System AD Mouse Model

Rapid absorption, effective drug delivery to the
brain, and high organ-specific drug

concentration.
[51]

9-cis Retinoic Acid AD AD Transgenic
Mouse

Reduces Aβ deposition and improves
neuroinflammation and synaptic function. [54]

Fluorobiprofene
Microspheres/Soft

Particles
AD Rat Model

Intranasal powder delivery superior to solution,
significant olfactory bulb concentration, and

early intervention potential.
[64]

Lacosamide Epilepsy Mouse Model Better pharmacokinetics compared to
intravenous injection. [52]

Opioids/Sedatives Palliative Care Clinical Study Rapid onset, good patient tolerance, suitable for
late-stage patients unable to take oral drugs. [60]

Dihydrocodeine/
Midazolam

Community
Palliative Care

(Pain/Agitation)
Clinical Practice Easy to administer, improves patient comfort,

and reduces medical delay. [61]

Heparin COVID-19 Prevention Mouse and Human
Trials

No significant toxicity and maintains effective
concentration for 12 h. [65]

Dexmedetomidine Sedation for
Extractions

Anxiety Patient
Study

Onset in 30–45 min, lasts 60–75 min, no
respiratory suppression, suitable for

day surgeries.
[55]

MC4R Antagonist
HS014 Trigeminal Neuralgia Rat Model Significant relief of hyperalgesia, upregulation

of MC4R protein levels. [56]

Ketamine Post-Cesarean Pain
Relief Maternal RCT Study Significantly reduces postoperative pain and

morphine demand, and good tolerance. [57]

Isocyanomethane Epilepsy Mouse Model Rapidly increases seizure threshold and no
motor/sedation side effects. [53]

Lidocaine Spray Post-Epidural
Headache Clinical Case Non-invasive treatment, rapid symptom relief,

replaces epidural blood patch. [58]

Dexamethasone Neuroinflammation
(e.g., Stroke) Mouse Model Higher brain concentration, faster onset, and

suitable for acute treatment. [62]

Icariin-NGSTH
System Depression Chronic Stress Rat

Model

Faster antidepressant effect and organ-specific
drug concentration significantly better than oral

administration.
[63]

Naltrexone Opioid Side Effects Rodent Model Alleviates gastrointestinal and central side
effects without affecting analgesic effect. [59]

Chlorpyrifos Neurotoxicity Adult Male Mouse High doses cause memory impairment, anxiety,
and brain oxidative stress. [65]
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3.2. Research Progress of Intranasal Delivery of Biomacromolecule Drugs

Biomacromolecule drugs (such as proteins, antibodies, vaccines, etc.) typically face
challenges such as low bioavailability and difficulty penetrating biological barriers due to
their large molecular size and complex structures [66]. These challenges often make the
delivery of biomacromolecule drugs more complex than that of traditional small-molecule
drugs. Therefore, the delivery of biomacromolecule drugs has been a key challenge limiting
their clinical application. However, intranasal drug delivery offers significant advantages
for the delivery of biologic drugs.

3.2.1. Progress in Intranasal Delivery of Growth Factors and Peptide Drugs

Intranasal drug delivery offers a key advantage by bypassing the gastrointestinal
tract and first-pass metabolism, thereby significantly improving the delivery efficiency
of growth factors and peptide drugs. However, its effectiveness is still limited by factors
such as the molecular characteristics of the growth factor, intranasal absorption capacity,
stability, and the local environment. For example, intranasal delivery of nerve growth
factor (NGF) has shown good therapeutic potential in treating traumatic brain injury (TBI)
and other neurodegenerative diseases such as AD and PD, providing new insights for the
clinical application of NGF. However, there are also some side effect risks associated with
intranasal delivery, so future research needs to focus on areas such as dose optimization,
combination therapy, and improvements in delivery technology to further enhance the
efficacy and local drug accessibility of the drugs [67–70]. Additionally, intranasal delivery
of leukemia inhibitory factor (LIF) has provided a new approach for treating neurological
function after mild TBI in children [71].

Intranasal delivery is also widely applied in the delivery of peptide drugs. Intranasal
delivery of insulin can enter the brain through the olfactory or trigeminal nerves, improving
cognitive function with good safety [72]. Using nanotechnology to further enhance insulin
delivery efficiency can also improve its therapeutic effect [73–75]. Clinical trials and
animal studies have shown that intranasal insulin delivery improves memory performance
and has significant neuroprotective effects related to diabetes [76–81]. Another notable
example is the MemAID trial, a Phase II randomized controlled study involving older
adults with and without type 2 diabetes. Daily intranasal administration of 40 IU insulin
over 24 weeks led to significant improvements in gait speed, prefrontal cerebral blood
flow, and insulin sensitivity in diabetic patients, while non-diabetic participants showed
enhanced executive function and verbal memory [82]. Furthermore, the intranasal route
has provided new opportunities for delivering glucagon-like peptide-1 (GLP-1) to the
brain for the treatment of obesity [83]. The novel oxytocin intranasal spray TTA-121 may
achieve effective treatment with lower doses and fewer sprays, offering new hope for the
treatment of autism spectrum disorder [84,85]. In addition, a randomized controlled trial
investigated the efficacy of intranasal oxytocin as an adjunct to exposure therapy for social
anxiety disorder (SAD). The study demonstrated that oxytocin administration improved
positive evaluations of appearance and speech performance during exposure sessions,
indicating its potential to enhance treatment outcomes for SAD [86]. Intranasal delivery
of the bicyclic peptide OL-CTOP, which contains two disulfide bonds, can effectively
antagonize the analgesic effect of morphine and prevent its respiratory suppression side
effects, demonstrating its potential as a novel brain-targeting drug [87] (Table 3).
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Table 3. Research progress in intranasal delivery of biologic drugs.

Drug/
System Name

Application/
Disease Research Model Key Findings Ref.

NGF TBI Clinical Trial
Bypasses the BBB to directly affect

brain tissue, reducing systemic
side effects.

[67,70]

Leukemia
Inhibitory Factor

(LIF)

Mild TBI (mTBI) in
Children CD1 Mice

Alleviates glial proliferation and
axonal damage, improves

sensory-motor function, and has no
side effects.

[71]

Insulin AD Rat Model

Intranasal insulin rapidly
distributes to the brain, improves
cognitive function, and optimized

formulation reduces systemic
side effects.

[80]

Insulin AD Multicenter Clinical
Trial

Improves memory performance in
patients with mild cognitive

impairment or AD.
[77]

Insulin
(Nanocarrier
Technology)

CNS Diseases Rat Model

Enhances delivery efficiency with
nanotechnology, bypasses the BBB

through olfactory or trigeminal
nerves, and significantly improves

cognitive function.

[74,75]

Insulin PD Rat Model Directly targets the brain and
minimizes systemic side effects. [78]

IGF-1 Brain Ischemia Rat Model
Reduces neural damage and

inflammation and bypasses the BBB
to directly affect the brain.

[72]

Oxytocin Intranasal
Spray TTA-121 ASD Rabbit Model

Significantly higher brain-specific
drug concentration compared to

Syntocinon, higher concentrations
in the prefrontal cortex and cuneus.

[84]

Insulin
(PTD-Modified
Formulation)

Diabetes Rat Experiment

Enhances absorption with Protein
Transduction Domain (PTD) and

optimizes intranasal delivery
formulation to improve efficacy.

[79]

Bicyclic Peptide
OL-CTOP

Morphine Side
Effect Antagonism Mouse

Intranasal delivery effectively
antagonizes morphine’s analgesic
and respiratory suppression side

effects, demonstrating potential for
brain-targeted delivery.

[87]

3.2.2. Research Progress in Intranasal Vaccine Delivery

Intranasal vaccines can deliver antigens directly to CNS-associated lymphoid tissues
and neural structures. This allows for neuroimmune modulation, which is particularly
valuable in treating or preventing neuroinflammatory and neurodegenerative diseases
such as Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis [88,89]. Previous
studies have demonstrated that viruses like the hepatitis virus can enter the brain from
the nasal cavity through the olfactory nerve, bypassing the BBB [90]. In addition, HHV-6
has been implicated in neurological conditions such as multiple sclerosis and encephalitis
through nasal-brain transmission [91]. Experimental studies with adeno-associated virus
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(AAV) vectors have also shown that gene therapies can reach the brain through intranasal
administration and exert therapeutic effects [92–94]. These findings underscore the nasal
cavity as both a potential route for viral neuroinvasion and a promising pathway for
non-invasive therapeutic delivery. Intranasal mucosal vaccines can effectively activate the
mucosal immune system and overcome the limitations of traditional vaccines, addressing
issues related to immunogenicity, stability, and safety that traditional vaccines face [95–97].
This is especially important for the prevention of respiratory diseases [15,87,96]. Addition-
ally, intranasal delivery of subunit vaccines and nanomaterials can trigger both local and
systemic immune responses, with breakthroughs particularly in penetrating the intranasal
epithelial barrier [95,98,99]. Studies on vaccines targeting various pathogens such as the
novel coronavirus (SARS-CoV-2), pneumococcus, and tuberculosis show that intranasal
vaccines offer advantages of higher compliance, lower costs, and the ability to induce
strong immune responses, making them especially suitable for large-scale immunization
campaigns and more easily accepted by children [100–102]. Furthermore, intranasal vacci-
nation is more effective than subcutaneous vaccination in alleviating clinical symptoms and
pulmonary lesions, indicating that intranasal vaccination has advantages during epidemic
outbreaks [103]. Intranasal vaccine delivery strategies provide new research directions for
the prevention and control of respiratory viral infections [104–106].

Intranasal delivery of receptor-binding domain nanoparticles can effectively activate
local immune responses and cellular immune responses. This provides a theoretical ba-
sis for the development of COVID-19 vaccines [107,108]. Intranasal immunization with
nicotine vaccine candidates can induce both systemic and mucosal antibodies, which specif-
ically neutralize nicotine, offering the potential for developing new smoking cessation
therapies [109]. Additionally, adjuvants such as xanthan gum can enhance T cell responses
and provide effective protection, while monoclonal antibody immune complexes can in-
duce long-lasting immune responses [110,111]. Overall, these advancements offer new
directions and technological support for the development of better intranasal vaccines.

3.2.3. Research Progress in Intranasal Delivery of Nucleic Acid Drugs

Current gene therapy applications in the brain are limited by existing delivery sys-
tems. Intranasal delivery of CRISPR-dCas9 system-based nanoparticles has effectively
upregulated the expression of the target gene Sirt1, reducing brain edema and improving
survival rates after permanent middle cerebral artery occlusion [112]. Intranasal delivery
of self-assembled antagomir-21/RAP nanoparticles can enhance glioblastoma treatment
effects without using potentially toxic carriers [113]. Intranasal delivery of apolipoprotein
A-I nanoparticles carrying antisense oligonucleotide (ASO) can reduce mutated Hunting-
ton protein levels in a Huntington’s disease mouse model [114]. Hyaluronidase-coated
glycerol chitosan-DNA complexes enhance gene targeting and distribution in the brain,
providing a new non-invasive gene therapy approach for neurodegenerative diseases such
as AD [115]. Intranasal delivery of nucleic acid drugs is a non-invasive, fast, cell-free,
and targeted therapeutic method that can significantly promote functional recovery after
complete spinal cord injury (SCI) [116] (Table 4). Preclinical studies have demonstrated
the efficacy of this delivery method. For instance, intranasal administration of siRNA-
loaded lipid nanoparticles has shown significant reductions in glioma growth in rodent
models. Similarly, intranasal delivery of mRNA vaccines has led to antigen expression in
olfactory bulb neurons, indicating successful CNS targeting [117–119]. Intranasal delivery
of nucleic acids offers a promising non-invasive route to the CNS. It effectively bypasses
the BBB. However, challenges such as susceptibility to nuclease degradation and limited
membrane permeability necessitate the use of protective carriers to ensure stability and
facilitate cellular uptake. Once administered intranasally, nucleic acid can access the brain
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via two primary neuronal pathways: the olfactory and trigeminal nerves. The olfactory
pathway allows direct axonal transport from the nasal epithelium to the olfactory bulb,
while the trigeminal pathway provides access to the brainstem. Additionally, astrocytes and
microglia can internalize these carriers through endocytosis or receptor-mediated mecha-
nisms, including interactions with scavenger receptors [43,44]. These findings underscore
the potential of intranasal nucleic acid delivery systems in treating various CNS disorders.

Table 4. Research progress in intranasal delivery of nucleic acid drugs.

Drug/System Name Application/Disease Research Model Key Findings References

Self-Assembled
Antagomir-21/RAP

Nanoparticles
Glioblastoma Mouse Model

Enhanced efficacy with a
non-toxic carrier, effectively

inhibiting tumor growth.
[113]

ApoA-I
Nanodisk-Loaded
ASO (Antisense
Oligonucleotide)

Huntington’s
Disease HD Mouse Model

Single intranasal delivery
significantly reduces mutated
Huntington protein (mHTT)

levels in the striatum
and cortex.

[114]

Glycerol
Chitosan-DNA

Complex
(GCP/GCPH)

Neurological
Diseases (e.g., AD) Mouse Model

GCP targets gene delivery to
the cerebral cortex; GCPH

(hyaluronidase-coated)
enhances brain distribution.

[115]

MSC-Exo-loaded
PTEN siRNA

(Mesenchymal Stem
Cell Exosomes)

Complete SCI Animal Model
Non-invasive intranasal

delivery promotes functional
recovery after SCI.

[116]

3.3. Research Progress in Intranasal Delivery of Cell-Derived Therapeutic Drugs
3.3.1. Research Progress in Intranasal Delivery of Cell Therapy Drugs

In recent years, this approach has made significant progress in the delivery of biologic
drugs, particularly cell-based therapies. This delivery route leverages the direct pathway
between the intranasal cavity and the CNS, providing a new strategy for the treatment of
CNS diseases. For example, intranasal delivery of human olfactory mucosal progenitor
cells (OMPCs) or human neural stem cells (hNSCs) can specifically migrate to the vicinity
of damaged neurons and axons, offering a non-invasive stem cell therapy for brain injury
with potential clinical application value [120,121]. Intranasal delivery of hNSCs into the
brain, where they differentiate into neurons, reduces β-amyloid plaque accumulation,
decreases neuroinflammation, and improves cognitive function, providing a new avenue
for the treatment of AD [122]. Additionally, intranasal delivery of bone marrow-derived
mesenchymal stem cells (BMSCs) or deciduous dental pulp stem cells (DPSCs) significantly
improves motor coordination and olfactory function in PD mice, reducing the degeneration
of dopaminergic neurons and offering new methods for PD treatment [123,124]. Intranasal
delivery of mesenchymal stromal cells (MSCs) can also treat neuronal damage caused by
prion diseases [125,126], and intranasal delivery of bone marrow stromal cells (BMSCs) pro-
motes neuronal regeneration and functional repair after stroke [127]. Furthermore, recent
studies have shown that intranasal delivery of mitochondria has significant therapeutic
effects on various neurological diseases, expanding the application scope of organelles in
disease treatment [128,129] (Table 5).
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Table 5. Research progress in intranasal delivery of cell therapy drugs.

Drug/System Name Application/
Disease Research Model Key Findings Ref.

Mitochondria
Chemotherapy-

induced Cognitive
Deficits

Mouse Model
Intranasal delivery of

mitochondrial-targeted compounds
provides neuroprotective effects.

[128,129]

Human Olfactory
Mucosal Progenitor

Cells (OMPCs)
Brain Injury Rat Diffuse Axonal

Injury Model

OMPCs migrate to the vicinity of
damaged neurons and axons via
intranasal delivery, supporting
non-invasive stem cell therapy.

[120]

Human Neural Stem
Cells (hNSCs) AD AD Mouse Model

hNSCs survive and differentiate into
neurons, reducing β-amyloid plaque

accumulation and synapse loss,
improving cognitive function.

[122]

Bone Marrow-Derived
Mesenchymal Stem

Cells (BMSCs)
PD PD Mouse Model

Pre-treated BMSCs enhance efficacy,
improving motor function and

reducing dopaminergic neuron loss.
[123]

Human Umbilical
Cord-Derived

Mesenchymal Stromal
Cells (MSCs)

Bronchopulmonary
Dysplasia (BPD)

Experimental BPD
Model

Intranasal delivery of MSCs repairs
lung damage caused by BPD with

simple methods and
clinical potential.

[125]

Deciduous Dental Pulp
Stem Cells (DPSCs) PD MPTP-induced PD

Mouse

DPSCs improve motor coordination
and olfactory function, reducing

dopaminergic neuron degeneration.
[124]

Delayed Repeated
Intranasal Delivery of

Bone Marrow
Stromal Cells

Ischemic Stroke Mouse Stroke Model
Delayed repeated intranasal

delivery promotes regeneration and
functional recovery after stroke.

[127]

3.3.2. Research Progress in Exosome Intranasal Delivery

Exosomes are small extracellular vesicles (EVs) secreted by various cells that have
multiple functions, including anti-apoptotic and anti-inflammatory effects. Compared to
stem cells, exosomes are easier to store, have lower immunogenicity, and can be used as
drug carriers [9]. Intranasal delivery of stem cell-derived exosomes has shown significant
therapeutic effects on various CNS diseases, such as ischemic stroke, TBI, SCI, perina-
tal brain injury, cognitive impairments, PD, and autism [9,130]. For example, intranasal
delivery of exosomes derived from human umbilical mesenchymal stem cells effectively
alleviates brain injury, providing a new avenue for stroke treatment [131]. Additionally,
intranasal delivery of stem cell-derived exosomes can significantly improve cognitive im-
pairments after subarachnoid hemorrhage, reduce neuronal apoptosis and inflammation,
and significantly alleviate symptoms of experimental autoimmune encephalomyelitis, re-
ducing inflammatory cell infiltration and demyelination while enhancing BBB integrity [5].
Intranasal delivery of exosomes also reduces neuronal apoptosis and inhibits microglial
inflammation [132].

3.4. Promising Formulations and Translational Potential

A variety of intranasal drug delivery systems demonstrate significant translational
potential for CNS disorders, each with distinct advantages and limitations. Nanoparticle-
based formulations offer high clinical potential due to their versatility, scalability, and
compatibility with diverse drugs. Liposomes are effective in delivering both hydrophilic
and lipophilic agents, though limited by short nasal residence time [133]. Polymeric
nanoparticles (e.g., PLGA, chitosan) provide controlled release and targeted brain delivery,
with some progressing to clinical trials [51,134]. Self-emulsifying drug delivery systems
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(SEDDS) are ideal for lipophilic CNS drugs, enhancing solubility and bypassing first-
pass metabolism. They show reduced systemic toxicity but require particle size control
(<200 nm) and more data on long-term nasal safety [135,136]. Hydrogel-based formulations
are especially thermosensitive in situ gels; these platforms offer sustained release and
improved nasal retention. Applications like berberine and self-healing hydrogels show
enhanced therapeutic effects, though mucosal irritation and crosslinker biocompatibility
remain challenges [137,138]. Exosome-derived systems leverage their innate CNS targeting
and immune tolerance, and exosomes effectively deliver proteins and nucleic acids across
the BBB. MSC-derived exosomes show promise in neuroregeneration, but production
scalability and formulation stability are key hurdles [139–141]. Viral vectors (e.g., AAVs):
Clinically validated for gene therapy in neurological diseases, these vectors offer efficient
gene transfer and strong neuronal tropism [142,143]. Innovations like FUSIN improve
delivery precision, but immunogenicity, payload limits, and regulatory complexity must
be addressed [3,144]. Overall, these systems represent a robust and diverse toolkit for
advancing non-invasive CNS therapies, with ongoing research focused on overcoming
technical and safety-related challenges.

4. Advancements in Strategies to Enhance Intranasal Drug Delivery
4.1. Advances in Drug Delivery Devices for Intranasal Administration

To enhance the delivery of drugs into the brain, researchers explored various strategies,
such as mechanical stimulation. New intranasal drug delivery devices play a key role in im-
proving drug delivery efficiency within the intranasal cavity, enhancing drug distribution
uniformity, increasing drug retention time on the intranasal mucosa, and improving patient
compliance [145]. For example, spray devices that precisely control drug dosage and spray
patterns ensure that drugs are accurately delivered to specific regions of the intranasal
cavity, particularly the olfactory and respiratory regions, which are important for brain
targeting. Furthermore, improvements in dry powder inhalers allow drugs to be more
evenly dispersed as dry powders within the intranasal cavity, extending the drug’s action
time in the nose [1,146]. New catheter technologies and spray device designs optimize drug
delivery to the CNS, enhancing organ-specific drug concentration [147,148]. For example,
optimizing the catheter insertion angle and depth with 3D printing ensures that drugs are
accurately delivered to the olfactory regions, avoiding accidental inhalation or swallowing,
providing a new method for highly accurate, reproducible, region-specific drug deliv-
ery [149]. New intranasal implant drug delivery systems have also been developed, using
radioactive labeled risperidone, which allows non-invasive monitoring of drug release
through MicroSPECT/CT imaging, offering a new path for CNS disease treatment [150].

Ultrasound-mediated intranasal drug delivery (FUSIN) technology enhances drug deliv-
ery efficiency through transcranial ultrasound, bypasses the BBB, and enables non-invasive
brain drug delivery, demonstrating significant clinical application potential [151,152]. FUSIN
technology bypasses the BBB via the nasal route, enhances drug delivery efficiency, and
minimizes systemic exposure in major organs such as the heart, lungs, liver, and kidneys,
showcasing its potential as a non-invasive gene therapy platform. For example, FUSIN tech-
nology can efficiently and safely deliver adeno-associated viruses (AAVs) to specific brain
regions, offering advantages of low systemic exposure and non-invasiveness, highlight-
ing its potential in gene therapy [153]. Furthermore, innovative intranasal drug delivery
methods, such as magnetic stem cell micro-robots [154,155], spray delivery of neuroactive
peptides [156], three types of spray devices for insulin delivery [157], and transcranial
magnetic stimulation combined with magnetic nanoparticles [158], have further improved
drug delivery efficiency.
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4.2. Progress in Intranasal Drug Delivery with Nanotechnology

Nanotechnology has emerged as a promising strategy for intranasal drug delivery,
offering enhanced retention time, mucosal penetrability, and uptake efficiency, particularly
valuable for treating CNS disorders [11]. Among the various nanocarrier platforms, liposo-
mal systems have significantly improved brain drug absorption [15,159], while polymer-
based nanoparticles, nanoemulsions, and other formulations have enhanced the ability of
drugs to cross the BBB [12,14,108,160,161]. Recent advances in nano- and microparticle-
based delivery systems have shown considerable potential in enhancing the treatment of
CNS diseases. Novel nanocomposites have been effective in managing memory deficits
and neurological pathologies [162]. Additionally, hyaluronic acid-modified nanocarriers
have enhanced brain targeting and cellular uptake, offering innovative treatment strategies
for AD [163]. Notably, intranasal delivery of polymer-based nanoparticles has yielded
superior therapeutic outcomes compared to traditional administration routes. For exam-
ple, lamotrigine-loaded PLGA nanoparticles achieved higher brain concentrations and
improved efficacy in animal models than oral delivery [164]. Similarly, phenytoin-loaded
chitosan nanoparticles provided sustained release and elevated brain-specific drug levels
in rats [165], while PEGylated nanoparticles encapsulating miR-132 successfully crossed
the nasal-brain barrier and improved cognitive performance in AD mouse models [166].
Beyond small molecules, nanocarrier systems have facilitated the intranasal delivery of
neuroactive peptides, oxytocin, insulin, and other biologics, thereby broadening their
clinical application [167]. Emerging delivery platforms such as magnetic nanoparticles
and plant-derived extracellular vesicles (EVs) have also been applied to treat epilepsy
and gliomas, significantly enhancing drug targeting and immune responses [168–170].
Furthermore, advanced formulations such as PEG-modified chitosan-lipid nanocapsules
and carbon nanotubes have exhibited notable potential in nasal drug delivery, contributing
to improved therapeutic outcomes [171,172].

Several disease-specific applications further underscore the versatility of these sys-
tems. Zolmitriptan-loaded liposomes have shown effectiveness in migraine treatment [133].
Biodegradable nanoparticles delivering thyrotropin-releasing hormone demonstrated favor-
able safety profiles in preclinical models [173]. Research has also optimized drug delivery
using various nanocarriers, including liposomes containing antioxidants, naringin nanocap-
sules, and rutin nanolamellar vesicles, significantly increasing brain drug concentrations
and therapeutic efficacy, particularly in epilepsy, memory disorders, and neuroinflam-
mation [174–176]. Moreover, studies have explored novel intranasal delivery methods
using self-assembled nanoparticles, EVs, and miRNA nanoparticles, showing potential
for improving neurodegenerative diseases, brain glioblastomas, and ischemic brain in-
jury [177–182]. Additionally, spanlastic nanovesicles, prepared using film hydration and
modified spray technologies, have enhanced the delivery efficiency of rasagiline mesylate
to the brain [183]. Intranasal drug delivery of nanoemulsions has significant advantages in
improving the efficiency of CNS drug delivery. Nanoemulsions can enhance the ability of
drugs to penetrate the olfactory epithelium, thereby improving the local drug accessibility
and brain delivery efficiency of CNS drugs [184]. For example, meloxicam nanoemulsions,
zotepine microemulsions, and memantine nanoemulsions exhibit superiority in enhancing
drug solubility, permeability, and organ-specific drug concentration, significantly enhanc-
ing therapeutic effects [185–187]. Moreover, butter and omega-3 fatty acid-rich fish oil,
as permeation enhancers, significantly increase the ability of drugs to penetrate the nasal
mucosa and enhance brain absorption [188]. Vitamin E-loaded naringin nanoemulsions and
lactoferrin-modified huperzine A nanoemulsions demonstrate their potential in increasing
drug concentration and reducing side effects [189–191].
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In conclusion, intranasal drug delivery technology, in combination with nanotech-
nology and biomaterials, provides a new non-invasive therapeutic approach for CNS
diseases, immunotherapy, cancer treatment, and other fields, demonstrating enormous
clinical application potential [171,192,193].

4.3. Research Progress in Hydrogels for Intranasal Drug Delivery

Hydrogels have a promising application in intranasal drug delivery, effectively improv-
ing drug efficacy and safety and providing new approaches and methods for the development
of intranasal drug delivery systems. For example, thermosensitive hydrogels delivering
berberine for the treatment of depression not only bypass the BBB but also prolong the
drug’s action time, significantly enhancing brain-specific drug concentration and improving
antidepressant effects [194]. Self-assembled thermosensitive in situ hydrogels co-delivering
berberine and evodiamine significantly improved the drug’s organ-specific drug concentra-
tion in intranasal drug delivery [195]. Loading resveratrol into sodium alginate nanogels
successfully improved depressive behaviors in chronic stress rats, demonstrating strong
antidepressant potential [196]. Hydrogels loaded with EVs for intranasal delivery can also
treat myocardial ischemia–reperfusion injury, showing higher absorption efficiency and
therapeutic potential, providing a new direction for treating myocardial infarction-related
diseases [197–199]. Additionally, the AXT-NLC13-G4 system, based on nanolipid carriers and
in situ gel technology, significantly improved the drug’s targeting to the brain and cognitive
improvement effects [200]. Carboxymethyl chitosan and sodium hyaluronate hydrocolloid
systems, with good wettability and rapid release properties, are suitable for insulin in-
tranasal delivery [201]. Intranasal drug delivery technologies targeting specific brain regions,
combined with self-healing supramolecular hydrogel systems, successfully increased drug
concentrations in the brain while bypassing first-pass liver metabolism, providing effective
treatment methods for neurological diseases [202]. Moreover, disulfide nanoparticle emulsi-
fied gels effectively treated glioblastoma through intranasal delivery, showing excellent brain
targeting and safety [203]. A representative preclinical study utilized a chitosan hydrogel
loaded with liposomal donepezil HCl, showing significantly enhanced brain targeting for
the treatment of Alzheimer’s disease [204]. Similarly, a thermosensitive hydrogel highlighted
the potential of temperature-sensitive hydrogels in facilitating direct drug delivery to the
brain via the intranasal route [205]. In the field of peptide delivery, insulin-conjugated
poly(N-vinyl pyrrolidone)-based nanogels can significantly enhance insulin concentration
and biological activity in the brain [206]. These cases reflect the translational promise of
hydrogel-based nasal systems, especially in CNS therapy, chronic disease management, and
non-invasive alternatives to injections. Hydrogels offer significant advantages for intranasal
drug delivery, including strong mucoadhesion, sustained release, and good biocompatibil-
ity, enabling effective brain targeting and bypassing the BBB. They have shown promising
results in treating CNS disorders, such as depression and glioblastoma, especially when
combined with nanoparticles or self-healing systems. However, limitations remain, including
poor permeability for large biomolecules, sensitivity to nasal environmental conditions, and
challenges in large-scale production. Compared to nanoparticles and SEDDS, hydrogels
provide better safety and retention but moderate CNS delivery efficiency, making them ideal
for small-molecule delivery and combinational strategies. These novel systems provide a
non-invasive and efficient delivery route for the treatment of CNS diseases.

4.4. Research Progress on Permeation Enhancers in Intranasal Drug Delivery

Although intranasal drug delivery is non-invasive and efficient, many drugs are
difficult to apply due to low bioavailability. Permeation enhancers play a crucial role in en-
hancing drug absorption and delivery efficiency [207]. Recent advancements in intranasal
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drug delivery have highlighted the pivotal role of permeation enhancers in improving the
bioavailability of therapeutics, particularly for CNS disorders. Among these, alkylsaccha-
rides such as dodecyl maltoside and tetradecyl maltoside have been extensively studied.
These compounds transiently open tight junctions in the nasal epithelium, facilitating
enhanced drug absorption without causing significant mucosal damage. Notably, dodecyl
maltoside has been incorporated into several FDA-approved intranasal formulations, in-
cluding diazepam for seizure clusters, nalmefene for opioid overdose, and sumatriptan for
migraines, underscoring its clinical relevance [208]. For example, lauroylcholine chloride as
a permeation enhancer significantly improved the drug’s delivery efficiency from the nasal
cavity to the brain [209]. L-penetratin enhances direct drug entry into the brain through the
olfactory mucosa, especially increasing hippocampal drug accumulation, providing a new
therapeutic strategy for neurodegenerative diseases [210]. Additionally, a new platform of
lactobacillus lactate was developed as a mucosal vaccine, demonstrating its broad-spectrum
protection potential [211]. By improving the intranasal delivery formulations of ketamine,
tunicamycin, and insulin, organ-specific drug concentration and brain delivery effects were
significantly enhanced [212–215]. A novel PTD used as an absorption enhancer improved
insulin delivery, providing a convenient solution for diabetes treatment [215]. Permeation
enhancers offer significant advantages in intranasal drug delivery by improving mucosal
absorption and overcoming the low bioavailability. Agents like lauroylcholine chloride and
L-penetratin have been shown to enhance brain targeting, particularly increasing hippocam-
pal accumulation, which is beneficial for neurodegenerative disease treatment [216,217].
Novel platforms, such as lactobacillus-based mucosal vaccines and PTD-assisted insulin
delivery, further expand nasal delivery applications to immunotherapy and metabolic
disorders. However, barriers remain, including potential mucosal irritation, variability
in enhancer efficacy across individuals, and limited long-term safety data. Compared
to traditional systems, permeation enhancers provide a practical, non-invasive means to
boost drug bioavailability and brain targeting, especially when integrated into advanced
formulations like nanoparticle or hydrogel-based systems [218,219]. These studies offer
new insights for the application of intranasal drug delivery in the treatment of neurological
diseases and other conditions (Table 6).

Table 6. Advantages and limitations of nanocarrier types in intranasal drug delivery systems.

Nanocarrier Type Advantages Limitations Ref.

Liposomes High biocompatibility; good drug
loading for hydrophilic drugs. Rapid clearance; low stability. [220]

Polymeric Nanoparticles
(PLGA, Chitosan)

High drug loading; sustained release;
improved stability; versatile surface

modification.

Potential toxicity; difficulty in
large-scale production. [221]

Nanoemulsions Enhanced solubility and permeability
of lipophilic drugs.

Thermodynamic instability, need
stabilizers. [222]

Magnetic Nanoparticles Magnetic targeting,
imaging compatibility.

Potential safety concerns,
complex formulation. [223]

PEGylated Nanoparticles Extended circulation time, improved
CNS penetration. Expensive, potential immune response. [224]

Exosomes
Endogenous origin; high

biocompatibility; excellent penetration
across biological barriers.

Low production yield; difficulty in
drug loading; high cost. [225]

Plant-derived Extracellular
Vesicles (EVs)

Natural origin; low toxicity; immune
modulation potential. Scalability; batch variability. [226]

Hydrogel-nanoparticle
hybrids

Mucoadhesion; biocompatibility;
prolonged residence time.

Formulation optimization challenges;
drug release control. [227]
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5. Challenges and Future Research Directions in Intranasal
Drug Delivery

Intranasal drug delivery offers multiple advantages, including non-invasiveness,
ease of administration, high patient compliance, and the ability to bypass the BBB, thus
enabling direct drug transport to the CNS [8,14,228,229]. These benefits make it an attractive
alternative to invasive routes like intravenous or intrathecal administration, particularly
for chronic neurological conditions. However, intranasal drug delivery also faces several
physiological and technical challenges. Drug absorption is often limited by inherent
anatomical and physiological features such as the nasal epithelium’s barrier function,
mucociliary clearance, enzymatic degradation, and variable solubility of drugs, which
together affect both the extent and consistency of drug absorption [8]. Furthermore, local
metabolic activity and rapid clearance mechanisms in the nasal cavity can significantly
reduce drug bioavailability before it reaches the brain.

Formulation development remains a major hurdle, requiring careful optimization of
drug stability, controlled release kinetics, mucoadhesive properties, and targeting capability
to ensure effective CNS delivery [8]. Although intranasal drug delivery has demonstrated
a favorable safety profile in non-human primate studies. It especially excels at increasing
brain exposure while reducing systemic side effects. However, repeated administration
over extended periods may lead to mucosal irritation and potential olfactory dysfunction,
necessitating more rigorous investigation into its long-term safety in humans [230]. Drugs
and excipients used in formulations, such as permeation enhancers, surfactants, or cationic
polymers like chitosan, may disrupt nasal epithelial integrity, leading to neuronal inflam-
mation, degeneration, or altered signaling. Repeated or high-dose exposure to neuroactive
drugs can also result in excitotoxicity or oxidative stress in olfactory neurons and trigemi-
nal fibers. Although many delivery systems demonstrate improved bioavailability, their
safety on neuronal structures remains insufficiently characterized [1,231]. Therefore, it
is essential for review studies to emphasize the need for preclinical and clinical evalua-
tions of both drug- and excipient-induced neuronal toxicity to ensure safe and effective
intranasal therapies.

Beyond physiological and formulation hurdles, intranasal drug delivery also faces
regulatory and translational challenges. Currently, there is a lack of standardized FDA or
EMA guidelines specifically tailored for CNS-targeted nasal delivery systems, and much
of the regulatory evaluation relies on surrogate endpoints such as CSF levels rather than
direct brain biodistribution [14,228]. Moreover, significant anatomical and physiological
differences between animal models and humans contribute to discrepancies in clinical
outcomes, as observed in trials like the modest translation of intranasal insulin efficacy
from rodents to Alzheimer’s patients [229].

To overcome these limitations and fully realize the potential of intranasal drug delivery,
future research should focus on the development of bioresponsive and smart formulations
that adapt to the nasal environment, integration of AI and machine learning for person-
alized drug delivery optimization, establishment of predictive human-relevant in vitro
and in silico models, and the design of scalable, cost-effective manufacturing platforms.
In parallel, long-term clinical studies are needed to evaluate mucosal safety and efficacy
across diverse populations [228,229].

This review identifies the following future research directions. First, it is essential
to develop novel drug delivery systems, such as nanoparticles and gels, that effectively
enhance drug absorption and minimize local side effects. Second, research should focus
on individual differences in responses to intranasal drug delivery, aiming to develop per-
sonalized treatment plans to improve efficacy and reduce adverse effects. Additionally,
long-acting, controlled-release systems are an important direction in intranasal drug deliv-
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ery development. By controlling drug release, the duration of drug action can be extended,
and the frequency of administration can be reduced. Furthermore, with the integration
of artificial intelligence, in vitro experiments and computer simulations should be used
to evaluate the behavior of intranasal drug delivery devices and formulations, combined
with high-resolution imaging techniques and computational fluid dynamics simulations,
to better understand the drug delivery process. Lastly, driven by single-cell technologies,
efforts should be made to enhance the construction of the nasal-brain axis cell atlas, ad-
vancing intranasal drug delivery research from traditional pharmacology to the paradigm
of precision medicine.

6. Conclusions
Intranasal drug delivery has emerged as a highly promising strategy for overcoming

the limitations imposed by the BBB in the treatment of CNS diseases. As this review
demonstrates, intranasal drug delivery methods provide direct, non-invasive access to
the brain, enabling effective delivery of a wide range of therapeutics, including small
molecules, biomacromolecules, nucleic acids, and cell-derived therapies. In addition, this
method minimizes systemic exposure and enhances patient compliance. Mechanistically,
both intracellular and extracellular transport mechanisms are involved, with formulation
strategies such as nanoparticles, hydrogels, and permeation enhancers playing a central
role in improving drug absorption, retention, and targeting efficiency. Significant progress
has been made in optimizing delivery systems for various CNS disorders, including AD,
PD, stroke, and brain tumors. Despite physiological and technical challenges, such as
mucociliary clearance, local toxicity, and manufacturing complexities, the accumulating
preclinical and clinical evidence supports the feasibility and translational potential of
intranasal drug delivery. This review consolidates key advances and provides a compre-
hensive understanding of the mechanisms, applications, and challenges of this approach,
offering a solid scientific foundation for its continued development in CNS therapeutics.
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AAVs Adeno-associated viruses
AD Alzheimer’s disease
ASO Antisense oligonucleotide
BBB Blood–brain barrier
BMSCs Bone marrow-derived mesenchymal stem cells
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BPD Bronchopulmonary dysplasia
CSF Cerebrospinal fluid
CNS Central nervous system
DPSCs Deciduous dental pulp stem cells
EVs Extracellular vesicles
FUSIN Focused ultrasound-mediated nasal drug delivery
GLP-1 Glucagon-like peptide-1
IGF-1 Insulin-like growth factor 1
hNSCs Human neural stem cells
LIF Leukemia inhibitory factor
MSC Mesenchymal stem cell
NGF Nerve growth factor
OMPCs Olfactory mucosal progenitor cells
PD Parkinson’s disease
PEG Polyethylene glycol
PTD Protein transduction domain
SAD Social anxiety disorder
SCI Spinal cord injury
TBI Traumatic brain injury
ZO-1 Zonula occludens-1
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